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RASCH GONE MIXED: A MIXED MODEL  

APPROACH TO THE IMPLICIT ASSOCIATION TEST 
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Despite the Implicit Association Test (IAT) is widely used for the implicit assessment of attitudes, 
the meaning of its effect remains unclear. Literature on the IAT has already highlighted the importance 
of the stimuli characteristics in influencing the meaning and the validity of the IAT measure. A model 
providing in-depth information at both respondents and stimuli levels can help in clarifying the mean-
ing of the IAT measure. A modeling framework based on Linear Mixed Effects Models for a fine-
grained analysis at both the respondent and the stimulus levels is presented. The proposed models pro-
vide a detailed picture of the contribution of each stimulus to the IAT effect, allowing for the identifica-
tion of malfunctioning stimuli that can be eliminated or substituted to obtain better performing IATs. 
The information on respondents allows for a better interpretation of the IAT effect. Implications of the 
results and future research directions are discussed.  

Keywords: Implicit social cognition; Implicit Association Test; Fully-crossed design; Rasch model; Log-
normal model. 
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The idea that people’s attitudes include components of which they are aware (i.e., explicit or di-

rect) and components of which they are not completely aware and that cannot be controlled (i.e., implicit or 

indirect) has now been widely accepted (e.g., Meissner, Grigutsch, Koranyi, Muller, & Rothermund, 2019). 

Among the measures aimed at capturing the indirect components of attitudes, the Implicit Association Test 

(IAT; Greenwald, McGhee, & Schwartz, 1998) is one of the most studied and used in a constantly wider 

and more varied range of areas (for a review, see Epifania, Anselmi, & Robusto, 2021). By appropriately 

changing the labels of the attitude objects under investigation and leaving its structure unaltered, the IAT 

can be easily adapted for the investigation of different topics, ranging from personality and self-esteem 

(e.g., Van Tuijl et al., 2016; Vecchione et al., 2016) to emotions (Riediger, Wrzus, & Wagner, 2014), ad-

diction behaviors (e.g., Tatnell, Loxton, Modecki, & Hamilton, 2019), and perception (e.g., Wu, Lu, van 

Dijk, Li, & Schnall, 2018). Given the IAT resistance to self-presentation strategies (Egloff & Schmukle, 

2002; Greenwald, Poehlman, Uhlmann, & Banaji, 2009), its main applications are in social cognition, 

where it is used for the implicit assessment of attitudes toward different social groups (e.g., Anselmi, 

Vianello, & Robusto, 2011; Anselmi, Voci, Vianello, & Robusto, 2015), even in sensitive social contexts 

like hospitals (e.g., Zeidan et al., 2019). Despite its broad use, the meaning of the effect obtained from the 

IAT remains unclear. The aim of this contribution is to help in shedding light on the meaning of the IAT 

effect by considering the information that can be retrieved from stimuli and respondents’ random varia-

bility.  
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The IAT is based on the speed and accuracy with which prototypical exemplars of two contrasting 

target categories (e.g., White and Black people in a Race IAT) and exemplars of two evaluative categories 

(Good and Bad) are sorted in the category to which they belong by means of two response keys. The cate-

gorization task takes place in two contrasting associative conditions. In one associative condition, the la-

bels Good and White are displayed on the same side of the screen, and exemplars belonging to these cate-

gories are sorted with the same response key. The labels Bad and Black are displayed on the opposite side 

of the screen, and their exemplars are mapped with the same response key. In the contrasting associative 

condition, the labels White and Black switch their locations on the sides of the screen. Good and Black 

share the same side of the screen and are mapped with the same response key. Bad and White are displayed 

on the opposite side of the screen and are mapped with the other response key. The assumption underlying 

the IAT functioning is that respondents would show a better performance (i.e., faster response times and 

higher accuracy) when the task is consistent with their automatically activated association. The so-called 

IAT effect denotes the difference in respondents’ performance between the two associative conditions. 

The strength and direction of the IAT effect is usually expressed by the D score (Greenwald, 

Nosek, & Banaji, 2003), which results from the standardization of the difference in the average response 

time between the two conditions. The effect size measure proposed by Greenwald et al. (2003) is the most 

commonly used. Other authors have introduced modifications to the D score algorithm to either obtain 

more robust scores (Richetin, Costantini, Perugini, & Schönbrodt, 2015) or to fairly compare the IAT with 

other implicit measures (Epifania, Anselmi, & Robusto, 2020a). The D score provides general information 

on the implicit constructs that have been assessed, but it cannot inform about the automatic associations 

that mostly contribute to the IAT effect. Sticking with the Race IAT example, it would not be possible to 

discern whether the result is mostly due to an in-group favoritism, an out-group derogation, or even both. 

Moreover, since the D score is obtained by averaging across all trials in each associative condition, it can-

not account for the dependency between the observations and the random variability due to both stimuli 

and respondents. As such, it might result in inflated scores (Brauer & Curtin, 2017; Wolsiefer, Westfall, & 

Judd, 2017), leading to inaccurate inferences on the implicit attitudes under investigation. Additionally, by 

overlooking the variability related to the stimuli, the information that can be gathered from each singular 

stimulus and their categories is completely neglected (Wolsiefer et al., 2017). 

Different models have been proposed to get a better understanding of the IAT effect. Some of 

these models, like the Quad Model (Conrey, Gawronski, Sherman, Hugenberg, & Groom, 2005) or the 

ReAL Model (Meissner & Rothermund, 2013), consider only the accuracy responses, while other models, 

like the Diffusion Model (DM; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007) or the Discrimination-

Association Model (DAM; Stefanutti, Robusto, Vianello, & Anselmi, 2013), simultaneously account for 

both accuracy and time responses. These models provide useful information at either the sample level 

(Quad model and ReAL model) or the respondent level (DAM and DM). DM and DAM also inform about 

the stimuli, but the information is provided at the level of stimuli categories and not at that of individual 

stimuli. Nevertheless, fine-grained information at the stimuli level would allow for testing whether individ-

ual stimuli are easily recognizable as prototypical exemplars of their own reference categories. Further-

more, the investigation on the contribution of each stimulus to the IAT effect would help in shedding light 

on the meaning of the implicit measure itself. 

Rasch modeling (Rasch, 1960) of the IAT data can provide a fine-grained analysis at the level of 

each stimulus. Such an analysis allows for disentangling the automatic associations that mostly contribute 

to the IAT effect and provides a better understanding of the measure. For instance, by applying the Rasch 

model to the IAT discretized response times, Anselmi et al. (2011) found that positive words were those 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 28, No. 4, December 2021 

467-483   

© 2021 Cises 

 

Epifania, O. M., Robusto, E., 

& Anselmi, P. 
Rasch gone mixed 

469 

that mostly contributed to the IAT effect. By analyzing responses to a Race IAT, the authors concluded that 

the implicit preference for European people over African people that is often observed in European re-

spondents could be expression of ingroup favoritism rather than outgroup derogation. Despite the interest-

ing insights provided by the Rasch modeling of IAT data, its application comes with some limitations. 

Firstly, the discretization of response times may result in a large loss of information. Additionally, the 

Rasch model is not able to account for the nonindependence of IAT observations, potentially resulting in 

biased parameter estimates and thus leading to an incorrect estimation of the importance of the effect of the 

IAT associative conditions (Judd, Westfall, & Kenny, 2017; McCullagh & Nelder, 1989). Finally, for the 

application of the Rasch model to the IAT, it was assumed that the difficulty of the two associative condi-

tions did not differ across respondents, hence neglecting respondents’ individual differences.  

Linear Mixed-Effects Models (LMMs) can easily handle all the above-mentioned issues, while 

providing a Rasch parametrization of the data. LMMs also allow for treating the response times in their 

continuous nature, potentially avoiding the loss of information related to their discretization. To better un-

derstand the IAT effect and the meaning of the IAT measure while addressing the issues related to its 

sources of random variations, in the present work: (i) generalized LMMs (GLMMs) have been applied to 

IAT accuracy responses to obtain Rasch model parameter estimates; (ii) LMMs have been applied to IAT 

log-time responses to obtain log-normal model parameter estimates; and (iii) the relationship between the 

classic measure of the IAT effect (i.e., the D score) and the estimates of the model parameters obtained via 

the GLMM and the LMM has been investigated. 

In the following section, the use of Rasch model and log-normal model for the analysis of IAT da-

ta is described, as well as the meaning of the resulting parameters. The application of these models to a 

Race IAT is presented. Some final remarks conclude the argumentation. 

 

 

MODELS SPECIFICATION 

 

Accuracy and latency responses of the IAT can be modeled in a similar fashion by means of the 

Rasch model (Rasch, 1960) and the log-normal model (van der Linden, 2006), respectively. 

In the Rasch model, the probability of a respondent to endorse the correct response (i.e., categoriz-

ing the stimulus into the correct category) can be expressed as a function of his/her ability θ (i.e., the ability 

to correctly categorize the stimuli) and stimuli easiness b (i.e., stimuli characteristics that make them more 

or less recognizable as prototypical exemplars of their category). The higher the value of θ, the higher the 

respondent’s ability to perform the task, and, hence, the higher the proportion of stimuli correctly catego-

rized. The higher the value of b, the easier the sorting of the stimulus in its own category. Thus, b informs 

about how much a stimulus is prototypical of the category that it is representing. Rasch model parameters 

estimates can be obtained by applying GLMMs to IAT accuracy responses. In GLMMs, the natural link 

function (g) between the linear combination of predictors and the observed values y is the logit (McCullagh 

& Nelder, 1989). The inverse of the link function g (i.e., g‒1) takes on a form that can be equated to the 

Rasch model (see De Boeck et al., 2011; Doran et al., 2007; Gelman & Hill, 2007 for the mathematical 

proofs). 

The log-normal model allows for using the response times in their continuous nature by log-

transforming the latencies. Consequently, the loss of information due to the discretization of the response 

times is avoided. According to this model, the log-time response of a respondent can be expressed as a 

function of respondent’s speed τ (i.e., respondent’s speed to categorize the stimuli) and stimuli time inten-

sity δ (i.e., stimuli characteristics that make them require more or less time to get a response). The lower 
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the value of τ, the higher the respondents’ speed. Likewise, the lower the value of δ, the lower the time the 

stimulus requires to get a response. As for the b parameters of the Rasch model, δ informs about how pro-

totypical of its category the stimulus is. The lower the time it needs to be categorized, the more recogniza-

ble it is. Log-normal model parameter estimates can be obtained by applying LMMs to IAT response time 

after they have been log-transformed. In LMMs, the link between the predictors and the observed variables 

is the identity link, according to which the same scale of the dependent variable is taken as the scale for the 

link function, that is, the normal distribution. 

The Best Linear Unbiased Predictors (BLUP) are used to obtain the Rasch model and log-normal 

estimates from the fitted (G)LMMs (De Boeck et al., 2011; Doran et al., 2007). BLUPs are the conditional 

modes of each level of the random effect, and they are not parameters of the model per se. They express 

the deviation of each level of the random effect from the estimated fixed effect. When added to the fixed 

effect of the IAT associative conditions, they result in the condition-specific estimates of either each re-

spondent parameters or the condition-specific estimates of each stimulus parameters.  

When using (G)LMMs to obtain the estimates of the Rasch model and the log-normal model pa-

rameters, the effect of the IAT condition on respondents’ performance can be investigated by specifying 

the between–conditions and within-respondents variability, or, in other words, by specifying the random 

slopes of the respondents in the associative conditions. This results in condition-specific respondents’ pa-

rameters. By specifying the between-conditions and within-stimuli variability (i.e., specifying the random 

slopes of the stimuli in the associative conditions), it is possible to obtain condition-specific estimates of 

the stimuli parameters, and hence investigate their contribution to the IAT effect. Three meaningful models 

for the analysis of the IAT accuracy responses were specified (left panel of Table 1), as well as three mean-

ingful models for the analysis of the IAT log-time responses (right panel of Table 1). Besides the distribu-

tion of the error term, the GLMMs and the LMMs have the same random structures. The fixed intercept is 

set at 0, so that the fixed effects of the IAT associative conditions represent the expected average propor-

tion of correct responses or the average response time in each condition for the Rasch model and the log-

normal, respectively.  

 

TABLE 1 

Accuracy and log-time models overview 

 

 
Accuracy  Response time 

Model Respondents Stimuli  Respondents Stimuli 

1 
Condition-specific  

ability (θik) 
Overall easiness (bj)  Condition-specific speed (τik) 

Overall time intensity 

(δj) 

2 Overall ability (θi) 
Condition-specific  

easiness (bjk) 
 Overall speed (τi) 

Condition-specific time  

intensity (δjk) 

3 Overall ability (θi) Overall easiness (bj)  Overall speed (τi) Overall time intensity (δj) 

Note. Respondent i = 1,…, I, Stimulus j = 1,…, J, Condition k = 1,…, K, where I, J, and K, are the number of respondents, stimuli, 

and conditions, respectively. 

 

 

The random structure specification of Model 1 (i.e., respondents’ random slopes in the associative 

conditions and stimuli random intercept) results in the estimation of condition-specific respondents’ pa-

rameters and overall stimuli parameters. The condition-specific respondents’ parameters, either θ or τ, can 
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express if and how accuracy or speed performance of each respondent is affected by the IAT associative 

condition. By computing the difference between respondents’ condition-specific parameters, a measure of 

the bias due to the associative conditions can be obtained, allowing for testing whether there is an effect of 

the condition on respondents’ performance. Since the fixed intercept is set at 0 and stimuli are specified as 

random intercepts, their estimates are centered around 0, that is, the mean of the distribution of stimuli es-

timates. 

The random structure specification of Model 2 (i.e., stimuli random slopes in the associative con-

ditions and respondents’ random intercept) results in the estimation of condition-specific stimuli parame-

ters and overall respondents’ parameters. This model allows for testing whether the functioning of the 

stimuli differs between conditions. If a stimulus shows a higher b (or δ) parameter in one condition than in 

the other, it means that it was easier (or required less time) to be categorized in the former condition rather 

than in the other. Moreover, the differential measure between the condition-specific stimuli parameters in-

forms about the bias due to the associative conditions, hence providing information about the contribution 

of each stimulus to the IAT effect. Since the fixed intercept is set at 0 and respondents are specified as ran-

dom intercepts, their estimates are centered around 0, that is, the mean of the distribution of respondents’ 

estimates. 

Finally, the random structure specification of Model 3 (i.e., stimuli random intercepts and re-

spondents’ random intercepts) results in the estimation of overall stimuli parameters and overall respond-

ents’ parameters. These parameters inform about the across-conditions performance of the respondents and 

the across-conditions functioning of the stimuli. This model should be preferred when a low between-

conditions variability is observed at both respondents’ and stimuli level. The lack of between-conditions 

variability already indicates that there is no IAT effect on either respondents’ performance or stimuli char-

acteristics. Since both respondents and stimuli are specified as random intercepts, their estimates are cen-

tered around 0. This model is not identified, at least for what concerns the Rasch model (see Gelman & 

Hill, 2007), and it is just used as a null model.  

Response times must be log-transformed for the application of the log-normal model and for ob-

taining its estimates. From now on, the models applied on IAT accuracy responses will be identified with 

the letter “A,” while the models applied on IAT log-time responses will be identified with the letter “T.” 

The R code used for estimating these models is reported in the Appendix.  

Outfit statistics were used to evaluate the fit of the data to the model chosen after model compari-

son. If outfit statistics ranged between 0.50 to 2.00 (Linacre, 2002), they express a good fit of the data to 

the model. However, the most problematic ones are the outfit statistics above 2, indicating a higher varia-

bility in the data that is not explained by the model (i.e., underfit). Outfit statistics below 0.50 indicates 

overfit of the model and will not be considered as problematic as those indicating underfit. 

 

 

METHOD 

 

The abovementioned models were applied to a Race IAT. Models were fitted with lme4 package 

(Bates, Machler, Bolker, & Walker, 2015) in R (Version 3.5.1, R Core Team, 2018) and implic-

itMeasures package (Epifania, Anselmi, & Robusto, 2020b) was used for computing the IAT D score. 

A free and user-friendly tool for computing the IAT D score is retrievable at 

http://fisppa.psy.unipd.it/DscoreApp/ (Epifania, Anselmi, & Robusto, 2020c).  
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Participants 

 

Sixty-five university students (F = 49.23%, age = 24.95±2.09 years) voluntarily took part in the 

study. Participants were informed about the confidentiality of the data and asked for their consent to take 

part in the study. Most of them (84.62%) self-identified as belonging to the Mediterranean ethnic group. A 

sensitivity power analysis was run with G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) to understand 

whether the sample size allowed ensuring 80% power to detect an effect size f2 of at least 0.15 at p < .05. 

The sensitivity power analysis was run specifically for the investigation of the relationship between the pa-

rameter estimates of the Rasch and log-normal models and the IAT classic score and pointed out that the 

sample size was adequate for the aim. 

 

 

Materials and Procedure 

 

Participants were presented with a Race IAT. It was composed of 16 attribute stimuli, of which 

eight represented the Good category (i.e., “love,” “good,” “happiness,” “joy,” “glory,” “peace,” “pleasure,” 

“laughter”) and eight represented the Bad category (i.e., “bad,” “pain,” “failure,” “annoying,” “evil,” 

“hate,” “horrible,” “terrible”). Target stimuli (same as in Study 2 by Nosek, Greenwald, & Banaji, 2005) 

were six faces of African people representing the Black category (three male and three female) and six fac-

es of European people representing the White category (three male and three female). Participants were 

presented with 60 trials in the White-Good/Black-Bad (WGBB) condition, and 60 trials in the Black-

Good/White-Bad (BGWB) one. The IAT administration included a built-in correction, for which partici-

pants had to correct each error response in order to go on with the experiment. They were instructed to be 

as accurate and fast as they could. 

 

 

Data Cleaning and D score 

 

Exclusion criteria based on both latency and accuracy responses were applied (Greenwald et al., 

2003; Nosek, Banaji, & Greenwald, 2002). The algorithm D1 in Greenwald et al. (2003) was used for 

computing the D score. The difference was computed between the average response time in the BGWB and 

that in the WGBB condition: Positive scores stood for a possible preference for European people over Af-

rican people. For the application of the LMMs to the log-time responses, the latencies at the incorrect re-

sponses were used. 

 

 

RESULTS 

 

No participants or trials were eliminated grounding on the response time exclusion criteria. Three 

participants were excluded because of the accuracy deletion criterion (Nosek et al., 2002). The sample was 

finally composed of 62 participants (F = 48.39%, age = 24.92 ± 2.11 years). The overall average response 

time was 815.06 ms (SD = 423.20, skewness = 3.82, kurtosis = 33.87), while the average response time in 

the WGBB condition was 667.11 ms (SD = 294.06, skewness = 4.64, kurtosis = 44.60), and 943.01 ms 

(SD = 488.89, skewness = 3.45, kurtosis = 29.05) in the BGWB one. When the latencies (expressed in sec-



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 28, No. 4, December 2021 

467-483   

© 2021 Cises 

 

Epifania, O. M., Robusto, E., 

& Anselmi, P. 
Rasch gone mixed 

473 

ond) are log-transformed, the overall average response time is ‒0.29 log-seconds (SD = 0.40, skewness = 

0.72, kurtosis = 3.88), the average response time in the WGBB condition is ‒0.43 log-seconds (SD = 0.31, 

skewness = 1.26, kurtosis = 3.73), and the average response time in the BGWB condition is ‒0.15 log-

second (SD = 0.42, skewness = 0.24, kurtosis = 5.09). These response time distributions are consistent with 

computerized speed tasks like the IAT, where respondents are explicitly encouraged to give fast responses 

to all trials, and only a few numbers of slow responses are observed.  

 

 

Rasch Models 

 

Rasch models were obtained by applying GLMMs on IAT accuracy responses. Concerning Akai-

ke Information Criterion (AIC), log-likelihood, and deviance, Model A2 (AIC = 3784.43, log-likelihood = 

‒1886.21, deviance = 3722.43) performed better than Model A1 (AIC = 3786.51, log-likelihood = ‒1887.26, 

deviance = 3774.51) and Model A3 (AIC = 3785.87, log-likelihood = −1888.93, deviance = 3777.87). 

However, the latter one showed the lowest Bayesian Information Criterion (BIC) value (3813.53, 3825.91, 

3828.00, BIC values for Model A3, A2, and A1, respectively). Model A2 was chosen. This model provided 

overall participants’ ability parameters θi and condition-specific stimuli easiness parameters (bWGBB and 

bBGWB). Results from Model A2 indicated a higher probability of correct response in the WGBB condition 

(log-odds = 3.45, SE = 0.12) than in the BGWB condition (log-odds = 2.07, SE = 0.11). Between-

participants’ variability was 0.17. Between-stimuli variability in the WGBB condition (σ2 = 0.08) was low-

er than that in the BGWB condition (σ2 = 0.15). The correlation between stimuli variability in the two con-

ditions was moderate (r = .34).  

Outfit statistics of the respondents ranged between 0.04 and 1.85 (M = 0.92 ± 0.33). Seven re-

spondents showed outfit statistics below 0.50, and they were retained in the analysis. 

All stimuli showed appropriate outfit statistics in condition BGWB (M = 0.92 ± 0.12, Min = 0.69, 

Max = 1.08). Outfit statistics in condition WGBB (M = 0.94 ± 0.40, Min = 0.25, Max = 1.71) highlighted 

four stimuli with outfit statistics below 0.50, and they were retained in the analysis.  

Stimuli easiness parameters for each condition resulting from Model A2 are reported in Table 2. 

The stimuli condition-specific easiness estimates are obtained by adding the condition-specific BLUP for 

each stimulus to the fixed effect of the associative condition. 

The higher the value of b, the easier the stimulus is, meaning that it is easily recognized as belong-

ing to its category and correctly assigned to that. Generally, IAT stimuli tended to be easy stimuli. Stimuli 

tended to be easier in the WGBB condition than in the BGWB condition, where they showed a higher easi-

ness variability. On average, object stimuli in the WGBB condition were the easiest stimuli, while negative 

words stimuli tended to be the least easy stimuli in the BGWB condition, immediately followed by positive 

words in the same condition. The difference in stimuli easiness parameters is reported in Table 2 as well. 

Object stimuli showed the lowest average easiness difference, while attribute stimuli, particularly positive 

word stimuli, showed the highest average difference between conditions. The difference in the easiness es-

timates between the two associative conditions allowed for the identification of the stimuli of each category 

that gave the highest contribution and the least contribution to the IAT effect. The stimuli giving the high-

est contribution to the IAT effect were joy and happiness (Good category), evil and horrible (Bad catego-

ry), wm3 and wf3 (White category), and bm2 and bf2 (Black category). The stimuli giving the lowest con-

tribution to the IAT effect were love and glory (Good category), annoying and pain (Bad category), wf1 

and wm1 (White category) and bm3 and bf3 (Black category). 
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TABLE 2 

Stimuli condition-specific estimates (bjk) and overall time intensity estimates (δj) 

 

 bWGBB bBGWB bWGBB ‒ bWGBB δj   bWGBB bBGWB bWGBB ‒ bWGBB δj 

Positive words  Negative words 

joy 3.53 1.69 1.85 0.02  evil  3.19 1.37 1.82 -0.01 

happiness 3.48 1.67 1.81 0.01  horrible  3.56 1.77 1.79 0.05 

pleasure 3.29 1.60 1.69 0.05  bad  3.11 1.58 1.53 0.03 

peace 3.32 1.73 1.59 0.01  terrible  3.34 1.81 1.52 0.01 

good 3.54 1.95 1.59 0.01  hate  3.34 1.85 1.50 0.01 

laughter 3.54 2.03 1.52 0.09  failure  3.43 2.06 1.38 0.05 

love 3.48 1.99 1.49 0.01  annoying  3.07 1.87 1.20 0.09 

glory 3.42 1.99 1.43 0.08  pain  3.21 2.02 1.19 0.10 

M  3.45 1.83 1.62 0.03   3.28 1.79 1.49 0.04 

SD 0.09 0.16 0.15 0.04   0.15 0.21 0.22 0.04 

White faces  Black faces 

wm3 3.61 2.04 1.57 –0.05  bm2  3.61 2.32 1.30 –0.08 

wf3 3.66 2.29 1.36 –0.05  bf2  3.56 2.33 1.23 –0.06 

wf2 3.59 2.46 1.12 –0.03  bf1  3.56 2.36 1.20 –0.04 

wm2 3.48 2.44 1.04 0.03  bm1  3.52 2.42 1.10 –0.10 

wf1 3.59 2.57 1.02 –0.05  bm3  3.58 2.51 1.07 –0.09 

wm1 3.28 2.28 1.01 –0.02  bf3  3.36 2.47 0.89 –0.05 

M  3.54 2.35 1.19 –0.03   3.53 2.40 1.13 –0.07 

SD 0.14 0.17 0.21 0.03   0.09 0.07 0.13 0.02 

Note. b = easiness estimates obtained from Model A2; δj = time intensity estimates obtained from Model T3; wf = European fe-
male face; wm = European male face; bf = African female face; bm = African male face; WGBB = White-Good/Black-Bad condi-

tion; BGWB = Black-Good/White-Bad condition. Rows are ordered by decreasing values of bWGBB − bWGBB. 

 

 

Log-Normal Models 

 

Log-normal models were obtained by applying LMMs on IAT log-time responses. The three log-

time models were compared between each other. Model T2 produced aberrant estimates (i.e., correlation 

between the stimuli random slopes equal to 1). Model T1 (AIC = 4399.66, BIC = 4448.06, log-likelihood = 

‒2192.83, deviance = 4385.66) performed better than Model T3 (AIC = 4762.63, BIC = 4797.20, log-

likelihood = −2376.32, deviance = 4752.63). Model T1 was chosen. This model resulted in condition-

specific participants’ speed parameters (τWGBB and τBGWB) and overall stimuli time intensity parameters, δj. 

Respondents’ outfit statistics showed a good fit for all respondents in both the associative conditions (M = 

0.98 ± 0.01, Min = 0.98, Max = 0.99 for the BGWB condition, and M = 0.99 ± 0.01, Min = 0.98, Max = 

1.03 for the WGBB condition).  Concerning the stimuli, overall Outfit statistics indicated a good fit for all 

the stimuli (M =1.00 ± 0.16, Min = 0.77, Max =1.33). The condition-specific estimates of respondents’ 

speed are obtained by adding the condition-specific BLUP of each respondent to the corresponding fixed 

effect of the associative conditions. 

Responses in the WGBB condition tended to be faster (B = ‒0.43, SE = 0.02) than responses in the 

BGWB condition (B = ‒0.15, SE = 0.03). The between-stimuli variability was particularly low (σ2 = 

0.003), while the between-participants’ variability was slightly higher in the BGWB condition (σ2 = 0.05) 
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than in the WGBB one (σ2 = 0.02). The correlation between respondents’ variability in the two conditions 

was strong (r = .63).   

Stimuli time intensity parameters δj obtained from Model T3 are reported in Table 2. The stimuli 

time intensity estimates are obtained by adding each stimulus BLUP to the fixed intercept. Since the fixed 

intercept is set at 0, the time intensity estimates are centered around 0. The lower the value of δj, the lower 

the amount of time the stimulus needs to get a response. Attribute stimuli required more time to get a re-

sponse, while object stimuli were the ones requiring less time, with exemplars of the Black category induc-

ing the fastest responses. African American male faces required less time to obtain a response than African 

American female faces did, while this pattern was not observed for White American people faces. Three of 

the positive attribute stimuli (pleasure, glory, laughter) showed time intensity estimates higher than the es-

timates of the stimuli belonging to the same category. Also, three negative words (failure, annoying, pain) 

showed higher time intensity estimates than the other negative words. Object stimuli tended to have similar 

time intensity estimates. 

 

 

Regression Model: D score 

 

A speed-differential measure was computed by taking the difference between speed estimates in 

the BGWB condition and speed estimates in the WGBB condition. Negative values indicated a respondent 

faster in the BGWB condition than in the WGBB condition. Pearson’s correlations were computed between 

participants’ ability, condition-specific speed parameters and speed-differential. Participants’ ability poorly 

and positively correlated with speed in the BGWB condition (r = .13, p = .32), while it poorly and nega-

tively correlated with the speed-differential (r = –.14, p = .28). Ability moderately correlated with the 

speed parameters in the WGBB condition (r = .32, p = .01).  

Participants’ ability and speed-differential were regressed on the D score. Backward deletion was 

used to investigate the linear combination of predictors accounting for the higher proportion of explained 

variance. Backward deletion kept both the predictors in the model, which accounted for about 80% of the 

total variance — Adjusted R2 = .78, F(2, 59) = 106.30, p < .001. Speed-differential strongly and positively 

predicted D score — B = 1.93, t(59) = 13.88, p < .001. Ability negatively predicted the D score — B = –0.18, 

t(59) = –2.48, p = .012.  

To better understand the specific contribution of the speed of each associative condition, a model 

including the linear combination of ability estimate, speed estimate in the WGBB condition, and speed es-

timate in the BGWB condition was specified as well. Backward deletion kept all three predictors in the 

model, which accounted for almost 80% of the total variance — Adjusted R2 = .79, F(3, 58) = 76.46, p < 

.001. Speed estimate in the WGBB condition negatively predicted the D score, B = –2.22, t(58) = –

11.43, p < .001, while speed in the BGWB condition positively predicted it — B = 1.92, t(58) = 14.16, p < 

.001. Despite the ability parameter remained in the model, its contribution was no longer significant — B = 

–0.13, t(58) = –1.76, p = .08.  

 

 

FINAL REMARKS  

 

The application of (G)LMMs to IAT data proved to be an effective modeling framework for obtain-

ing the estimates of Rasch model and log-normal model parameters while accounting for the nonindepend-

ence of the observations. 
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The fine-grained analysis at the stimuli level allowed a deeper understanding of the meaning of the 

IAT measure, for example by giving the chance to investigate the stimuli that were not representative of their 

category or did not contribute to the IAT effect. Specifically, these models provided detailed information 

about how much each stimulus is representative of its own category. According to Nosek et al. (2005), a valid 

IAT measure can be obtained by using as few as two stimuli to represent each category. The information at 

the stimuli level provided by these models allows for exploiting the most representative and prototypical ex-

emplars of each category. For instance, it was possible to identify two stimuli for each category providing the 

highest information (e.g., the words joy and happiness for the Good category). Grounding on these results, it 

is possible to design new IATs that can maximize the information, while reducing the number of stimuli rep-

resenting each category and, consequently, the number of trials. However, the estimates provided by the 

Rasch model and the log-normal model were not considered together, and hence the information they are 

providing should be interpreted with caution. This issue can be addressed by using a hierarchical approach 

like the one in van der Linden (2006). 

The representativeness of the stimuli can be pretested in a sample drawn from the population of in-

terest. Even though this procedure is a valid procedure, it should be repeated every time the IAT is used on 

samples drawn from different populations. One of the advantages of Rasch modeling is that the estimates ob-

tained on the stimuli are independent from the sample from which they were estimated. As such, stimuli pa-

rameter estimates can provide information on stimuli functioning that can be generalized to other samples 

(drawn from the same population) than the one from which they were obtained. Besides, by using this ap-

proach, it is possible to add new stimuli and test their functioning independently from the functioning of the 

old stimuli.  

The information at the stimuli level can also be used for understanding the associations mostly driv-

ing the IAT effect. In this case, the evaluative dimensions Good and Bad were the stimuli categories showing 

the highest difference between the associative conditions. Both stimuli categories resulted easier in the 

WGBB condition than in the BGWB condition, meaning that the Good stimuli were more easily sorted when 

their category shared the response key with White category than when it shared the response key with Black 

category. Similarly, Bad stimuli were more easily sorted when their category shared the response key with 

Black category than when it shared the response key with White category. This result is in line with the posi-

tive primacy effect found by Anselmi et al. (2011), and it also highlights the contribution of the negative eval-

uative dimension in influencing the IAT effect. Given that the IAT effect appears to be mostly driven by eval-

uative dimensions, this result is in contrast with what was found by Klauer et al. (2007), according to whom 

attitudes influence the performance at the IAT through the categorization of the object stimuli.  

These models also resulted in detailed information on respondents’ accuracy and speed performance. 

Understating how respondents are behaving during the IAT administration is crucial to get a deeper compre-

hension of its measure and on the factors that might influence it. Respondents’ accuracy performance was not 

affected by the IAT associative conditions, while their speed performance was. Consequently, the IAT effect 

seems to be mostly due to a respondents’ slowdown, while the accuracy performance remains unaltered. This 

result can be interpreted by considering the speed-accuracy trade-off (Klauer et al., 2007). Indeed, respond-

ents tend to slow down to maintain the accuracy unaltered in the condition that is against their automatically 

activated associations.   

Not surprisingly, the D score was strongly related with the speed parameters, both speed-differential 

and condition-specific speed estimates, while the contribution of ability was negligible. By using a differential 

measure to predict the D score, it is not possible to understand the actual weight of each associative condition 

in determining the final score. Conversely, when the condition-specific estimates were used to predict the D 
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score, it was possible to isolate and highlight the higher contribution of the speed estimate pertaining to the 

WGBB condition compared with those pertaining to BGWB condition. This result is consistent with those 

obtained from the stimuli easiness estimates.  

Given their flexibility, these models can be used for modeling data from other implicit measures sim-

ilar to the IAT, such as the Single Category IAT (SC-IAT; Karpinski & Steinman, 2006) or the Go/No-Go 

Association Task (GNAT; Nosek & Banaji, 2001). Since the SC-IAT results from a slight modification of the 

IAT procedure and is based on speed and accuracy of stimuli categorization, both the accuracy and the log-

normal models can be used for modeling its responses. Differently, the GNAT is based solely on accuracy 

responses. Given that the accuracy and the log-time models do not rely on each other to be applied, it is possi-

ble to use only the accuracy models for obtaining the estimates of the Rasch model parameters on the GNAT 

accuracy responses. Moreover, since the IAT can be used together with either the SC-IAT (e.g., Karpinski & 

Steinman, 2006; Chevance, Stephan, Heraud, & Boiché, 2018) or the GNAT (e.g., Ueda, Yanagisawa, 

Ashida, & Abe, 2017; Yang, Zhao, Guan, & Huang, 2017), it is possible to specify LMMs able to simultane-

ously account for the different implicit measures in one comprehensive model. 

Since the aim of the study was to investigate the effect of the IAT associative condition on respond-

ents’ performance or stimuli functioning within a Rasch approach, no other predictors were entered in the 

models. However, given the flexibility of these models, it is possible to include other fixed effects for the in-

vestigation of the effect of different features of the stimuli (e.g., whether it is a word or an image) or of differ-

ent characteristics of the respondents.  

In this study, we did not investigate and compare the relationship between explicit measures of atti-

tudes, behavioral outcomes, estimates obtained through Rasch and log-normal models, and D score. It can be 

speculated that, since the estimates obtained from the (G)LMMs are not influenced by unwanted error vari-

ance due to the nonindependence of the observations, they can be more reliable than the D score, hence allow-

ing for a better inference of the construct under investigation. Therefore, they may result in a better prediction 

of behavioral outcomes, as well as showing stronger relations with explicit evaluations tapping the same con-

struct. Future studies should address this issue. 

Rasch analysis based on small samples, such as that used in this study, should be used for explorato-

ry purposes with extreme caution (Chen, Lederking, Jin, Wyrwich, Gelhorn & Revicki, 2014). Nonetheless, 

when LMMs are employed, it is not the sample size per se that matters, but the number of observations for 

each unit of analysis, in this case, the respondents. There were 120 observations for each respondent, which 

should have ensured reliable estimates for the respondents.  

This work highlighted how a simple approach can lead to a thorough and detailed analysis of the 

IAT data within a Rasch framework. The fine-grained analysis at the stimulus, the participant, and the asso-

ciative condition levels provided by these models may lead to new interesting insights on the IAT functioning 

and meaning. 
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APPENDIX A 

 

 

The Rasch and log-normal estimates were obtained by means of lme4 package (Bates et al., 2015) in R. 

The R code used for estimating the models and for extracting the parameter estimates is illustrated in this 

Appendix. This code can be copied and pasted in an R script, and it can be executed without changes as 

long as the data set on which the models are applied has the following characteristics: 

 

• subject: Column containing the respondents’ IDs (can be numeric, a factor, or a string, as long 

as it is unique for each respondent). 

• condition: Column containing the labels for the two associative conditions of the IAT (factor 

with two levels such as mappingA and mappingB). 

• stimuli: column containing the labels identifying each stimulus (e.g., good, bad, wf1, bm2). 

• latency: Column containing the latency of the IAT responses. Latency can be expressed in sec-

onds or milliseconds (in this paper, we used seconds). In case the IAT included a built-in correc-

tion for the error responses, the raw response times should be used instead of the corrected ones. 

• correct: Column containing the accuracy of the IAT responses, where 0 is the incorrect re-

sponse and 1 is the correct response. 

 

The data set must be in a long format. This means that the response of each respondent on each stimulus in 

each associative condition must be on a separate row, and the total number of observations (and rows) for 

each subject must correspond to the total number of critical trials in the two associative conditions. For in-

stance, in this study participants were presented with 60 trials in each associative condition, so that we had 

120 trials for each respondent, and consequently 120 rows for each participant.  

In both accuracy and log-time responses, the fixed intercept was set at 0, so that the estimates for 

the effect of the IAT associative conditions can be interpreted as the expected log-odds of the probability of 

a correct response in each condition or the expected average log-response time in each condition, respec-

tively. For both accuracy and log-time responses, in Model 1 (Table 1) the estimates of the stimuli are cen-

tered at 0 (argument (1|stimuli)), while in Model 2 (Table 1) respondents’ estimates are centered at 0 

(argument (1|subject)). 

 

 

Accuracy Models Specification 

 

The code for the specification of the accuracy models is illustrated. The name of the data set in the argu-

ment data must be changed accordingly. 

 

Model 1: Between-stimuli variability specified as random intercepts (i.e., (1|stimuli)). Within-

subjects and between-conditions variability specified as random slopes of the respondents in the conditions 

(i.e., (0 + condition|subject)). 

 

library(lme4) # upload the package for the estimation of the mod-

els 

a1 <- glmer(correct ~ 0 + condition + (1|stimuli) +  

          (0 + condition|subject),   
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           data = your_data, family = "binomial") 

summary(a1) # summary of the results 

 

Model 2: Between-subjects variability specified as random intercepts (i.e., (1|subject)). Within-

stimuli and between-conditions variability specified as random slopes of the stimuli in the conditions (i.e., 

(0 + condition|stimuli)). 

 

a2 <- glmer(correct ~ 0 + condition + (1|subject) +  

           (0 + condition|stimuli),  

            data = your_data, family = "binomial") 

summary(a2) # summary of the results 

 

Model 3: Between-subjects variability specified as random intercepts (i.e., (1|subjects)). Between-

stimuli variability specified as random intercepts (i.e., (1|stimuli)). 

 

a3 <- glmer(correct ~ 0 + condition + (1|stimuli) + (1|subject), 

            data = your_data, 

            family = "binomial") 

summary(a3) # summary of the results 

 

Once the three models have been estimated, they can be compared with each other. Model 1 (a1) and 

Model 2 (a2) have the same degrees of freedom: 

 

anova(a1, a2, a3) 

 

 

Accuracy Models: Rasch Model Parameter Estimates 

 

Grounding on the results of the model comparison, the best fitting model can be selected for extracting the 

Rasch model parameter estimates. 

 

Model 1 results in condition-specific respondents’ estimates and overall stimuli estimates. Respondents’ 

condition-specific ability estimates can be extracted as follows: 

 

cond_ability <- coef(a1)$subject[, -1] # drop the first column 

                        # (fixed intercepts set at 0) 

                        # rownames are the subjects’ IDs 

 

Stimuli easiness estimates can be extracted and stored in a data frame as well: 

 

easiness <- data.frame( 

              stimuli = rownames(coef(a1)$stimuli),  
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              easiness = coef(a1)$stimuli[, 1] # select only the 

                       # random estimates intercept 

) 

 

Model 2 results in condition-specific stimuli estimates and overall respondents’ estimates. Stimuli condi-

tion-specific estimates can be extracted as follows: 

 

easiness_cond <- coef(a2)$stimuli[, -1] # drop the first column 

                       # (fixed intercept set at 0) 

                       # rownames are stimuli labels 

 

Respondents overall ability estimates can be extracted and stored in a data frame: 

 

ability <- data.frame( 

             subject = rownames(coef(a2)$subject), 

             ability = coef(a2)$subject[, 1] # select only the  

             # random intercept estimates 

) 

 

Model 3 results in overall respondents’ estimates and overall stimuli parameters. Respondents overall abil-

ity estimates can be extracted and stored in a data frame: 

 

ability <- data.frame( 

             subject = rownames(coef(a3)$subject), 

             ability = coef(a3)$subject[, -1] 

) 

 

Stimuli overall easiness estimates can be extracted and stored as well: 

 

easiness <- data.frame( 

              stimuli = rownames(coef(a3)$stimuli), 

              easiness = coef(a3)$stimuli[, -1] 

) 

 

 

Log-Time Models Specification 

 

The code for the estimation of the log-normal models is the same as the one used for estimating the Rasch 

models. The changes concern the name of the specific function to use (from glmer() to lmer()) and 

the dependent variable (from correct to log(latency)). For this reason, we report the code for the 

estimation of Model 1 only. 

 

t1 <- lmer(log(seconds) ~ 0 + condition + (1|stimuli) + 

          (0 + condition|subject), 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 28, No. 4, December 2021 

467-483   

© 2021 Cises 

 

Epifania, O. M., Robusto, E., 

& Anselmi, P. 
Rasch gone mixed 

483 

          data = your_data, 

          REML = FALSE) # Maximum Likelihood estimation 

summary(t1) # summary of the results 

 

For log-time models comparison, the same code as the one used for accuracy models comparison can be 

used by changing the names of the models from a to t. 

 

 

Log-Time Models: Log-Normal Model Parameters 

 

We report the code for extracting the log-normal model estimates for log-time Model 1, assuming it was 

the best fitting model according to model comparison. The same code used for extracting the estimates for 

the accuracy models can be used for extracting the parameters of the log-normal models. The changes re-

gard the name of the objects containing the models, from a to t, and the names of the new objects created 

for the parameters (e.g., from easiness to intensity). 

Respondents’ condition-specific parameters: 

 

cond_speed <- coef(a1)$subject[, -1] # drop the first column 

                      # (fixed intercepts set at 0) 

                      # rownames are the subjects’ IDs 

 

Stimuli overall time intensity parameters: 

 

intensity <- data.frame( 

               stimuli = rownames(coef(t1)$stimuli), 

               intensity = coef(t1)$stimuli[, 1] # select only 

the 

            # random intercept estimates 

) 

 

 

 

 

 

 

 

 

 


