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SHOULD WE CONSTRAIN THE THRESHOLDS  

IN FACTOR ANALYSIS  

OF RATING SCALE RESPONSES? 

GREGOR SOČAN 
UNIVERSITY OF LJUBLJANA, SLOVENIA 

In factor analysis of ordinal variables, category thresholds determine the values of a hypothetical latent 
response at which a transition to a higher response option occurs. In general, category thresholds are estimated 
as free parameters. In the Rasch measurement theory framework, the rating-scale model has been proposed 
that prescribes equal sets of distances between category thresholds for all items. As a factor analytic parallel, 
I propose a model with a constrained threshold structure (FACTS). The application of the model is illustrated 
with a real data example. A simulation study showed that the thresholds are estimated more accurately with 
the FACTS model than with the standard unconstrained model for different sample sizes, test lengths, and 
number of response categories. In addition, the likelihood ratio test generally showed good power in compar-
ing the two models. Because the FACTS model performs well and provides a meaningful interpretation of 
category thresholds, it may be used routinely in factor analysis of categorical item responses. 
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(Self-)rating scales are regularly used in the measurement of personality traits and other typical-

response assessments. Usually, participants are asked to choose among a limited number of discrete and 

ordered response categories. The categories may cover the continuum between complete agreement and 

complete disagreement or between a very high frequency and a very low frequency. Sometimes only the 

meaning of the two extreme categories is defined (especially when the number of categories is high), and 

sometimes each category is given its verbal label. The item scores (i.e., the ratings, reversed if necessary) are 

regularly subjected to factor analysis, either to examine the dimensionality of the items or to construct a 

structural equation model. In such analyses, the factor analysis model for ordered categorical variables seems 

to be preferable. Applying the standard linear model of factor analysis on categorical data violates the basic 

model assumptions, resulting in less accurate loading estimates and incorrect standard errors and model fit 

statistics (e.g., Li, 2016; Rhemtulla et al., 2012). 

Factor analysis for categorical indicators, as developed by Muthén (1978, 1984), is based on the 

introduction of intermediate variables, usually referred to as latent responses (Muthén, 1984) or underlying 

variables (Bartholomew & Knott, 1999). For the 1-factor model, this approach can be summarized as follows. 

Let y be a categorical item score with C ordered categories. The relationship between the latent trait and the 

latent response is modeled by the ordinary linear model:  

𝑦𝑖
∗ = 𝜈 + λ𝑦 𝜉𝑖 + ϵ𝑖𝑦∗ ,                          (1) 

where 𝑦𝑖
∗ stands for the latent response of person i, 𝜈 is the factor intercept, λ𝑦 is the factor loading of item 

latent response 𝑦𝑖
∗, 𝜉𝑖 is the latent trait value of person i, and ϵ𝑖𝑦∗ is the residual.  
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The latent responses and the manifest responses are related through a set of C – 1 thresholds (1, 2, 

…, C-1,): 

𝑦𝑖 = {

0, if 𝑦𝑖
∗ ≤  τ1             

1, if  𝜏1 < 𝑦𝑖
∗ ≤  τ2  

⋮
𝐶 − 1, if 𝑦𝑖

∗ >  τ𝐶−1 

                     (2) 

The scale of the latent response is arbitrary; therefore, the intercept can be set to 0. In the usual delta 

parameterization (Muthén & Asparouhov, 2002), the latent response is standardized. The latent response is 

assumed to be normally distributed, and thresholds are estimated from the univariate marginal frequencies. 

Factor loadings are usually estimated by applying a diagonally weighted least squares estimator to the matrix 

of polychoric correlations between items (Muthén & Muthén, 1998-2017; Rosseel, 2024).   

It should be noted that the latent response already contains the measurement error. In the context of 

personality assessment, the latent response can be understood as the level of item endorsement at the time of 

response. The k-th threshold can then be viewed as the highest level of endorsement, at which the participant 

still prefers category k ‒ 1 to category k (cf. Muthén & Asparouhov, 2002, Section 2.2). The translation from 

the latent response to the manifest response is deterministic; more specifically, it is a case of surjective map-

ping. For example, if the latent response is less than 1, the participant will certainly choose the lowest cate-

gory. The correlation between test scores on two occasions will be less than 1 because the same value of the 

latent trait ξ𝑖 will result in different values of the latent response 𝑦𝑖
∗ on different testing occasions, as a result 

of the addition of the random error ϵ𝑖𝑦∗. Item intercorrelations are further reduced by the rounding error 

introduced by the discretization of the continuous latent response: all values of the latent response between 

two consecutive thresholds are mapped to the same discrete observed response (for a discussion of the effects 

of the rounding error see Schneeweiss et al., 2010).  

In factor analyses of psychological scales, thresholds often receive less attention than loadings. 

However, thresholds should play an important role in psychometric analyses because they reflect the diffi-

culty (or “endorsability”) of the items. For instance, consider an item with four categories and thresholds of 

‒2, ‒1, and 0. If the latent responses are normally distributed, participants with above-average endorsement 

will choose the highest category and only 2.3% of participants with the lowest endorsement will choose the 

lowest category (because in the standard normal distribution, the mean is 0 and the probability of a z score 

equal or lower than ‒2 is 2.3%). The item can therefore be described as “easy” in the sense that a relatively 

low level of latent response is sufficient for a relatively high manifest response. If the factor loading is posi-

tive, this implication also holds with respect to the latent trait value, but only in a probabilistic sense: because 

the latent response also contains random error, a relatively low factor value may suffice for a high response 

and vice versa. 

Thresholds are assumed to be the same for all participants. Although it might seem reasonable to 

allow for variation in the mean structure across participants — for example, due to individual differences in 

response styles — such a model would be overparameterized unless some stringent restrictions and assump-

tions were introduced (see Maydeu-Olivares & Coffman, 2006, for a proposed solution based on the ordinary 

factor analysis model, and Falk & Cai, 2016, for a more general IRT-based treatment). At the same time, the 

default solutions generated by state-of-the-art software packages such as Mplus (Muthén & Muthén, 1998-

2017) and lavaan (Rosseel, 2012, 2024) do not impose any constraints on the threshold structure across items. 

This makes sense in cases where response categories have different meanings for different items. However, 

if the same set of anchors is used for all items, it is reasonable to assume that the categories are used in the 

same way for all items. If participants respond consistently, the choice of some response category (for 
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example, strongly agree) reflects the same level of item endorsement regardless of the item content. This 

implies that the distance between thresholds for each unique pair of categories (such as strongly agree and 

agree) should be the same for all items. Notable differences in the threshold structure indicate an item  

rating-scale interaction, which may be difficult to interpret in a meaningful way. 

The idea of constraining the threshold structure is not new in psychometrics. In Rasch measurement 

theory, the rating-scale model (RSM) has been proposed (Andrich, 1978, 2016) as a restricted version of a 

polytomous Rasch model: 

𝑝(𝑦𝑖 = 𝑡) =
exp ∑ (θ𝑖−(𝑏𝑦+τ𝑘))𝑡

𝑘=0

∑ exp ∑ (θ𝑖−(𝑏𝑦+τ𝑘))ℎ
𝑘=0

𝐶−1
ℎ=0

                     (3) 

In the above equation, yi is the item score, i represents the position on the latent trait for person i, 

by is the location parameter for item y, k is the threshold deviation for category k (k = 0, 1, … C – 1), and t 

is the value of the chosen category. Because RSM is a member of the Rasch family, no item discrimination 

parameter is included. Each item is characterized only by a single location parameter (“difficulty”). Addi-

tionally, the C – 1 category thresholds by + k can be calculated, which determines the points at which adjacent 

categories are equally likely to be endorsed. A single set of  parameters is estimated; therefore, the threshold 

structure is the same for all items. 

 

 

A Factor-Analytic Model with a Constrained Threshold Structure 

 

In this paper, I propose a factor-analytic analog of the RSM. The factor analysis with a constrained 

threshold structure (FACTS) model is defined by Equations 1 and 2 with the following additional constraints. 

Let us define a set of C – 2 threshold differences: 

τ2 − τ1 = δ1 

⋮                       (4) 

τ𝐶−2 − τ1 = δ𝐶−2 

Each of the differences 1, …, C – 2 is constrained to be equal across all items. From the substantive 

viewpoint, this means that the differences between response categories are the same for all items. On the 

other hand, the difficulty of the items, reflected in the average value of the thresholds for an item, may still 

vary across items. Figure 1 illustrates the rationale of the model. The thresholds for three 4-category items 

are marked with triangles. The items vary in difficulty (item C is the most difficult and item B is the easiest), 

but the differences between the thresholds () are the same. We can also see that the second threshold is 

closer to the first threshold than to the third one, that is (2 ‒ 1) > 1, which indicates that the lower response 

categories are closer to each other than the upper categories. 

The FACTS model can be readily fitted using state-of-the-art structural equation software that pro-

vides the DWLS estimation and can impose equality constraints on the thresholds. In addition, it may be 

interesting to test whether the FACTS model fits significantly worse than the unconstrained model. In lavaan, 

this can be accomplished with the scaled 2 test (Satorra, 2000). The score (Lagrange multiplier) test can be 

used to investigate whether the constraints should be released for items with the greatest differences between 

the constrained and unconstrained thresholds (post hoc testing should preferably be supplemented by a Holm-

Bonferroni correction). An R script that automatically generates the code for the FACTS model and runs the 

analyses in lavaan, and an illustrative Mplus script are available as electronic supplements. 
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FIGURE 1  

An ideal case of the constrained threshold structure for three items with four response categories 

 

 

The FACTS model has two major advantages over the standard unconstrained model. First, the 

number of parameters is smaller. Given p items with C categories, we freely estimate p  (C – 1) parameters 

in the unconstrained model. Because of the equality constraints, the FACTS model has (p – 1)(C – 2) more 

degrees of freedom than the unconstrained model. In addition, the thresholds in the unconstrained model are 

based on univariate marginals. If the extreme categories are endorsed by a small fraction of participants, the 

corresponding thresholds will not be estimated accurately. On the other hand, in the FACTS model, all esti-

mates are based on all responses because of the difference constraints. Thus, the estimates from FACTS 

should be more stable than the unconstrained estimates. Second, the interpretation of the thresholds is simpler 

in the FACTS model because the relative positions of the thresholds are the same for all items. The FACTS 

model is more intuitive because it assumes that the category anchors are understood equally for all items. 

It should be noted that the interpretation of thresholds in the FACTS model and in the rating scale 

model is different (see Bartholomew & Knott, 1999, and Muthén & Asparouhov, 2002, for a discussion of the 

relationship between the factor-analytic and item-response approaches). In RSM, thresholds operate probabil-

istically (they denote points of equal probability), while in FACTS they operate deterministically. A conse-

quence is that — unlike RSM thresholds — the FACTS thresholds can never be reversed, that is, they are 

always ordered. Disordered FACTS thresholds would imply paradoxical consequences where a single latent 

response value would be simultaneously mapped to different observed response values (cf. Equation 2). 

 

 

AN ILLUSTRATION USING REAL DATA 

 

I will illustrate the proposed procedure using the stress scale of the Depression Anxiety Stress Scales-

DASS-21 (Lovibond & Lovibond, 1995). For each of the seven items, respondents rate how much the state-

ments applied to them in the past week using a 4-point severity/frequency scale (0 = not at all; 1 = to some 

degree or some of the time; 2 = to a considerable degree or a good part of the time; 3 = very much or most of 

the time). The Slovenian version of the scale was administered to a sample of 431 adults (Kavčič et al., 2023).  

Despite the significant test statistic, the approximate model fit for the FACTS model was good: 

2(26) = 59.25, p < .001; CFI = .99; RMSEA = .05; SRMR = .03. The model fit was not significantly worse 

compared with the unconstrained 1-factor model: 2(12) = 18.08, p = .113. Both sets of thresholds are shown 

in Figure 2. In most cases, the constrained thresholds were very close to the unconstrained thresholds. The 

difference was slightly larger for the third threshold of items S6 and S8 (FACTS – unconstrained = –0.13 and 
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0.17, respectively), but none of the differences were significant according to the score test with the Holm-

Bonferroni correction. Thus, we can conclude that the same threshold structure can be applied to all items. 

The delta parameters were 1 = 1.15 and 2 = 2.02, which means that the difference between the first two 

thresholds (2 ‒ 1 = 1 = 1.15) was slightly larger than the difference between the second and third (3 – 2 

= 2 – 1 = 0.86). Thus, it appears that the lower response categories are further apart than the higher ones. 

This is not surprising, because the difference between the total absence and some presence is fundamentally 

greater than the difference between the different levels of presence of a phenomenon. The items can be 

considered psychometrically difficult because all thresholds were relatively high, implying that a high level 

of latent response is required to select the middle or high response categories. 

 

 

FIGURE 2  

Unconstrained and constrained thresholds for the DASS-21 stress scale items 

Note. The constrained thresholds are indicated by crosses, the unconstrained ones by circles. 

 

 

EMPIRICAL EVALUATION OF THE FACTS MODEL 

 

The usefulness of the FACTS model depends on the empirical behavior of the threshold estimates. 

It is particularly important to check whether the use of the model notably improves the accuracy of the 

threshold estimates and whether it is possible to detect a misfit with a satisfactory power. I conducted two 

simulation studies to evaluate the performance of the model. 

First, I evaluated the accuracy of the FACTS estimates compared with the unconstrained estimates. 

I expected that, provided that the FACTS model was the correct population model, the constrained estimates 

would be more accurate (i.e., deviate less from the population values) than the unconstrained estimates. Be-

cause the parameters  in Equation 4 are based on all the data, the thresholds should be less affected by the 

sampling error than the unconstrained thresholds, which are based on the cumulative proportions of responses 

within a single item. As subhypotheses, I also hypothesized that the improvement in accuracy would be larger 

in the following situations: 

(a) Smaller sample size. In very large samples, the unconstrained thresholds are close to the popu-

lation values, so constraining them has little effect. 

-0.50

0.00
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(b) Longer tests. With a larger number of items, parameters  are based on more data and are there-

fore more accurately determined. In contrast, the accuracy of unconstrained parameters should not depend 

on the test length. 

(c) Thresholds with large absolute values. Because the unconstrained estimates for such thresholds 

are based on proportions that are relatively close to 0 or 1, respectively, they are particularly susceptible to 

sampling error. 

Second, the statistical properties of the 2 difference test for testing the fit of the FACTS model 

were evaluated against the unconstrained model. As mentioned earlier, the difference test as implemented in 

popular software such as the lavaan package (Rosseel, 2024) is not optimal. Therefore, it was important to 

investigate the power to detect differences in threshold structure across items to prevent constraining the 

thresholds when this does not correspond to the actual threshold structure.  

 

 

Simulation 1: Evaluation of the Accuracy of the FACTS Estimates 

 

In the first simulation, the following conditions were manipulated: 

(1) sample size (n = 200, 500, or 1000 persons), 

(2) number of response categories (C = 3, 4, or 5 categories), 

(3) test length (p = 10 or 20 items), 

(4) size of standardized factor loadings ( = .30 or .60). 

Note that the comparisons related to thresholds with different absolute values — see point (c) above 

— did not require additional manipulations, because all threshold values were used in each condition. 

For each of the 36 conditions, 1000 sample data matrices were created as follows. In the first step, 

sample latent trait values were obtained using a pseudo-random number generator. Then, the latent responses 

were calculated according to Equation 1 and finally converted into observed responses using Equation 2. The 

latent trait and residuals were normally distributed. The variances of the latent responses were set to 1. 

Threshold values are given in the online Appendix A.1 All computations were performed with the R 4.0.4 

program (R Core Team, 2021). 

The primary measure of the accuracy of the threshold estimates was the mean absolute deviation 

(MAD) from the population value, which was calculated as: 

MAD =
∑ ∑ ∑ |τ̂𝑠𝑗𝑘−τ𝑗𝑘|𝐶−1

𝑘=1
𝑝
𝑗=1

𝑛
𝑠=1

𝑛𝑝(𝐶−1)
,                            (5) 

where τ̂𝑠𝑗𝑘 is the empirical estimate of the k-th threshold for item p, estimated in sample s, and τ𝑗𝑘 is the true 

(population) value of this threshold. In relation to Hypothesis (c), MAD was calculated separately for thresh-

olds with the same absolute values: 

MADA =
∑ ∑ ∑ |τ̂𝑠𝑗𝑎−τ𝑗𝑎|𝐴

𝑎=1
𝑝
𝑗=1

𝑛
𝑠=1

𝑛𝑝𝐴
,                     (6) 

where A was the number of thresholds with the same absolute value pertaining to an item. In our simulations, 

A was either 1 or 2 (see threshold matrices in the online Appendix A). Additionally, the absolute bias of the 

estimates was calculated as the difference between the mean sample estimate and the true value of the thresh-

old: 

biasτ𝑘
=

∑ ∑ τ̂𝑠𝑗𝑘
𝑝
𝑗=1

𝑛
𝑠=1

𝑛𝑝
− τ𝑗𝑘                     (7) 
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While MAD is a measure of accuracy (i.e., how close to the true value the estimates fall, on average), 

bias tells us whether the sample values tend to be systematically too high or too low, respectively. Although 

bias is typically reported in the relative form (absolute bias divided by the true value), this would not make 

sense in our case, because the values would depend on the scaling of latent response and would approach 

infinity if the true value approached zero. Nevertheless, the absolute bias values can be interpreted by taking 

into account the fact that the latent response is standardized and thus one unit corresponds to the standard 

deviation. 

In 26 out of 36 combinations of conditions, the MAD value for the constrained estimates was lower 

than for the unconstrained estimates in all samples. For the remaining combinations of conditions, the small-

est percentage of samples for which the constrained estimates were more accurate was 98.8%. 

Table 1 shows the results of the mixed model ANOVA, in which sample size, number of categories, 

test length, and size of factor loadings were treated as between-subjects factors and the threshold structure 

model (constrained vs. unconstrained) was treated as a repeated measures factor. The dependent variable was 

the absolute deviation from the true threshold value (H0 thus stated that MAD was the same in all conditions). 

Effects are sorted by the value of the generalized eta-squared statistic η𝐺
2  (Bakeman, 2005; Olejnik & Algina, 

2003). To save space, only significant effects are presented; the complete table is available in the online 

Appendix B. For our purposes, only the effects that include the model are of interest. In addition to the large 

overall effect of the model, interactions with sample size, number of categories, size of factor loadings, and 

test length were also statistically significant. It should be noted, however, that only the interaction with sam-

ple size exceeded the medium effect size cut-off suggested by Cohen (1988), and the effect sizes for the 

remaining interactions were less than .010 (only the effect of the interaction with the number of categories 

was close to the small size cutoff). 

 

 

TABLE 1 

ANOVA table for the effects on the mean absolute deviation 

 

Effect df1 F p η𝐺
2  e.s. 

n 2 61902.03 < .001 .746 Large 

model 1 268853.99 < .001 .521 Large 

n : model 2 18060.40 < .001 .128 Medium 

C 2 425.27 < .001 .020 Small 

C : model 2 811.45 < .001 .007  

n : C 4 33.33 < .001 .003   

 : model 1 242.31 < .001 .001   

p : model 1 196.80 < .001 .001   

n : C : model 4 46.33 < .001 .001   

p 1 31.07 < .001 .001   

 1 26.60 < .001 .001   

n :  : model 2 10.06 < .001 .000  

n : p : model 2 5.19 = .006 .000  

Note. df2 = 35964. n = sample size; C = number of categories; p = test length;  = factor loading; η𝐺
2  

= generalized effect size; e.s. = interpretation of the effect size according to Cohen (1988, p. 283). 
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Figure 3 illustrates the effects of sample size and number of categories on the accuracy of threshold 

estimates. In all conditions, the mean absolute deviation was smaller for the constrained estimates than for 

the unconstrained estimates. The difference between the MAD values decreased with sample size. Con-

strained estimates were slightly more accurate in the conditions with more categories. The unconstrained 

estimates were the least accurate for 4-category items, which may be attributed to the fact that in this condi-

tion the average absolute value in the threshold matrix was slightly larger (|τ̅| =1.1) than in the 3-category 

and 5-category conditions (|τ̅| =1.0), respectively (cf. the online Appendix A and the results in the next 

paragraph). Test length, on the other hand, had a negligible (although statistically significant) interaction 

with the model: for the 10-item test, the MAD values were MADUC = 0.070 and MADCTS = 0.047, while for 

the 20-item test, these values were MADUC = 0.070 and MADCTS = 0.046. 

Figure 4 shows that the accuracy of the unconstrained estimates was particularly low for very high 

or very low estimates (note that the absolute population value of the threshold is on the x-axis). This was to 

be expected, because these estimates are based on proportions close to 0 or 1, respectively. A small change 

in such a proportion (due to sampling error) leads to a relatively large change in the corresponding quantile 

and, consequently, in the threshold estimate. On the other hand, the mean absolute deviations remained about 

the same for all thresholds in the constrained estimation: due to constraints, these estimates depend on all 

data, making all threshold estimates approximately equally accurate. 

I further computed absolute bias for each threshold value (from ‒2 to 2) in each of the 36 experi-

mental conditions. The bias of the constrained thresholds ranged from ‒0.006 to 0.010, and the bias of the 

unconstrained thresholds ranged from ‒0.041 to 0.047. The average bias across all conditions was less than 

.0001 for both models. Although these values are negligible from a practical viewpoint, I still conducted 

ANOVA (with model and threshold value as repeated-measures factors, and sample size, loading size, test 

length, and number of categories as between-subjects factors). While several effects were significant, only 

the model  threshold interaction had a small effect size (η𝐺
2  = .013). Unconstrained threshold estimates 

tended to be closer to zero, especially in smaller samples, and constrained thresholds showed a very slight 

tendency to be farther from zero than the true values. Full results are presented in the online Appendix C. 

 

 

FIGURE 3  

Mean absolute deviation for various levels of sample size and number of categories 

Note. UC = unconstrained estimates; CTS = constrained threshold structure. 
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FIGURE 4 

Mean absolute deviation in relation to the absolute threshold value 

Note. UC = unconstrained estimates; CTS = constrained threshold structure. 

 

 

Simulation 2: The Power of the Model Fit Test 

 

This simulation aimed to estimate the power of the 2 difference test for testing the fit of the FACTS 

model against the unconstrained model. It seems reasonable to postulate that the degree of misfit is higher 

when there is a larger proportion of misfitting items (i.e., items with a deviating pattern of threshold differ-

ences) and when the threshold differences are larger. In the second simulation, the following conditions were 

manipulated: 

1. proportion of misfitting items (10 or 20%), 

2. deviation of threshold differences for misfitting items from common threshold differences (d = 

0.20 or 0.50; these values were chosen to reflect the commonly accepted criteria for a small and medium 

value of the Cohen’s d, respectively), 

3. sample size (n = 200, 500, or 1000 persons), 

4. test length (p = 10 or 20 items), 

5. factor loadings structure: 

a) unidimensional structure, all loadings equal .30, 

b) unidimensional structure, all loadings equal .60, 

c) 2-dimensional structure: first-factor loadings equal .60, second factor loadings equal  .30. 

Data were analyzed according to the 1-factor model. Condition (c), therefore, represents a departure from 

unidimensionality (mean sample fit indices for the unconstrained model were RMSEA = .10 and CFI = .87). 

For each of the 72 conditions, 3000 sample data matrices were generated. The number of response 

categories was set at 4. The remaining settings were the same as for the first simulation. The thresholds for 

the misfitting items are given in the online Appendix A, and the factor loading matrix for Condition (c) is in 

the online Appendix D. 

Table 2 shows the power under different conditions. The power was higher when the sample size 

was larger and when the test consisted of more items. When factor loadings were very small ( = .30) and 

when factor structure notably departed from unidimensionality, the power was somewhat lower compared to 

the unidimensional structure with high loadings. When the threshold structure of the misfitting items notably 

deviated from the common structure (d = 0.50), the power was generally very high. When the factor loadings 
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were high (.60), the power was above 80% even with a sample size of 200 and a single misfitting item (in a 

test with 10 items). On the other hand, if we want to detect even very small deviations from the threshold 

structure (d = 0.20), the sample size should be quite large and the proportion of misfitting items should be 

higher (about 20% or more) to achieve high power; higher factor loadings and a good fit of a 1-factor model 

are also beneficial in this case. 

 

TABLE 2  

Power to detect the misfit of the FACTS model 

 

    = .30   = .60  1 = .60, 2 =  .30 

%mf n p d = 0.20 d = 0.50  d = 0.20 d = 0.20  d = 0.20 d = 0.50 

10 200 10 8 65  10 81  7 68 

  20 8 86  13 98  8 88 

 500 10 23 100  29 100  24 100 

  20 35 100  50 100  37 100 

 1000 10 56 100  66 100  57 100 

  20 78 100  93 100  80 100 

20 200 10 12 95  18 99  13 96 

  20 17 100  32 100  16 100 

 500 10 46 100  53 100  51 100 

  20 69 100  91 100  71 100 

 1000 10 88 100  91 100  89 100 

  
20 99 100  100 100  99 100 

Note.  = size of standardized factor loadings; %mf = percentage of misfitting items; n = sample size; p = test length; d = 

threshold deviation for misfitting items. 

 

 

DISCUSSION 

 

Compared with the unconstrained factor analysis model, the constrained threshold structure 

(FACTS) is attractive because of the smaller number of free parameters and simpler interpretation. Given 

that the differences between the thresholds are the same for all items, the difficulty of the items is easier to 

assess. The FACTS model can also facilitate the analysis of measurement invariance. If the hypothesis of 

equal thresholds in all groups is rejected, the search for partial invariance can be complicated because of the 

large number of thresholds. Within the framework of the FACTS model, the researcher can first allow pa-

rameters  to differ between groups. For example, the perceived differences between category labels may be 

different in different language versions, while the item content remains the same.  

The results of the simulations show good empirical behavior of the FACTS model. The model pro-

vides for a more accurate estimation of thresholds, especially for relatively small samples and for thresholds 

with large absolute values. The constrained estimates are also almost unbiased, although the bias is generally 

very small for the unconstrained thresholds, as well. The reported results on accuracy and bias pertain to the 

situation when the data are perfectly unidimensional in the population. I also ran a smaller simulation based 

on data that departed from unidimensionality. The results were almost identical to those reported here and 

are available in the online Appendix D. 
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 The power of the standard likelihood ratio test to detect the misfit of the FACTS model compared 

with the unconstrained model also appears to be good, at least when the threshold deviations are not very 

small. As expected, the power is also slightly reduced by model error, introduced by either large residual 

variances or large departures from unidimensional structures. 

It is surprising that the idea of constraining the threshold structure has not yet received attention in 

psychometric practice. One reason for this may be that the factor analytic approach has traditionally focused 

primarily on factor loadings, whereas in the item response theory approach, and especially in Rasch meas-

urement theory, item difficulty is considered at least as important as item discrimination.  

The main limitation remains the assumption of normally distributed latent responses. As has been 

pointed out (e.g., Robitzsch, 2020), its validity should not be taken for granted; serious deviations may be det-

rimental not only to the estimation of thresholds but also to the estimation of loadings (Foldnes & Grønneberg, 

2020). It is less clear what practical conditions lead to a notable nonnormality of latent responses. One can 

assume that the latent errors (ϵ𝑖𝑦∗ in Equation 1) are unbounded, continuous, and influenced by many factors, 

implying a normal distribution. The shape of the distribution of the latent trait, on the other hand, can sometimes 

be inferred from theory: for example, in the general population, the distribution of extraversion is expected to 

be closer to the normal distribution than the distribution of psychoticism. Because the latent response is the 

weighted sum of the latent trait and the error, normally distributed errors would attenuate the effect of a possibly 

nonnormal distribution of the latent trait, especially if the factor loadings are not very high: when the factor 

loading is lower than about .71, the latent response is more affected by error than by the latent trait (because the 

communality is .712 = .50 and the uniqueness is 1 ‒ .712 = .50). In any case, the hypothesis of multivariate 

normality of the latent responses can be tested (Foldnes & Grønneberg, 2020; Maydeu-Olivares, 2006). 

Moreover, the FACTS model seems to be useful only for (self-)ratings in personality and similar do-

mains. Clearly, the number of categories should be at least three and equal for all items for the FACTS model to 

be applicable. Even if an ability test or an educational test consists of items with the same rating categories (e.g., 

incorrect, partially correct, correct), the relative positions of the thresholds depend on the relative difficulty of the 

steps needed to solve the task. These step difficulties vary across items, therefore constraining the threshold 

structure is not warranted. Considering these limitations, I propose to use the FACTS model as the default factor 

analysis model when item responses are categorical ratings, and all items are rated using the same response scale. 

 

 

NOTE 

 

1. All online Appendices, the R code for fitting and testing the FACTS model, and a sample Mplus code 

are available at https://osf.io/fe6mu/?view_only=c74c4016256847788d29a6121908852d 
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