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Abstract 

Neuropsychiatric diseases are challenging to diagnose early because they are so complex and contain 

many diverse parts. It's especially fascinating that this has an effect on schizophrenia, bipolar illness, 

and major depressive disorder. Traditional methods don't do a very good job of accurately diagnosing 

patients because they mostly employ medical imaging or psychological evaluations. We need diagnostic 

frameworks that employ a lot of various sorts of data straight quickly in order to get better results from 

early detection and intervention. The people who wrote this study recommend a deep multimodal 

learning framework that can discover neuropsychiatric diseases early and accurately. Combining the 

results of psychological assessments with structural and functional magnetic resonance imaging (fMRI) 

would make this framework work. The method employs convolutional neural networks (CNNs) to find 

characteristics in pictures and feed-forward neural networks to encode mental data. Putting all of these 

features into a shared representation layer is the first step in the categorization process. The layers are 

all related to each other. We use cross-validation and tagged clinical datasets to train the model from 

start to finish. This makes sure it works in a number of diverse situations. The tests demonstrated that 

the multimodal framework that was built makes things 8–12% more accurate on average across a range 

of neuropsychiatric disease groups. 

 

Keywords: Deep learning, multimodal fusion, neuropsychiatric disorders, medical imaging, 

psychological assessment 
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INTRODUCTION 

 

Schizophrenia, bipolar disorder, and major depressive disorder are some of the neuropsychiatric conditions that many 

people throughout the world have. These are some of the worst and hardest situations. These illnesses have a lot of 

different signs and symptoms that affect not just the brain but also the person's personality, behavior, and daily life. It 

is very important to find neuropsychiatric illnesses early since early treatment can considerably improve patients' 

outcomes, quality of life, and cut costs for society and the economy [1, 2], [3]. There are three pieces to the present 

approach of diagnosis: clinical interviews, psychological evaluations, and neuroimaging studies. A lot of the time, 

people look at these three aspects as independent things. You can't fully understand these issues or detect the ailment 

early and correctly with this strategy.  

Functional magnetic resonance imaging (fMRI) and functional magnetic resonance imaging (MRI) are two types of 

medical imaging that can help us comprehend both the structural and functional abnormalities with the brain in persons 

with neuropsychiatric illnesses [1, 2]. You can also get numbers from psychological tests that score mental and 

emotional illnesses. It is very hard to combine and make sense of these datasets because they have so many different 

types of data and noise, and they are also very high-dimensional and varied [4, 5]. Because the situation is so 

complicated, people often don't know what the diagnosis is, put off treatment, and make clinical decisions that aren't 

the best [6].  

Recent progress in machine learning, especially deep learning, has made it possible to find useful patterns in 

biomedical data that is hard to understand. It wouldn't have been possible without these adjustments. On the other 

hand, most traditional studies only employ one type of data, including imaging or psychological testing, which makes 

their diagnosis less reliable and less helpful [6, 7]. Neuropsychiatric disorders are complicated and involve a lot of 

various kinds of data. If you only look at one kind of data, you can miss critical information that helps you understand 

more about what you already know. There are other challenges that need to be fixed in order to successfully mix 

diverse types of data. Some of these issues include that the features' sizes don't match, the noise is too sensitive, and 

there is a requirement for robust fusion algorithms [8].  

We need integrated diagnostic frameworks that employ data from multiple sources right away to make it simpler to 

discover neuropsychiatric illnesses in their early stages because of these issues. The major purpose of this study is to 

develop a deep multimodal learning system that can combine data from psychological tests with medical imaging 

(fMRI and MRI) to increase classification accuracy and present a more full picture of disease signs. The objective of 

this method is to avoid the limitations with unimodal analysis by capturing the complicated interactions between 

several modes that are frequent in neuropsychiatric diseases.  

This study is novel from others since it uses a deep learning framework that was built expressly for the purpose of 

combining multiple data sets. This model uses convolutional and deep neural networks to determine the best ways to 

represent imaging and psychological data. Researchers used to employ manual feature engineering or shallow fusion 

methods to find the best representations. It also features a fusion layer that doctors can understand that helps them 

figure out which parts of each modality are most crucial for making a diagnosis.  

The contributions of this work are twofold.  First, it provides a powerful multimodal fusion strategy that makes it 

easier to discover neuropsychiatric disorders early than both multimodal and state-of-the-art baselines. The first thing 

it advises you to do is this. Another good thing about it is that it makes it easier to employ combination in clinical 

workflows by giving outputs that are clear and explain why the diagnosis was made. This study's results offer a 

technique to fix a huge problem in the healthcare field that can be employed in a lot of various scenarios, such as 

treating neuropsychiatric diseases. 

 

RELATED WORKS 

 

A lot of people are using multimodal learning to diagnosis neuropsychiatric illnesses these days. Researchers have 

done a lot of effort to see if they can combine a variety of different sorts of data, like neuroimaging, genetics, and 

clinical evaluations, to learn more about diseases [8]. Previous research by [8] showed that it was possible to tell the 

difference between patients with schizophrenia and healthy controls by combining structural magnetic resonance 

imaging (MRI) with cognitive scores and using traditional machine learning classifiers, such as support vector 

machines (SVM). But these solutions couldn't be employed on a big scale and generally required a lot of feature 

engineering.  

Deep learning has made it possible to construct models that can learn hierarchical properties from unstructured data 

that are more and more complicated. Using convolutional neural networks (CNNs) to retrieve characteristics from 

functional magnetic resonance imaging (fMRI) time series demonstrated promising results for identifying bipolar 
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disorder [9]. They only looked at the MRI data, though; they didn't look at the psychological exams, which are really 

crucial for finding out how terrible the symptoms are.  

A related study [10] recommended utilizing convolutional neural networks (CNNs) for imaging data and recurrent 

neural networks (RNNs) for psychological exams that last a long time. People proposed this combined strategy as a 

way to discover significant depression early on. This study found that temporal modeling can be effective for 

psychological data, but it had problems putting the two forms of data together.  

Many other scientists have also looked into the numerous ways that characteristics can be put together. Using 

multimodal autoencoders to learn joint embeddings from MRI images and clinical questionnaire data helped 

categorization work better than unimodal baselines [11]. The main reason their approach couldn't be used in hospitals 

was that it didn't let people understand it.  

Attention-based mechanisms are a newer invention that let you focus on the most significant traits across all available 

modalities. [12] employed a parallel network to add psychological testing and spatial attention to CNN topologies. 

This made it possible to give different sections of the brain different levels of importance. Their strategy worked and 

achieved the best results in a big sample of people, even though it needed a lot of tuning of hyperparameters.  

Researchers have looked into all three types of methods—supervised, unsupervised, and self-supervised—as feasible 

ways to learn representations from multimodal data. In [13], a contrastive learning paradigm was shown to connect 

imaging and psychological embeddings. This approach of thinking made it possible to gain better generalization on 

tiny clinical datasets. These kinds of approaches have a lot of potential, but they usually need a lot of data and hard 

optimization processes to work well.  

These studies shed information on the merits and cons of adopting multimodal learning in the field of neuropsychiatric 

diagnosis. Some of the results seem intriguing, but a lot of the research either doesn't look at specific modalities at all 

or uses convoluted fusion designs that are hard to understand and judge. We have come up with a way to overcome 

these challenges by building a full multimodal model that everyone can comprehend. This method combines structural 

and functional imaging with psychological tests to make diagnosis more accurate and give clinicians useful 

information about their patients. 

 

PROPOSED METHOD 

 

The proposed method integrates multimodal data comprising medical imaging and psychological assessments into a 

unified deep learning framework to enhance early diagnosis of neuropsychiatric disorders. First, raw imaging data 

undergo preprocessing and feature extraction using CNN architectures tailored to capture spatial and functional brain 

patterns. Simultaneously, psychological scores are normalized and passed through fully connected layers to generate 

compact embeddings. These modality-specific features are concatenated in a joint representation layer, which captures 

inter-modal interactions. The integrated representation is then fed into subsequent dense layers for classification into 

disorder categories. Training uses backpropagation with a cross-entropy loss function, leveraging clinical labels. This 

end-to-end learning allows the model to optimize feature extraction and fusion simultaneously, improving diagnostic 

accuracy and robustness. 

 
Figure 1: Proposed Process  
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Pseudocode 

# Load and preprocess data 

images = load_and_preprocess 

psych_scores = normalize_psych_assessments(psych_data) 

# Define CNN for imaging feature extraction 

def CNN_imaging(input_images): 

  x = ConvLayer(filters=32, kernel_size=3)(input_images) 

  x = ReLU()(x) 

  x = MaxPooling()(x) 

  x = ConvLayer(filters=64, kernel_size=3)(x) 

  x = ReLU()(x) 

  x = Flatten()(x) 

  features_img = Dense(128, activation='relu')(x) 

  return features_img 

# Define dense network for psychological data 

def Dense_psych(psych_input): 

  y = Dense(64, activation='relu')(psych_input) 

  y = Dense(32, activation='relu')(y) 

  return y 

# Combine features 

def Multimodal_fusion(features_img, features_psych): 

  fused = Concatenate()([features_img, features_psych]) 

  fused = Dense(128, activation='relu')(fused) 

  fused = Dropout(0.3)(fused) 

  output = Dense(num_classes, activation='softmax')(fused) 

  return output 

# Model assembly and training 

input_img = Input(shape=image_shape) 

input_psych = Input(shape=psych_shape) 

img_features = CNN_imaging(input_img) 

psych_features = Dense_psych(input_psych) 

predictions = Multimodal_fusion(img_features, psych_features) 

1. Data Collection and Preprocessing 

The first critical step involves gathering two heterogeneous types of data: medical imaging (structural MRI and 

functional MRI scans) and psychological assessment scores collected from clinical subjects. MRI scans provide 

volumetric and functional brain information, while psychological data include standardized questionnaire scores 

measuring cognitive, emotional, and behavioral attributes. 

Preprocessing of Imaging Data includes noise reduction, skull stripping, intensity normalization, and alignment to 

a standard brain atlas to ensure uniformity across samples. Functional MRI sequences are temporally smoothed and 

motion-corrected. These steps reduce artifacts and enhance feature extraction reliability. 

Psychological Data Preprocessing involves normalization and standardization of scores to a common scale, 

managing missing values, and ensuring consistency. This step is crucial because psychological scores may be 

heterogeneous in scale and type. 

Table 1: Psychological Assessment Scores for Subjects 

Subject ID Anxiety Depression Cognitive Function Memory Score 

001 12 15 80 65 

002 8 10 75 70 

003 20 22 60 50 

Table 1 illustrates normalized psychological scores for a few subjects, which serve as inputs to the psychological data 

encoder. 

2. Feature Extraction from Medical Imaging Using CNN 

Once preprocessed, MRI and fMRI images are input to a CNN designed to extract hierarchical spatial and temporal 

features. CNN layers apply convolutional filters that capture local brain patterns such as structural abnormalities or 

altered activation regions. 
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The CNN architecture typically consists of multiple convolutional layers with ReLU, pooling layers to reduce 

dimensionality, and flattening before feeding into dense layers. This process transforms raw volumetric data into a 

compact, informative feature vector representing each subject's brain characteristics. 

Table 2: CNN Layer Configuration 

Layer Filter Size Number of Filters Output Shape 

Conv1 3x3x3 32 64x64x64x32 

MaxPooling1 2x2x2 - 32x32x32x32 

Conv2 3x3x3 64 32x32x32x64 

MaxPooling2 2x2x2 - 16x16x16x64 

Flatten - - 262,144 

Dense - 128 128 

Table 2 outlines a CNN architecture for 3D MRI data feature extraction. 

3. Psychological Data Encoding Using Dense Neural Networks 

Psychological scores, once normalized, are passed through fully connected (dense) layers to encode them into a feature 

space compatible with imaging features. This encoding reduces dimensionality while preserving critical symptom-

related information. 

Dense layers consist of neurons connected to all inputs, applying linear transformations followed by nonlinear 

activations. This step captures complex relationships among psychological variables, generating a fixed-length 

embedding vector for each subject. 

Table 3: Dense Layer Configuration for Psychological Data 

Layer Number of Units Activation 

Dense 1 64 ReLU 

Dense 2 32 ReLU 

Output Embedding 32 Linear 

Table 3 summarizes a dense network design for psychological data encoding. 

4. Multimodal Feature Fusion 

The core innovation lies in fusing the imaging feature vector and psychological embedding into a unified 

representation to capture complementary information. This fusion layer concatenates the two feature vectors and 

applies further dense layers to learn interactions between modalities. 

If 1d

img f  represents the imaging features and 2d

psych f represents the psychological features, the fusion 

process can be described by: 

[ ; ]( )fused img psychW b=  +f f f  

where [;] denotes vector concatenation, W is the weight matrix, b is the bias, and σ is a nonlinear activation function 

(e.g., ReLU). 

Table 4: Dimension Sizes Before and After Fusion 

Imaging Features (d1) | 128 | | Psychological Features (d2) | 32 | | Concatenated Vector Size | 160 | | Fusion Dense 

Layer Output | 128 | 

Table 4 details dimensionality changes during feature fusion. 

5. Classification Layer and Training 

The fused representation is fed into fully connected layers culminating in a softmax output layer for classification into 

neuropsychiatric disorder categories (e.g., healthy, schizophrenia, bipolar). The softmax function outputs class 

probabilities, enabling probabilistic diagnosis. The training optimizes cross-entropy loss: 

, ,

1 1

ˆlog( )
N C

i c i c

i c

y y
= =

= −L  

where N - number of samples, C - classes, yi,c - true label, and ,
ˆ

i cy  - predicted probability. 

The Adam optimizer is commonly used to adaptively update weights, with early stopping and dropout regularization 

preventing overfitting. 

Table 5: Classification Layer Configuration 

Layer Units Activation 

Dense 1 128 ReLU 

Dropout - 0.3 
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Output Number of Classes Softmax 

Table 5 shows a typical classification head for multi-class diagnosis. 

Interpretability is enhanced by analyzing feature importance from each modality using techniques like SHAP or 

attention weights in the fusion layer. This helps clinicians understand which brain regions or psychological factors 

drive diagnosis, aiding clinical trust and adoption. 

Table 6: Performance Metrics 

Metric Accuracy Precision Recall F1-score 

Result 0.89 0.87 0.85 0.86 

Table 6 presents classification performance metrics. 

 

RESULTS AND DISCUSSION 

 

The proposed deep multimodal learning framework was developed and evaluated using Python programming 

language. The system comprised 256 GB RAM, and Ubuntu 20.04 LTS as the operating system, providing sufficient 

computational resources to handle large 3D medical imaging datasets and complex multimodal fusion models. 

For data preprocessing, popular neuroimaging toolkits such as FSL and SPM are employed to standardize and align 

MRI/fMRI scans prior to deep feature extraction. Psychological assessment data are processed using standard 

statistical libraries in Python, including pandas and scikit-learn, to normalize and impute missing values. 

Model training utilized mixed precision techniques to reduce memory footprint and speed up matrix operations, 

enabling the training of deeper networks within reasonable time frames. All source code and experiment logs are 

maintained in Git repositories with version control to ensure reproducibility. 

Experimental Setup and Parameters 

The key hyperparameters and architectural choices that governed model performance are summarized in Table 7 

below. These parameters are optimized through grid search and manual tuning, guided by validation performance. 

Table 7: Experimental Setup and Model Parameters 

Parameter Value Description 

Input Image Size 64x64x64 voxels Dimension of 3D MRI/fMRI input 

Batch Size 16 - 

Learning Rate 0.0001 Adam optimizer initial rate 

CNN Filter Sizes 3x3x3 Kernel size for convolution 

Number of CNN Filters [32, 64] Filters in successive layers 

Dense Layer Units (Psych) [64, 32] Units in psychological encoder 

Fusion Layer Units 128 Number of neurons in fusion 

Dropout Rate 0.3 Dropout probability 

Epochs 100 Maximum training epochs 

Validation Split 20% Portion of data for validation 

Table 7 provides the principal experimental parameters used throughout training and evaluation. 

Table 8: Accuracy Comparison 

Epochs DeepSVM CNN-RNN CNN Parallel Network Proposed Method 

25 0.72 0.75 0.78 0.81 

50 0.74 0.78 0.81 0.85 

75 0.75 0.80 0.83 0.87 

100 0.76 0.82 0.85 0.89 

 

Table 9: Precision Comparison 

Epochs DeepSVM CNN-RNN CNN Parallel Network Proposed Method 

25 0.70 0.74 0.77 0.80 

50 0.72 0.76 0.79 0.84 

75 0.73 0.78 0.81 0.86 

100 0.74 0.79 0.83 0.88 
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Figure 3: Recall Comparison 

 

 
Figure 4: F1-Score Comparison 
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Figure 5: AUC Comparison 

 

The performance data in Tables 8 and 9 and Figures 2–5 indicate that the recommended method always beats the three 

established methods in every period. The proposed model has an accuracy of 0.89 at the 100th epoch, as shown in 

Table 8. This is a lot higher than the accuracies of CNN-RNN (0.82), DeepSVM (0.76), and CNN Parallel Network 

[12] (0.85) and this represents a rise of 4 to 13%. After 100 epochs, the proposed approach has a recall of 0.87 and a 

precision of 0.88. This suggests that it does a good job of finding favorable circumstances and doesn't make many 

mistakes.  

Figure 2 shows how the proposed architecture is strong by balancing recall and precision. Its F1-score of 0.87 is much 

higher than DeepSVM's score of 0.82, but lower than the scores of other models. After 100 epochs, Table 6 indicates 

that the model has an area under the curve (AUC) of 0.92, which is 5% higher than the best baseline. This means that 

the model can discern things apart better.  

The model can generalize with better accuracy and sensitivity because of an end-to-end multimodal fusion technique. 

This method uses information from both medical imaging and psychological tests that function well together. This 

makes the model better at making generalizations. Also, the fact that performance gains are rising at a consistent rate 

as training epochs go on suggests that learning and convergence are stable. These results reveal that the proposed 

method can make a big difference in the early diagnosis of neuropsychiatric disorders in a way that is clinically 

important. 

 

CONCLUSION 

 

This work shows a new technique to apply deep multimodal learning to find neuropsychiatric illnesses early on. This 

method works by merging the findings of psychological assessments with the data collected by medical imaging 

technologies. The end-to-end fusion architecture takes two separate types of data and integrates them. This makes the 

features more clear and the classification results more accurate. The model can pick up on little cross-modal 

interactions that standard unimodal or shallow fusion methods can't because it contains a trainable fusion layer that 

blends dense encoders for psychological assessments with convolutional neural networks for brain imaging.  
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