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Abstract: 

It is crucial to find early indicators of anxiety and moderate depression whenever you can to help people 

receive better results. Unstructured medical records and noisy data from wearable sensors often display 

these symptoms in intricate ways that supervised learning approaches that use big, annotated datasets 

have a hard time with. It is challenging to make good detection models because there isn't enough 

labeled data and it's hard to grasp the symptoms. Because of this, we need ways to train usable 

representations from a variety of data sources without having to label a lot of it by hand. Our suggested 

self-supervised deep representation learning architecture can work with many types of data at once, like 

medical records in text form and time-series data from wearable sensors. We employ masked data 

modeling and contrastive learning to gather the information we need to make unified embeddings that 

highlight hidden psychological symptom markers. To sort symptoms, big datasets without labels are 

utilized for pretraining, and subsequently small samples with labels are used for fine-tuning. The 

experimental evaluation that used a multimodal dataset demonstrated that the suggested technique is 

better than both the baseline supervised and unsupervised models at finding early psychological 

symptoms. 

 

Keywords: self-supervised learning, psychological symptom detection, medical records, wearable 

sensors, deep representation learning 
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INTRODUCTION 

 

A person's mental health can have an effect on their overall health, which includes their physical and mental health as 

well as their quality of life. All of these diverse parts of well-being are connected to each other. Finding and treating 

moderate mental health issues as soon as possible is highly crucial. Some of these indications are stress, worry, and 

early signs of depression. It's important to keep in mind that these symptoms frequently arise before bigger problems 

do [1,2,3]. Digital health technologies that make huge volumes of different types of data available, like streams from 

wearable sensors and electronic medical records (EMRs), have made it easier than ever to diagnose problems early 

and keep an eye on them [1,2]. Wearable devices can tell you things about your body, such how your heart rate varies, 

how you sleep, and how active you are. These signals could be hiding indicators of mental distress [3]. Electronic 

medical records (EMRs), on the other hand, preserve a full written record of a patient's medical history, symptoms, 

medications, and notes from doctors.  

But before these multimodal data sources can be used to discover minor psychiatric diseases, there are certain big 

challenges that need to be fixed. First, wearable data and medical records are naturally messy and confusing, which 

makes it harder to locate useful signals [4,5]. A lot of the time, medical records have information that isn't clear or is 

missing critical elements. Medical records are hard to read since they aren't organized and utilize a lot of different 

kinds of language and information. Wearable sensors can collect data that is hard to view because of artifacts, missing 

segments, and variances between people [4]. Second, it's challenging for most supervised learning algorithms to pick 

up on these signals, especially when there isn't a lot of labeled data. The earliest indicators of mental disease are 

usually small and not significantly different from each other [6,7]. It's much tougher to discover datasets that are big 

enough and have the correct annotations when you think about privacy issues and how much it costs to hire an expert 

to do the work [6].  

So, it's hard to develop models that can acquire usable representations from a lot of unlabeled multimodal health data 

on their own and then correctly and sensitively identify early psychiatric symptoms [6, 7, 8]. A lot of labeled instances 

are sometimes needed for traditional supervised models. This is done to ensure that the model doesn't overfit and that 

it functions correctly and can be utilized in other contexts. This lack of data is especially troublesome [7,8] since the 

medical field either doesn't keep track of little mental health problems correctly or does so in a way that doesn't match 

up with other information. Multimodal data fusion is even more complicated since it needs to be able to capture huge 

cross-modal interactions without sacrificing information that are distinctive to each modality [8].  

The key thing we want to do is build a new framework for self-supervised deep representation learning that can work 

with both text-based EMRs and data from wearable sensors. This is one of the things we're doing to try to fix these 

issues. The method doesn't need a lot of labeled data to make high-quality unified embeddings. To discover tiny 

psychological symptoms in both intra- and inter-modality patterns, the model uses self-supervised tasks including 

contrastive learning and modality-specific masked data modeling. Fine-tuning the pretrained model on tiny, labeled 

samples can help discover early symptoms of mental health disorders. You can do this to acquire the results you want.  

We apply self-supervised learning methods on two very distinct types of data: unstructured clinical literature and time-

series physiological signals. This makes our method different from others. We use a lot of data that isn't labeled in our 

method to make it more generalizable and strong. Most of the time, past research have only looked at one kind of data 

or employed supervised learning. Contrastive learning can also be helpful when working with paired multimodal data 

representations. This makes it more likely to pick up on signs of cross-modal symptoms, which are clues that might 

be missed when looking at each modality by itself.  

We care about these two things: (1) We built a one-of-a-kind framework for self-supervised multimodal deep learning. 

It also uses a contrastive loss to combine embeddings and masked segment reconstruction for sensor data and masked 

token prediction for clinical text, respectively. So, you may use big datasets that don't contain labels for representation 

learning in a way that is helpful. (2) We show how effective self-supervised learning could be for digital mental health 

by running a variety of experiments that show how much better the learnt representations are at finding minor 

psychological symptoms than typical supervised and unsupervised methods. We do this by comparing how well these 

experiments did to the baseline methods.  

This research employs self-supervised deep learning to connect several health data sources and discover indicators of 

mental illness earlier. This makes it possible to build digital mental health solutions that are economical, easy to grow, 

and sensitive. 
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RELATED WORKS 

 

New advances in mental health informatics have made it easier to identify and keep an eye on mental health problems 

by using both textual clinical data and physiological signals from wearable devices. This was done to improve the care 

as a whole. In the past, studies have either looked at each modality on its own or used fully supervised approaches 

that require large datasets that have been labeled.  

Natural language processing (NLP) has been utilized in a lot of clinical text analysis to uncover mental health markers 

and references of symptoms in electronic medical records (EMRs) [8]. Earlier studies utilized lexicon matching and 

rule-based approaches to uncover words that were related to anxiety and sadness [8]. Researchers have recently 

employed deep learning to train contextual embeddings for clinical notes. It has been shown that these embeddings 

can encode complicated semantic links [9]. These models use transformer structures, recurrent neural networks 

(RNNs), and other notions that are comparable. But these supervised methods can't be utilized very often since they 

need annotated corpora, which are usually small and only cover one topic.  

Researchers who were also working on processing data from wearable sensors at the same time found that 

physiological signals including heart rate variability, galvanic skin reaction, and activity patterns can be exploited to 

find biomarkers for stress and mood disorders [10]. Researchers have employed different machine learning models, 

such as convolutional neural networks (CNNs), random forests, and support vector machines, to sort mental states 

based on these signals [10,11]. But there are still issues like noise, missing data, and variances across persons that 

need more intricate preparation methods and a better grasp of the area.  

The concept that combining different data sets will make detection more reliable has led to the development of 

multimodal approaches that combine sensor data with clinical text [12]. Researchers in this field commonly employ 

early and late fusion approaches, which combine feature vectors, and the integration of predictions that are particular 

to multiple modalities [12,13]. Supervised learning paradigms are common in traditional approaches, however they 

don't make the most of the vast amount of unlabeled data. Fusion, on the other hand, makes things work better.  

Self-supervised learning, which includes creating representation learning proxy problems without having explicit 

labeling, has demonstrated promising outcomes in a number of medical subspecialties [13]. BERT made masked 

language modeling a thing. This strategy helps models gain extensive contextual embeddings that can be used in 

clinical literature applications [13]. Models can learn strong features and time-based connections via contrastive 

learning and masked segment reconstruction [13]. This makes it easier for individuals to understand time-series data. 

There hasn't been much research that tries to link clinical literature with data from wearable sensors when it comes to 

employing self-supervised learning to uncover psychological symptoms that show up in more than one way.  

Our study builds on previous work in these areas by integrating self-supervised learning, electronic medical records 

(EMRs), and data from wearable devices. Using masked prediction tasks that are different for each modality and a 

contrastive loss to align embeddings, the model can discover early psychological symptoms.  

Our approach uses self-supervised multimodal learning and identifying psychological symptoms to provide a new 

way of performing digital mental health that could transform how things are done presently. It leverages on past work 

in unimodal analysis and self-supervised learning for certain modalities to help the field find solutions that are easy to 

comprehend, sensitive, and scalable. 

 

PROPOSED METHOD 

 

The proposed method uses a two-branch deep neural architecture to jointly learn representations from textual medical 

records and wearable sensor data through self-supervised learning objectives. First, each modality is separately 

encoded using transformers (for text) and temporal convolutional networks (for sensor data). To ensure the model 

captures intrinsic correlations, we employ a contrastive loss that aligns embeddings from paired modalities of the same 

patient while pushing apart unpaired samples. Additionally, masked token prediction for text and masked segment 

reconstruction for sensor data encourage contextual understanding within each modality. After pretraining on large 

unlabeled multimodal data, the model is fine-tuned on a small labeled dataset using supervised classification to detect 

psychological symptoms. 
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Figure 1: Proposed Framework 

Pseudocode: 

# Data preprocessing 

def preprocess_text(text_data): 

  tokens = tokenize_and_normalize(text_data) 

  return tokens 

def preprocess_sensor(sensor_data): 

  normalized_data = normalize(sensor_data) 

  segments = segment_time_series(normalized_data) 

  return segments 

# Define encoders 

text_encoder = TransformerEncoder() 

sensor_encoder = TemporalConvEncoder() 

# Define self-supervised tasks 

def masked_token_prediction(tokens): 

  masked_tokens = mask_random_tokens(tokens) 

  predicted_tokens = text_encoder(masked_tokens) 

  loss_text = cross_entropy_loss(predicted_tokens, tokens) 

  return loss_text 

def masked_segment_reconstruction(segments): 

  masked_segments = mask_random_segments(segments) 

  reconstructed_segments = sensor_encoder(masked_segments) 

  loss_sensor = mse_loss(reconstructed_segments, segments) 

  return loss_sensor 

# Contrastive loss for joint embedding 

def contrastive_loss(text_embedding, sensor_embedding, batch): 

  positive_pairs = get_positive_pairs(batch) 

  negative_pairs = get_negative_pairs(batch) 

  loss_contrastive = nt_xent_loss(text_embedding, sensor_embedding, positive_pairs, negative_pairs) 

  return loss_contrastive 

# Pretraining loop 

for batch in unlabeled_data_loader: 

  tokens = preprocess_text(batch.text) 

  segments = preprocess_sensor(batch.sensor) 

  text_emb = text_encoder(tokens) 

Evaluate model performance 

Fine-tune pretrained encoders 

Pretrain model 

Compute contrastive loss 

Encode sensor data via temporal convolutional encoder 

Encode text data via transformer encoder 

Preprocess wearable sensor time series 

Preprocess medical record text 
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  sensor_emb = sensor_encoder(segments) 

  loss_text = masked_token_prediction(tokens) 

  loss_sensor = masked_segment_reconstruction(segments) 

  loss_contrast = contrastive_loss(text_emb, sensor_emb, batch) 

  total_loss = loss_text + loss_sensor + loss_contrast 

  total_loss.backward() 

  optimizer.step() 

  optimizer.zero_grad() 

# Fine-tuning with labeled data 

for batch in labeled_data_loader: 

  tokens = preprocess_text(batch.text) 

  segments = preprocess_sensor(batch.sensor) 

  labels = batch.labels 

  text_emb = text_encoder(tokens) 

  sensor_emb = sensor_encoder(segments) 

  combined_emb = concatenate(text_emb, sensor_emb) 

  predictions = classifier(combined_emb) 

  loss_sup = classification_loss(predictions, labels) 

  loss_sup.backward() 

  optimizer.step() 

  optimizer.zero_grad() 

Data Preprocessing 

Data preprocessing is critical for preparing both textual and sensor data to ensure high-quality inputs for the model. 

For medical records, raw clinical notes are often noisy, containing abbreviations, typos, and domain-specific 

terminology. The text is first normalized by expanding abbreviations and correcting errors. Tokenization breaks the 

text into meaningful units such as words or subwords, while stopwords and irrelevant tokens are removed to reduce 

noise. 

Wearable sensor data, such as heart rate or accelerometer signals, typically come as continuous time series sampled 

at regular intervals. The raw signals often contain noise due to sensor artifacts or movement. We apply filtering 

techniques and normalization to standardize the range and remove artifacts. The continuous signals are segmented 

into fixed-length windows to capture temporal context for the encoder. 

Table 1: Text and Sensor Data Preprocessing Summary 

Modality Raw Data Example Preprocessing Steps Processed Output 

Medical 

Records 

"Pt c/o anxiety, sleeps 

poorly." 

Abbreviation expansion, 

tokenization, stopword removal 

["patient", "complains", 

"anxiety", "sleep", "poorly"] 

Wearable 

Sensors 

Heart rate raw: [72, 

75, 78, 120, ...] 

Noise filtering, normalization, 

segmentation 

Normalized windowed segments 

of heart rate values 

Table 1 illustrates typical raw inputs and their corresponding preprocessing operations for each modality. 

Text Encoder with Masked Token Prediction 

The cleaned text tokens are fed into a transformer-based encoder designed to capture deep semantic and syntactic 

features from clinical notes. To train the model without labeled data, we use a masked token prediction task: randomly 

selected tokens in the input are masked, and the model must predict these tokens based on their context. 

This self-supervised task encourages the encoder to learn rich contextual embeddings, capturing subtle linguistic cues 

related to psychological symptoms. For example, in a sentence like "Patient reports anxiety and insomnia," masking 

the word "anxiety" forces the model to infer it from the surrounding context. 

The transformer architecture uses self-attention mechanisms, allowing the model to weigh the importance of different 

tokens relative to each other dynamically. The loss function used here is the cross-entropy loss comparing predicted 

tokens to the original tokens. 

Sensor Encoder with Masked Segment Reconstruction 

For wearable sensor data, we employ a temporal convolutional network (TCN) encoder that processes fixed-length 

signal segments. Analogous to masked token prediction in text, we apply masked segment reconstruction: randomly 

selected contiguous segments of the sensor input are masked, and the model learns to reconstruct these missing parts. 

This task trains the encoder to understand temporal dependencies and typical physiological patterns, which are crucial 

for detecting deviations indicative of psychological distress. For instance, if a segment of heart rate variability is 

masked, the model learns to reconstruct it by leveraging patterns from surrounding windows. 
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Mean squared error (MSE) loss is used to measure the reconstruction quality. This encourages the encoder to learn 

robust features reflecting normal and abnormal physiological states. 

Table 2: Masked Segment Reconstruction Illustration 

Segment 

Index 
Original Sensor Values 

Masked Segment 

(Positions 5-7) 
Model Reconstruction 

MSE 

Loss 

1 
[70, 72, 75, 78, 80, 79, 77, 

74, 73] 

[70, 72, 75, 78, __, __, __, 

74, 73] 

[70, 72, 75, 78, 81, 80, 78, 

74, 73] 
0.5 

Table 2 shows how the model reconstructs masked segments from sensor data with a low MSE loss indicating accurate 

reconstruction. 

Contrastive Loss for Multimodal Alignment 

After obtaining embeddings from the text and sensor encoders, the model applies a contrastive learning objective to 

align paired embeddings from the same patient while distancing embeddings from different patients. This step is 

crucial to fuse multimodal information, ensuring that the joint embedding space captures shared latent features linked 

to psychological symptoms. 

Contrastive loss, specifically the normalized temperature-scaled cross entropy loss (NT-Xent), is used. Given a batch 

of paired embeddings ( , )text sensor

i iz z , the loss encourages the similarity ( , )text sensor

i is z z between embeddings of the 

same to be higher than that between embeddings of different samples. 

Mathematically, the NT-Xent loss for a positive pair i is: 

( )

( )
[ ]

1

exp ( , ) /
log

exp ( , ) /
j i

text sensor

i i

i N
text sensor

i j

j

s

s






=

= −



z z

z z

 

where τ is a temperature parameter controlling concentration, N is the batch size, and s(⋅,⋅) is typically cosine 

similarity. 

This loss aligns embeddings across modalities, promoting a joint representation that robustly captures psychological 

symptom signals manifested in both text and physiological data. 

Pretraining on Large Unlabeled Dataset 

The self-supervised tasks—masked token prediction, masked segment reconstruction, and contrastive alignment—are 

combined into a unified loss function and optimized on a large corpus of unlabeled multimodal health data. This step 

allows the model to learn comprehensive, generalizable features that do not depend on explicit annotations. 

The total loss is the weighted sum: 

text sensor contrastive  = + +L L L L  

where α,β,γ control the contributions of each component. 

Training on large-scale unlabeled data enables the model to capture subtle, complex patterns indicative of early 

psychological symptoms, even when labeled data is scarce. 

Fine-Tuning on Limited Labeled Data 

Once pretrained, the encoders are fine-tuned on a small labeled dataset with psychological symptom annotations. The 

text and sensor embeddings are concatenated and passed to a classification head to predict symptom presence or 

severity. 

Fine-tuning adjusts the pretrained weights to the specific detection task, improving predictive accuracy. This approach 

reduces the reliance on large labeled datasets, a common bottleneck in mental health applications. 

Table 3: Proposed Steps and Key Outputs 

Step Description Input Output Key Loss/Metric 

Data 

Preprocessing 

Clean and segment raw 

text and sensor data 

Raw clinical text, 

sensor signals 

Tokenized text, 

segmented signals 
N/A 

Text Encoder 
Transformer with masked 

token prediction 
Tokenized text Text embeddings Cross-entropy loss 

Sensor Encoder 
TCN with masked 

segment reconstruction 

Segmented sensor 

windows 
Sensor embeddings MSE loss 

Contrastive 

Alignment 

Align embeddings from 

both modalities 

Text & sensor 

embeddings 

Joint multimodal 

embeddings 

NT-Xent 

contrastive loss 

Pretraining Train on unlabeled data 
Unlabeled 

multimodal data 

Generalized 

pretrained encoders 

Combined self-

supervised loss 
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Fine-Tuning 
Supervised learning on 

labeled data 

Labeled 

multimodal data 

Symptom detection 

predictions 
Classification loss 

Table 3 summarizes each step’s inputs, outputs, and associated loss functions. 

This detailed stepwise approach allows the model to exploit unlabeled multimodal health data to learn sensitive 

representations for subtle psychological symptom detection, overcoming data scarcity and modality heterogeneity 

challenges. 

 

RESULTS AND DISCUSSION 

 

The proposed self-supervised deep representation learning framework was implemented and evaluated using Python 

and PyTorch, a widely used deep learning library that offers flexibility for building custom neural architectures. All 

experiments, including pretraining and fine-tuning stages, are conducted on a workstation equipped with an NVIDIA 

Tesla V100 GPU with 32GB memory, enabling efficient parallel processing of large-scale multimodal data. The 

workstation ran Ubuntu 20.04 LTS with 128GB of RAM and Intel Xeon 2.6 GHz CPUs, ensuring sufficient 

computational resources for handling both high-dimensional text and time-series sensor data. 

For data preprocessing and model evaluation, standard scientific computing libraries such as NumPy, Pandas, and 

Scikit-learn are utilized. Hyperparameter tuning and training monitoring are performed using Weights & Biases for 

experiment tracking. The codebase was containerized using Docker to maintain reproducibility and facilitate future 

scaling. Pretraining on unlabeled datasets typically required 48-72 hours depending on dataset size, while fine-tuning 

on labeled subsets completed within 6-12 hours. 

Simulation and validation experiments are carried out using a publicly available multimodal dataset comprising de-

identified electronic medical records and synchronized wearable sensor readings collected from clinical and 

ambulatory settings. The dataset was partitioned into training, validation, and test splits, ensuring no subject overlap 

to prevent information leakage. Experimental rigor was maintained by using stratified sampling to balance 

psychological symptom labels across splits. 

Experimental Setup and Parameters 

The key hyperparameters and experimental configurations used in the proposed method are summarized in Table 4. 

These parameters are selected based on empirical tuning and previous literature benchmarks for similar multimodal 

representation learning tasks. 

Parameter Value Description 

Text Encoder Type Transformer (BERT-base) 
Pretrained BERT-base architecture as text 

encoder 

Sensor Encoder Type 
Temporal Convolutional Network 

(TCN) 
4-layer TCN with kernel size 3 

Embedding Dimension 768 Dimension of latent embeddings per modality 

Batch Size 64 Number of samples per training batch 

Learning Rate 1e-4 Adam optimizer initial learning rate 

Dropout Rate 0.1 Dropout probability for regularization 

Masking Ratio (Text) 15% 
Percentage of tokens randomly masked during 

pretraining 

Masking Ratio (Sensor) 20% 
Percentage of sensor segments masked during 

pretraining 

Temperature (τ\tauτ) 0.07 NT-Xent loss temperature parameter 

Number of Pretraining 

Epochs 
50 Epochs for self-supervised pretraining 

Number of Fine-tuning 

Epochs 
20 Epochs for supervised fine-tuning 

Table 4: Experimental setup and hyperparameter values used in the proposed framework. 

Performance Metrics 

To comprehensively evaluate the symptom detection performance, five widely adopted metrics are computed on the 

test set: 

1. Accuracy: Measures the Thus correctness of the model’s predictions, calculated as the ratio of correctly 

predicted samples to total samples. While intuitive, accuracy can be misleading in imbalanced datasets. 
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2. Precision: Indicates the proportion of positive predictions that are actually correct. High precision reduces 

false positives, which is critical in clinical contexts to avoid unnecessary interventions. 

3. Recall (Sensitivity): Measures the proportion of actual positives correctly identified by the model. High 

recall ensures fewer missed cases, important for early symptom detection. 

4. F1-Score: The harmonic mean of precision and recall, providing a balanced metric especially useful when 

class distribution is uneven. 

The representative conventional methods are selected to benchmark the proposed approach: Clinical Text-Based 

Transformer Model [9], Wearable Sensor CNN Classifier [10] and Multimodal Late Fusion Model [12]. 

Table 5: Accuracy Comparison Over Training Epochs 

Epochs Clinical Text Model [9] Sensor CNN Model [10] Multimodal Fusion [12] Proposed Method 

25 0.72 0.68 0.75 0.81 

50 0.74 0.71 0.78 0.85 

75 0.75 0.72 0.79 0.87 

100 0.76 0.73 0.80 0.89 

 

Table 6: Precision Comparison Over Training Epochs 

Epochs Clinical Text Model [9] Sensor CNN Model [10] Multimodal Fusion [12] Proposed Method 

25 0.70 0.65 0.73 0.80 

50 0.72 0.68 0.75 0.84 

75 0.73 0.69 0.76 0.86 

100 0.74 0.70 0.77 0.88 

 
Figure 2: Recall Comparison Over Training Epochs 

 

 
Figure 3: F1-Score Comparison Over Training Epochs 
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Table 7: AUROC Comparison Over Training Epochs 

Epochs Clinical Text Model [9] Sensor CNN Model [10] Multimodal Fusion [12] Proposed Method 

25 0.74 0.70 0.77 0.86 

50 0.76 0.72 0.80 0.89 

75 0.77 0.73 0.82 0.91 

100 0.78 0.74 0.83 0.93 

 

The performance results in Tables 5 - 9 clearly show that the proposed self-supervised multimodal representation 

learning method consistently outperforms the conventional baseline methods across all five evaluation metrics. At 

epoch 100, the proposed method achieves an accuracy of 0.89, exceeding the best baseline (multimodal fusion [12]) 

by 9% (Table 5). Similarly, precision and recall improvements are notable, with values of 0.88 and 0.89 respectively, 

showing enhanced ability to correctly identify true positives and reduce false alarms (Tables 6 and figure 2). This 

balance is reflected in the F1-score (figure 3), which reaches 0.89, significantly higher than other methods that hover 

below 0.78. 

Moreover, the AUROC scores (Table 7) confirm superior discriminative power of the proposed model, attaining 0.93 

at epoch 100, indicating robustness in differentiating subtle psychological symptom cases. The gains over the Clinical 

Text Model [9] and Sensor CNN [10] emphasize the benefit of joint multimodal representation learning coupled with 

self-supervised pretraining. Compared to simple multimodal fusion [12], our method’s unified embedding approach 

better captures cross-modal correlations, resulting in higher sensitivity to subtle symptom patterns. 

Thus, the progressive improvement over epochs shows the model’s stable convergence and effectiveness of the 

combined masked prediction and contrastive losses in learning rich features from unlabeled data. These results validate 

the hypothesis that self-supervised multimodal learning substantially boosts subtle psychological symptom detection 

accuracy, addressing limitations of purely supervised or unimodal approaches. 

 

CONCLUSION 

 

This work presents a novel self-supervised deep representation learning framework for detecting subtle psychological 

symptoms by integrating electronic medical records and wearable sensor data. Using contrastive alignment loss and 

modality-specific masked prediction tasks, the proposed method can generate rich, unified embeddings from a lot of 

unlabeled multimodal data. The findings of the experiments reveal considerable improvements in a number of 

performance indicators when compared to what are regarded to be the best baselines. This illustrates that the method 

can discover little patterns of symptoms that other methods frequently miss. 

 

REFERENCES 

 

[1] Saravanan, V., Rajamani, A., Subramani, M., & Ramasamy, S. (2020). Exploring two-dimensional graphene 

and boron-nitride as potential nanocarriers for cytarabine and clofarabine anti-cancer drugs. Computational 

Biology and Chemistry, 88, 107334. 

[2] Subramanian, B., Saravanan, V., Nayak, R. K., Gunasekaran, T., & Hariprasath, S. (2019). Diabetic 

retinopathy-feature extraction and classification using adaptive super pixel algorithm. International Journal 

on Engineering Advanced Technology, 9, 618-627. 

[3] Kakani, T. A., Vedula, J., Mohammed, M., Gupta, R., Hudani, K., & Yuvaraj, N. (2025, June). Developing 

Predictive Models for Disease Diagnosis using Machine Learning and Deep Learning Techniques. In 2025 

6th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks 

(ICICV) (pp. 158-163). IEEE. 

[4] Nithya, C., & Saravanan, V. (2018). A study of machine learning techniques in data mining. Int. Sci. Refereed 

Res. J, 1, 31-38. 

[5] Patil, S. C., Madasu, S., Rolla, K. J., Gupta, K., & Yuvaraj, N. (2024, June). Examining the Potential of 

Machine Learning in Reducing Prescription Drug Costs. In 2024 15th International Conference on 

Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. 

[6] Gupta, R., Kakani, T. A., Vedula, J., Mohammed, M., Hudani, K., & Yuvaraj, N. (2025, June). Advancing 

Clinical Decision-Making using Artificial Intelligence and Machine Learning for Accurate Disease 

Diagnosis. In 2025 6th International Conference on Intelligent Communication Technologies and Virtual 

Mobile Networks (ICICV) (pp. 164-169). IEEE 



TPM Vol. 32, No. S2, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

1837 
 

  

[7] Khoo, L. S., Lim, M. K., Chong, C. Y., & McNaney, R. (2024). Machine learning for multimodal mental 

health detection: a systematic review of passive sensing approaches. Sensors, 24(2), 348. 

[8] Karimian, M. (2025). A Short Review on Diagnosing and Predicting Mental Disorders with Machine 

Learning. International Journal of Applied Data Science in Engineering and Health, 1(1), 20-27. 

[9] Choi, H., Cho, Y., Min, C., Kim, K., Kim, E., Lee, S., & Kim, J. J. (2024). Multiclassification of the symptom 

severity of social anxiety disorder using digital phenotypes and feature representation learning. Digital 

Health, 10, 20552076241256730. 

[10] Gu, X., & Hu, X. (2025). Research on mood monitoring and intervention for anxiety disorder patients based 

on deep learning wearable devices. Technology and Health Care, 33(2), 1128-1139. 

[11] Li, Q., Liu, X., Hu, X., Ahad, M. A. R., Ren, M., Yao, L., & Huang, Y. (2025). Machine Learning-Based 

Prediction of Depressive Disorders via Various Data Modalities: A Survey. IEEE/CAA Journal of 

Automatica Sinica, 12(7), 1320-1349. 

[12] Wang, P., Liu, H., Shi, Y., Liu, A., Zhu, Q., Albu, I., ... & Chi, X. (2025). Harnessing Small‐Data Machine 

Learning for Transformative Mental Health Forecasting: Towards Precision Psychiatry With Personalised 

Digital Phenotyping. Med Research. 

[13] Vispute, D., & Pawar, U. B. (2025, July). Exploring deep learning and machine learning approaches for 

mental health status prediction: A review. In AIP Conference Proceedings (Vol. 3327, No. 1, p. 020018). 

AIP Publishing LLC. 


