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A NOTE ON COMPUTING CONFIDENCE INTERVALS 

FOR THE COEFFICIENT OF VARIATION  

IN META-ANALYSIS 

 
TINGXUAN LI 

SHANGHAI JIAO TONG UNIVERSITY 

Previous research in meta-analysis has suggested that the coefficient of variation (CV) is a reasona-
ble index to represent the magnitude of between-study heterogeneity in meta-analysis. The present re-
search aims to compute CV and the associated confidence interval with two methods: multivariate delta 
method and gamma function-based method. In addition, the width of the confidence interval is exam-
ined using a simulation study. The true parameters used in the simulation were based on a real-world da-
taset. The related R script is provided in Appendix A. This note on computing a CV intends to bring more 
studies to fully examine the properties of various points estimates in meta-analysis. It promotes the idea 
that the confidence intervals should be reported along with the point estimates in practice. 

Keywords: Meta-analysis; Methodology; Confidence interval; Between-study variation; Coefficient of vari-
ation. 

Correspondence concerning this article should be addressed to Tingxuan Li, School of Education, Shanghai Jiao Tong 
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Meta-analysis is a statistical procedure that has been used in multiple disciplines. Several research 

articles have addressed the pressing methodological issues of meta-analysis (e.g., Moeyaert et al., 2017; 

Park & Beretvas, 2019). When conducting meta-analyses, the goal is often the estimation of the effect at 

population level by synthesizing the effects from primary studies. Primary studies can thereby become 

comparable on a common metric. One of the main concerns in meta-analysis is whether the primary studies 

are statistically heterogeneous (Mathur & VanderWeele, 2019; Mullen & Rosenthal, 1985). Such heteroge-

neity reflects a class of variability that does not occur by chance; namely, the presence of variability is not 

due to sampling error alone (Higgins & Thompson, 2002).  

Many techniques have been introduced to examine the heterogeneity present in meta-analyses. For 

example, from a standpoint of a statistical test, Cochran’s Q statistic can determine whether the outcome 

variable is heterogeneous (Cochran, 1954; Nagashima et al., 2019). However, the drawback of this test is 

its low statistical power (Pereira et al., 2010). Consequently, when the number of primary studies is small, 

the Q statistic fails to detect the heterogeneity that actually exists among primary studies (Hardy & Thomp-

son, 1998; Spector & Levine, 1987). 

In addition, Higgins and Thompson (2002) have quantified heterogeneity using descriptive statis-

tics rather than a statistical test (i.e., to reject the null or not). For example, an index (𝐼2) is a measure 

where the magnitude will be approaching 100% if the total heterogeneity is large (Higgins et al., 2003). 

Higgins (2008) emphasized that “it does not estimate a meaningful parameter, so should be regarded as a 

descriptive statistic rather than a point estimate” (p. 2). Moreover, some researchers employed the between-

study variance parameter ( τ2) to measure heterogeneity (e.g., Thompson & Sharp, 1999). Several compu-

ting programs for meta-analysis have also implemented different methods to construct confidence interval 

(CI) associated with τ2 (e.g., metafor package written by Viechtbauer, 2010; meta package written by 
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Schwarzer, 2012). Veroniki et al (2015) reviewed the existing literature and identified 16 methods for es-

timating τ2 and 8 methods for constructing a CI for τ2. Based on the simulation results, they found that the 

Q-profile method was the best method to construct CI for τ2. Because CI is an indication of the accuracy of 

a point estimate, in the meta-analysis literature, researchers have promoted the idea that CI should be re-

ported along with the point estimates (e.g., Jackson et al., 2014; Noma, 2011). 

Other than using τ2 as a measure of heterogeneity, Takkouche et al. (2013) suggested that the co-

efficient of variation (CV) is a reasonable index to represent the magnitude of between-study heterogeneity 

in random-effect models. The CV includes the random effect at the population level (μ) in order to de-

scribe 𝜏2. A greater magnitude on CV indicates that the between-study variance is much larger than the 

random effect. CV also refers to the measure of the relative variability of the random effect (μ). Takkouche 

et al. found that multivariate delta method is the best method to construct a CI for CV. 

 

 

RESEARCH GOAL 

 

Mahmoudvand and Hassani (2009) proposed the adjust CV, and introduced an associated CI. 

Henceforth, the adjust CV is referred to as the MH method; in contrast, the method mentioned above, pro-

vided by Takkouche et al. (2013) is referred to as the TAK method. In order to fully explore the properties 

of CV in meta-analysis, the present research is a note on CV computation. It also aims to compare two 

methods on CV by comparing the CIs associated with them. Furthermore, the present research provides R 

scripts (R Core Team, 2018) to compute CVs, as well as associated CIs. The hope is that a suitable code 

can promote reporting the CI along with reporting the point estimate in practice.  

Both the TAK and MH methods assume that the sampling distribution of the CV follows a normal 

distribution. Mahmoudvand and Hassani (2009) suggested that the adjust CV as a point estimator of the 

CV has less bias compared with the existing CV. Moreover, the previous research results showed that the 

coverage probabilities of both CIs reached favorable levels (see details on the simulation study results giv-

en on both papers). Overall, this research aims to (a) estimate the quantities from a real-world dataset, (b) 

conduct the simulation study where the true parameters are from the estimated results in the real-world da-

taset, and (c) compare two methods based on the simulation results. In so doing, the following research 

questions will be answered:  

(1) How does the change of the magnitude of CV affect the change of the width of the CI for both  

methods?  

(2) At what range of CV does one method outperform the other in terms of CI width? 

 

 

METHOD 

 

In a random-effect model, an effect size extracted from a primary study is assumed to be randomly 

drawn from a normal distribution. Suppose that a meta-analysis contains i=1, 2, 3, …, n primary studies. 

The random variable: 𝑦𝑖= 𝑦1, 𝑦2,…. 𝑦𝑛 is the observed effect size, obtained from outcome measures (e.g., 

standardized mean difference). The random-effect model is shown in Equation 1 below: 

𝑦𝑖= 𝜇 + 𝜃𝑖+ 𝑒𝑖      (1) 

In Equation 1, the sampling variance at the primary study level is 𝑒𝑖. It follows a normal distribu-

tion: 𝑒𝑖~N(0, 𝑣𝑖). The sampling variance 𝑣𝑖 is known. Denoting 𝜃𝑖 as the random variation for ith study, the 

between-study variance is Var(𝜃𝑖) = 𝜏2 , where 𝜃𝑖  ~ N(0, τ2). The parameters of interest are (1) μ, the effect 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 29, No. 2, June 2022 

201-211  

© 2022 Cises 

 

Li, T. 
Coefficient of variation in meta-analysis 

203 

at the population level, and (2) τ2, the between-study variance, that is the random term in the model. If 𝜏2 

is 0, the model will become a fixed-effect model, which falls outside the scope of this article (for more de-

tails about the fixed-effect model, see Mullen & Rosenthal, 1985). Denoting 𝐶𝑉̂𝐵 as the estimator of the 

CV, it is computed as follow: 

𝐶𝑉̂𝐵=
√𝜏̂2

|𝜇̂|  
      (2) 

The absolute value of the random-effect estimator is |μ̂| and the between-study variance estimator is 𝜏̂2. 

The range of 𝐶𝑉̂𝐵 is [0, ∞). The CI is constructed as the following:  

𝐶𝑉̂𝐵 − 𝑧1−𝛼/2√𝑣𝑎𝑟̂(𝐶𝑉̂𝐵) ≤  𝐶𝑉̂𝐵   ≤ 𝐶𝑉̂𝐵 + 𝑧1−𝛼/2√𝑣𝑎𝑟̂(𝐶𝑉̂𝐵).  

The multivariate delta method can obtain 𝑣𝑎𝑟̂(𝐶𝑉̂𝐵) by using the estimators μ̂ and τ̂2: 

𝑣𝑎𝑟̂(𝐶𝑉̂𝐵) ≈ 𝑣𝑎𝑟̂(μ̂)/(μ̂)4τ̂2+ 𝑣𝑎𝑟̂(τ̂2)/4(μ̂)2τ̂2.     

Furthermore, in terms of adjust CV, the notations can be stated as the following: denoting 𝐶𝑉̂𝑎, the 

adjust CV, as the estimator of the CV, it is computed as follow:  

𝐶𝑉̂𝑎  = 𝐶𝑉̂𝐵/(2- 𝑐)    (3) 

The denominator has a constant 𝑐 which can be obtained by using the gamma function (Equation 4).  

𝑐 =  √2/(𝑛 − 1) (Γ(n/2)/Γ((n-1)/2))     (4) 

The number of primary studies is n. The range of 𝐶𝑉̂𝑎 is 0 ≤  𝐶𝑉̂𝑎  ≤  √𝑛. The way to construct the CI for 

the adjust CV is the following: 

 
𝐶𝑉̂𝐵

2−𝑐+𝑧1−𝛼/2√1−𝑐2
 ≤  𝐶𝑉̂𝑎 ≤

𝐶𝑉̂𝐵

2−𝑐−𝑧1−𝛼/2√1−𝑐2
. 

 

 

RESULTS 

 

A real-world dataset 

 

The real-world dataset contains information pertinent to social role theory (e.g., Eagly & Carli, 

2003; Eagly & Wood, 2012). This “gender conformity” dataset, which was first published by Eagly and 

Carli (1981) and recalculated by Becker (1986), is a classic meta-analysis study exploring how gender 

plays a role in conformity. The gender conformity research intended to assess how knowing others’ re-

sponses would affect a person’s own responses. For example, a participant was asked to rate an object 

(e.g., a watch) that was on display in front of him/her. The participant was told “this watch is an antique.” 

He/she then was asked to rate the item by its fit with the following four categories: “extremely disagree,” 

“disagree,” “agree,” “extremely agree.” Meanwhile, he/she was given false information suggesting that 

80% of Harvard students indicated “extremely agree.” Table 1 is the dataset where a positive effect size 

indicates that females are more conforming than males. The number of participants in the gender group is 

denoted as J. 

Using the metafor package, maximum likelihood (ML) method and restricted maximum likelihood 

(REML) method produced very similar results on the effect at population level (μ̂), that is, 0.18 and 0.19. 

Two methods also produced very similar standard errors, that is, 0.11 and 0.12. This indicates that the it-

erative methods do not play a role in computing the CV. Figure 1 is the forest plot that shows the visual 

representation on how the effect sizes from these 10 primary studies are spread out.  
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TABLE 1 

Conformity dataset 

 

Primary study 𝐽𝑓𝑒𝑚𝑎𝑙𝑒  𝐽𝑚𝑎𝑙𝑒 Effect Size 

King 118 136 0.35 

Wyer 40 40 0.37 

Wyer 61 64 ‒0.06 

SamH 77 114 ‒0.30 

Sis71 32 32 0.70 

SisMII 45 45 0.40 

SisMIV 30 30 0.48 

Sis72 10 10 0.85 

FelSMKWI 70 71 ‒0.33 

FelSMKWII 60 59 0.07 

 

 

 

 

FIGURE 1 

Forest Plot for the Conformity Dataset. 

 

 

Using the TAK and MH methods, the magnitude of CV was computed along with the associated 

CIs. For the TAK method, the CV is 1.54; the lower bound for the CI is 0; the upper bound is 3.39. For the 

MH method, the CV is 1.50; the lower bound is 1.04; the upper bound is 2.70. The TAK method has a 

wider CI compared with the MH method; that is, the TAK method has a greater magnitude on the width of 

CI. Regarding this, the MH method is preferable given this dataset. The point estimates and the associated 

CIs can also be found in Figure 2.  

 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 29, No. 2, June 2022 

201-211  

© 2022 Cises 

 

Li, T. 
Coefficient of variation in meta-analysis 

205 

 

FIGURE 2 

Point Estimates and the Associated CIs. 

 

 

Simulation Study 

 

In the present research, in order to further compare the MH and TAK methods, the datasets are 

simulated based on estimated results from the conformity dataset mentioned above. The number of primary 

studies is set to 10. The value of J used in this simulation is the same as the value in the conformity dataset. 

The true effect at the population level is 0.18, and the true between-study variance is set to 0.08. Each sim-

ulated dataset contains 10 observed effect sizes and 10 within-study variations. Recall that the CV is not 

defined in the TAK method if the effect at population level is 0. Therefore, the smallest absolute value of 

the effect is set to 0.01 in simulation.  

The upper bound of 𝐶𝑉̂𝑎 is √𝑛 in MH method. In this case, the quantity equals 3.16. Therefore, the 

largest possible 𝐶𝑉̂𝑎 is set to 3.16 in the simulation. Takkouche et al. (2013) in the simulation set the largest 

CV as 2 and the smallest CV as 0.1. In the present research, 1,000 datasets are generated. For each simulat-

ed dataset, 𝐶𝑉̂𝐵 and 𝐶𝑉̂𝑎 are calculated. Table 2 shows how 1,000 𝐶𝑉̂𝐵s and 1,000 𝐶𝑉̂𝑎s are distributed. The 

two methods provided very similar CV quantities. This validated the finding in the real-world dataset, 

namely, 𝐶𝑉̂𝐵 ≈ 𝐶𝑉̂𝑎. 

 

TABLE 2 

Summary of simulated datasets 

 

Method Min 1st Quartile Median Mean 3rd Quartile Max 

𝐶𝑉̂𝑎 0.09 0.65 0.98 1.11 1.45 3.06 

𝐶𝑉̂𝐵 0.09 0.67 1.00 1.15 1.50 3.14 

 

 

Figure 3 shows the comparison of CI between the MH and TAK methods, with the alpha level of 

.05. The width of CI for the TAK method grows relatively faster alongside the increasing values of CV. In 

contrast, the width for the MH method grows in a relatively linear fashion.  
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FIGURE 3 

MH Method versus TAK Method. 

 

 

The simulation results suggest that the width of CIs is comparably unaffected by the magnitude of 

CVs when using the MH method. If the CV is around 1 or less than 1, both methods do not differ by much. 

If the CV is larger than 1, the MH method outperforms the TAK method. This gives the practitioners a rec-

ommendation: if the dataset at hand provides a CV that is about or larger than 1.0, the MH method is high-

ly recommended. This also validates the pattern emerged in the real-world dataset. Namely, the conformity 

dataset possessed a large CV, indicating high heterogeneity among primary studies (CV = 1.5). In that ca-

se, the MH method should be chosen when computing the CI. 

 

 

DISCUSSION AND CONCLUSION 

 

The present research provides recommendations in conducting meta-analyses. If the CV is larger 

than 0.33, it implies that the numerator is more than three times larger than the denominator (see Equation 

2). In prior research (i.e., Takkouche et al., 2013), the CV being equal to 2 was considered as large hetero-

geneity. Such a measurement implies that the estimator of CV started incurring bias. In the present re-

search, the same idea is endorsed; that is, when the CV is approaching 2, the statistical stability is reduced 

for both the point estimate and associated CI. This is particularly noticeable when the number of primary 

studies is small, because the bias of the CV is a function of the number of primary studies. A small dataset 

tends to produce a greater bias of the estimator. In many disciplines, a small dataset is often encountered in 

meta-analysis (Marín-Martínez & Sánchez-Meca, 1998; details can be found at the Open Science Frame-

work repository provided by van Erp et al., 2017). The conformity dataset (that contained only 10 primary 

studies) was chosen for illustration purposes because it is a typical small dataset. Practitioners should use 

CV with caution when dealing with small datasets where the quantity of CV is larger than 2. 

The present research also provides the R script in Appendix A for computing CVs and the confi-

dence intervals. When computing the standard error for 𝜏̂2, the maximum likelihood estimation (MLE) is 
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needed. The R script calls for the maxLik package written by Henningsen and Toomet (2011). The real-

world dataset that was originally published by Bangert-Drowns et al. (2004) can be used to test the R code. 

This dataset is in an educational context where the effect size is the standardized mean difference. The in-

tervention group received the instruction that had a clear focus on writing tasks. In contrast, the control 

group received the traditional instruction. The outcome variable is the academic achievement. This note on 

computing CV intends to bring more studies in meta-analysis to fully make sense of the properties of vari-

ous points estimates (e.g., index or statistic). The hope is that this research promotes the idea that the con-

fidence interval should be reported along with the point estimate. 
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APPENDIX A 

 

 

R Code for Computing Coefficient of Variation and Confidence Interval 

 
# This code depends on MaxLik package. 

# When calculating the standard error for tau square, the  

# optimization method is needed. 

# The maxLik function provides 5 algorithms. The default option  

# is "NR", that stands for the Newton-Raphson algorithm.  

# Other options include "BHHH", "BFGS","NM", "SANN".   

# The default option is used in this study. 

 

 

## The code starts here 

confiden<- function(v,d,K=K,method){ 

method<- casefold(method) 

 

study.var=v         ## Variance for each study 

study.w=1/v         ## Weight for each study 

study.es=d          ## Random variable-effect size for each study 

qfunction=function (study.es,study.w){ 

sum((study.es-((sum(study.es*study.w))/sum(study.w)))^2*study.w) 

}                   ## Function for Q statistics 

 

Q=qfunction(study.es=study.es,study.w=study.w)   

re.vari.compon=function(Q,K, study.w){   ## Random variance component 

(Q-K-1)/(sum(study.w)- sum((study.w)^2)/sum(study.w)) 

} 

re.com=re.vari.compon(Q=Q, K=K, study.w=study.w)  

new.study.w=rep(NA,K) 

for (i in 1:length(v)){ 

new.study.w[i]=1/(v[i]+re.com) 

} 

## Now,use new weight where the random component is included 

beta.bar.fix=((sum(study.es*study.w))/sum(study.w)) 

beta.bar.random=((sum(study.es*new.study.w))/sum(new.study.w))   

## Overall effect size in random effect model 

 

lower=sum(study.w)-sum((study.w)^2)/sum(study.w) 

upper=Q-K-1 

tau.sq=upper/lower                   ## Calculate tau square 

tau=sqrt(tau.sq) 

 

## Now, compute SE for tau square.  

## Iterative method is needed. 

## Call function in maxLik package.  

 

logLikFun<- function(param){ 

mu<- param[1] 

tausqu<- param[2] 

logliky=-1/2*sum(log(tausqu+v))- 1/2*sum((d-mu)^2/(tausqu+v)) 

tausqu=sum((tausqu+v)^2*((d-mu)^2-v))/sum((tausqu+v)^2) 

mu=sum((tausqu+v)*d)/sum(tausqu+v) 

return(logliky) 

} 

options(warn=-1) 

result=maxLik(logLikFun, start=c(mu=1,tausqu=2)) 

result2=unclass(summary(result)) 

result3=as.matrix(result2$estimate) 

result4=result3[,c(1:2)] 

var.tau.squ=result4[2,2] 
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options(warn=0) 

var.beta.re=1/sum(1/(tau.sq+v)) 

var.CVB=(var.beta.re*tau.sq)/beta.bar.random^4+ 

var.tau.squ/4*beta.bar.random^2*tau.sq  

var.CVB           

statis=function(v,d){ 

logLikFun<- function(param){ 

mu<- param[1] 

tausqu<- param[2] 

logliky=-1/2*sum(log(tausqu+v))- 1/2*sum((d-mu)^2/(tausqu+v)) 

tausqu=sum((tausqu+v)^2*((d-mu)^2-v))/sum((tausqu+v)^2) 

mu=sum((tausqu+v)*d)/sum(tausqu+v) 

return(logliky) 

} 

options(warn=-1) 

answer=maxLik(logLikFun, start=c(mu=1,tausqu=2)) 

answer2=summary(answer) 

answer3=unclass(answer2) 

answer4=as.matrix(answer3$estimate) 

mu=answer4[1,1] 

tau.sq=answer4[2,1] 

tau=sqrt(tau.sq) 

mu=ifelse(mu<0.01,0.01,mu)        

## Constrain on mu because mu can not be 0 

CV.B=tau/abs(mu)   

CV.B                              

} 

CV.B=statis(v,d)    

## Calculate CV based on the one sample at hand 

options(warn=0) 

if(method=="tak"){            ## TAK method, construct a CI  

CI.UP=CV.B+1.96*sqrt(var.CVB) 

CI.LO=CV.B-1.96*sqrt(var.CVB) 

if (CI.LO<0)  

warning ("lower bound is negative, it has been truncated to 0") 

CI=c(ifelse(CI.LO<0,0,CI.LO),CV.B, CI.UP) 

} else if (method=="mh"){     ## MH method, construct a CI                       

upper=sqrt(2/(K-1))*(gamma(K/2)) 

lower=gamma((K-1)/2) 

cn=round(upper/lower,digit=3) 

tau.mh=CV.B/(2-cn)  ## tau.mh is the adjusted cv. 

 

## Find z critical value, alpha=0.05, two-tails test 

 

alpha=0.025 

z=qnorm(p=alpha, mean = 0, sd = 1, lower.tail = FALSE,  

log.p = FALSE) 

bound1=tau.mh-tau.mh/(2-cn)*z*sqrt((1-cn*cn)+(tau.mh*tau.mh)/K) 

bound2=tau.mh+tau.mh/(2-cn)*z*sqrt((1-cn*cn)+(tau.mh*tau.mh)/K) 

CI=c(bound1,tau.mh, bound2) 

} else if(method=="modim"){    

## The third method that is not widely used.  

## It is "modim"--based on the paper  

## written by Vangel (1996), published on The American Statistician.  

## Do not use it if cv is large than 0.33.  

## This method needs to specify alpha level and degree of freedom  

## for chisquare distribution 

alpha.new=0.05 

df=K-1 

u1=qchisq(1-alpha.new/2,df) 

u2=qchisq(alpha.new/2,df) 

tem1=((u1+2)/(df+1)-1)*CV.B*CV.B+u1/df 

lower=CV.B/sqrt(tem1) 
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tem2=((u2+2)/(df+1)-1)*CV.B*CV.B+u2/df 

 

if (tem2<0) {   

## Add warning message, so users know where went wrong. 

warning("Watch out, CV is large than 0.33,this method is not recommended")} 

   else{upper=CV.B/sqrt(tem2)} 

CI=c(lower, CV.B,upper) 

} 

  } 

 

### The code ends here 

### Now, Input data, to test the code. 

### The data was originally reported by 

### Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004).  

### Input data, v is the variance, d is the effect size 

v=c( 

0.070, 0.126, 0.042, 0.019, 0.022, 0.009, 0.106, 0.007, 0.040, 0.052,0.107, 

0.021, 0.037, 0.083, 0.086, 0.091, 0.167, 0.052, 0.091, 0.065,0.073, 0.061, 

0.100, 0.060, 0.083, 0.037, 0.069, 0.018, 0.009, 0.053, 

0.017, 0.112, 0.060, 0.044, 0.129, 0.023, 0.205, 0.033, 0.265, 0.039,0.021, 

0.067, 0.014, 0.168, 0.016, 0.099, 0.087, 0.072) 

 

d=c( 

0.65, -0.75, -0.21, -0.04,  0.23,  0.03,  0.26, 0.06,  0.06,  0.12,0.77,  0.00, 

0.52,  0.54,  0.20,  0.20, -0.16,  0.42,  0.60,  0.51,0.58, 0.54, 0.09,  0.37, 

-0.01, -0.13,  0.18,  0.27, -0.02,  0.33,0.59, 0.84, -0.32,  0.12,  1.12, -

0.12, -0.44, -0.07,  0.70,  0.49,0.20,  0.58,  0.15,  0.63,  0.04,  1.46,  

0.04,  0.25) 

 

## Obtain the results 

v=v 

d=d  

K=length(d) 

re.mh=confiden(v,d,K,method="mh") 

re.mh 

 

re.tak=confiden(v,d,K,method="tak") 

re.tak 

 
 


