
TPM Vol. 32, No. S4, 2025          Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

1080 
 

 

MONITORING AFFECTIVE STATES IN SMART 

MANUFACTURING OPERATORS WITH MULTIMODAL 

TOOLS 

DILIP DWIVEDY1, SHAILESH SINGH THAKUR2,  

DR. SAVITA GAUTAM3 
1ASSISTANT PROFESSOR, KALINGA UNIVERSITY, RAIPUR, INDIA. 

e-mail:ku.dilipdwivedy@kalingauniversity.ac.in,0009-0000-5645-7104 
2ASSISTANT PROFESSOR, KALINGA UNIVERSITY, RAIPUR, INDIA 

e-mail:  ku.shaileshsinghthakur@kalingauniversity.ac.in 
3PROFESSOR, NEW DELHI INSTITUTE OF MANAGEMENT, NEW DELHI, INDIA.,  

e-mail: savita.gautam@ndimdelhi.org, https://orcid.org/0000-0002-7427-4579 

 

Abstract  

As the smart manufacturing domain evolves, human operators remain relevant but often not 

considered with respect to emotional and cognitive well-being. While efficient processes and 

automation have component technology, there has yet to see affective state monitoring as part of an 

operator's safety and performance system. We examined a psychological method to monitoring 

affective states in smart manufacturing environments using multimodal sensing tools. We examined 

the real-time screening of emotional and cognitive states of human operators through 

electroencephalography (EEG), eye-tracking, galvanic skin response (GSR), and posture sensors. 

With these tools, we can reveal stress, cognitive overload, fatigue, and disengagement; conditions 

that can invoke a direct impact on decision-making, response speed, and productivity.Built around 

the theories of emotional regulation and cognitive load, our research focused on how physiological 

responses can be inferred to describe the psychological states causing the responses. We put forth a 

theorized framework that combines multimodal data to constantly assess affective states of 

operators, which then provides the opportunity to make adaptively responsive and allow for human-

centered system design. Our end goal is operator safety and performance improved through 

psychological awareness embedded into smart systems. This not only helps move the industrial 

world forward in its consideration for affective computing considerations, but advances sustainable 

and empathetic workplace practices in the age ofIndustry 4.0. 
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I. INTRODUCTION 

 

Smart manufacturing systems are aggressively reshaping production landscapes—via automation, cyber-physical 

systems, data science, etc.in the age of Industry 4.0. Even with this toolkit of poignant innovations, operators still 

have an important role—mainly organizational decision making, supervision, and resolution of problems. 

Traditionally, operators monitoring has focused on only physical safety, task completion, and productivity 

statistics with very little attention to internal psychological processes that alter human performance in a number 

of ways [1]. This is a broad gap in the current manufacturing system, real-time monitoring and/or response 

regarding operators’ affective states of stress (remember behavioural arousal and psychological activation), 

cognitive overload (sometimes called cognitive fatigue, as it can stem from low situational awareness), and 

emotional fatigue [2] [6].  

Affective computing, an interdisciplinary field comprised of psychology, computer science, and neuroscience, has 

beginning to provide some rich opportunities to assess operator performance, thereby beginning to close the gap 

between affective state and affective computing [4][11]. Affective computing can monitor and analyse 

physiological signals associated with emotional and cognitive processes in context in complex environments, and 

when designers, engineers, researchers, and developers begin to synthesize psychological thinking with operators 

work & operations, we will be able to support operator performance to not just advance their performance 

outcomes but behavioural health, ethical behaviour, settled mental health, and ultimately agency, ownership, and 

commitment to the work (for all those withdrawn contributors) they have and continue to accomplish [13]. 
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Multimodal integration of EEG (electroencephalography), eye-tracking, galvanic skin response (GSR), and 

posture are some examples of instruments used to evaluate operators constantly, continuously, and in a non-

invasive way during their work operations. This research aims to develop a real-time, multimodal monitoring 

framework for smart manufacturing environments, thereby enabling psychologically adaptive systems that 

respond to the human state not just behaviour [8]. 

 

II. AFFECTIVE STATES AND OPERATOR PERFORMANCE 

 
2.1.Emotional Dynamics in Industrial Settings 

A Psychophysiological Approach: To better understand the influence of affective states on operator performance, 

one needs knowledge of theory from psychology and observation from physiology. Affective statesemotional 

regulation (emotional management), arousal, valence (positive or negative emotional direction), and cognitive 

fatiguecombine significantly to produce how people sense, react to, and manage work in high demand situations 

like smart manufacturing [7]. Emotional regulation affects how an operator attentively focuses and maintains 

composure under varying levels of pressure. Higher arousal and corresponding cognitive fatigue contribute to bad 

judgement, and increased rates of errors in decision making. 

2.2.Psychophysiological Theories Linking Mind and Body 

The Cognitive Load Theory provides a foundation for exploring the interaction of task complexity and mental 

effort, and how those factors impact performance in environments in which cognitive resources get overwhelmed. 

The Transactional Model of Stress expands upon how people interpret stressors, as well as how they choose to 

proceed in high-pressure situations based upon the importance of perceived demands, and available coping 

resources [3]. The Transactional Model of Stress illustrates that challenges an individual deals with are inherently 

linked to both environmental conditions and an individual's internal state and vice versa [5]. Lastly, the James-

Lange Theory posits that physiological (and visceral) responses precede emotional experiences; therefore, body 

monitoring movements might expose emotions hidden by semi-conscious resources at that time. By mapping 

these psychological constructs to physiological markerssuch as EEG patterns for cognitive load, GSR fluctuations 

for arousal, or eye-tracking metrics for attentional focuswe create a bridge between internal affective experiences 

and observable data. This psychophysiological perspective forms the basis for affect-aware monitoring in 

industrial settings [9]. 

 

III. HUMAN-IN-THE-LOOP IN INDUSTRY 4.0 

 
3.1.Cognitive Demands of Smart Manufacturing Systems 

A smart manufacturing environment, defined by myriad machines that enable real-time access to information and 

autonomous systems, is intended to increase efficiency and accuracy. However, as these environments are awash 

with technology and are more dynamic and automated than traditional settings, they also impose new cognitive 

and affective demands on human operators. As machines have become more intelligent and autonomous, the job 

of the human operator has evolved from manual execution to complex supervisory decision making and 

troubleshooting. In this changing environment, the mental load is likely to be elevated because operators 

experience a continuous demand to interpret data streams, use flexible cognitive resources to adapt to system 

feedback, and apply their skills in unpredictable situations, all of which increase cognitive load.  

3.2.Psychological Risks in High-Tech Workspaces 

The human-in-the-loop worker is not just overseeing automation - they are now working as part of human-machine 

teaming to achieve superior outcomes with systems and human effort. While this merging of people and 

technology expands the capabilities of the systems, it can also create an increased level of psychological pressure 

on humans - especially when weighing the consequences of real-time decisions. The interaction with such 

technology requires the operator to be tied to attention and incorporate flexibility to intervene in order to 

reorganize assignments that are changing as they unfold. The attentiveness to smart machines can rapidly lead to 

fatigue and emotional detachment, ultimately leading to burnout from a lack of strength resources. Unlike physical 

stressors, the psychological stressors we experience are typically invisible and accumulate slowly and can 

manifest in performance failures, safety risks, or point of no return in job satisfaction [10].  
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Table 1: Multimodal Sensors and Corresponding Affective State Indicators 

Sensor 

Type 

Signal Measured Psychological Indicator Affective State Detected 

EEG Brain wave activity Cognitive workload, focus Stress, mental fatigue 

GSR Skin conductance Emotional arousal Anxiety, excitement 

Eye-

Tracking 

Gaze fixation, blink 

rate 

Attention, visual engagement Distraction, fatigue 

HRV Heart rate 

variability 

Sympathetic/parasympathetic 

balance 

Stress level 

Posture 

Sensors 

Body movement, 

orientation 

Ergonomic strain, physical fatigue Discomfort, fatigue 

Table 1 useful as it balances a compact comparative overview of each sensor used in the study, the physiological 

signal, and the psychological (or affective) state for identification. At this point, it connects the technical 

components and the psychological purpose and shows readers in both engineering and psychology a clear rationale 

for including each tool. 

Affective and cognitive among these employees need to be understood and acknowledged to help us create 

psychologically sustainable appropriate workplaces. Integrating affective monitoring into smart systems ensures 

that human contributions remain resilient, adaptive, and healthy amidst technological complexity. 

 

IV. TECHNOLOGICAL AFFORDANCES FOR AFFECTIVE STATE DETECTION 

 

The growth of non-invasive sensing technologies has enabled the development of multimodal systems to detect 

and interpret human affective states in real-time. In the smart manufacturing space, such tools could provide useful 

information about an operator's cognitive and emotion status, to support the operator's optimal level of 

performance and psychological safety. For instance, Electroencephalography (EEG) is a common 

neurophysiological measure which detects, monitors, and alters brain activity while an operator performs various 

tasks. EEG shifts in alpha asymmetry in the frontal brain have been linked to mental stress vs. mental focus, and 

emotional valence. EEG can directly signal cognitive load and affective involvement through shifts in neural 

oscillations especially in the regions of the prefrontal cortex. 

 Galvanic Skin Response (GSR) is a measurement of skin conductance directly linked to autonomic nervous 

system processes. GSR is a reliable indicator of emotional arousal and extreme peaks in GSR occur when 

operators experience heightened states of stress and alertness. GSR allows affective tracking in real-time as 

operators perform tasks, providing a moment-by-moment look at an operator's affective state. Eye-tracking 

technologies can provide information about an operator's visual attention, fatigue, and decision-making through 

measurements of fixation durations, saccade rates, and blink rate.  

Heart Rate Variability (HRV) is a measure of the fluctuation of time between heart beats; an indicator of 

sympathetic activation associated with stress reactivity. In addition to HRV, posture sensors and motion tracking 

systems capture body orientation and movement behaviour to assess ergonomic stress and physical fatigue. 

Through a combination of these separate data streams via multimodal data fusion, a more nuanced and 

knowledgeable about affective states can provide timely intervention and adaptive responses from the system in 

smart manufacturing contexts. 

  

V. TOWARD A FRAMEWORK FOR REAL-TIME EMOTION DETECTION 

 
5.1.Scenario Design and Task Classification 

To monitor the affective states of smart manufacturing operators, we utilize a systematic experimental design 

based on real-time multimodal observations [12]. The operator scenario is situated in a simulated smart factory 

with similar complexity and sensory-enrichment found in real-world industrial workplaces, such as operating 

machines continuously, human-machine interaction, and data-driven control [14]. Participants are to execute two 

different task categories. The first consists of repetitive routine tasks analogous to day-to-day tasks to simulate 

the environment; the second task category consists of a high-stress full-system failure event or work environment, 

where participants must perform under time-pressure to a system-level emergency. The first scenario allows to 

analyse the operator affective response in situational demands of daily operations; while second scenario permits 

to see the operator's affective responses during a more random set of intense workload demands. 
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Figure 1: Framework for Real-Time Affective State Detection in Smart Manufacturing 

Figure 1 represents the end-to-end process of monitoring operators' affective states using multimodal tools. At the 

beginning of the process is task execution in a smart manufacturing environment. The process transitions from 

there into the real-time collection of data using various sensors, e.g., EEG, GSR, eye-tracking, HRV, and posture. 

The data is then pre-processed, and the associated signals are combined using multimodal data fusion techniques. 

The fusion signals are mapped to task associated affective states such as stress, fatigue, or cognitive overload. 

Ultimately, the systems adaptive feedback responds to the affective states of the operator, which supports the 

operator while maintaining safety, mental health, and productivity. 

5.2.Ethical Data Collection and Psychological Baselines 

An affective states mapping protocol has been developed to structure the operators' cognitive, emotional and 

physiological responses to the task demands. During the experimental sessions, we will employ a multimodal 

sensor platform (e.g., EEG, GSR, eye-tracking and/or gaze control measures, heart-rate variability, posture 

measures) to collect continuous physiological data. All participants will be debriefed to ensure they are 

psychologically safe and aware of the monitor processes, given informed consent and possibility to leave the study 

at any time, and confidentiality kept, and everything will be as minimally invasive for the participants as possible. 

Prior to task execution, baseline psychological measurements are collected using validated self-report instruments 

such as the Positive and Negative Affect Schedule (PANAS) and the NASA Task Load Index (NASA-TLX). These 

benchmarks help interpret sensor data by providing individual affective and cognitive baselines, ensuring that 

real-time variations are assessed within a psychologically informed context. 

 

VI. CONCLUSION 

 

The future of smart manufacturing will ultimately be centered around human operators who will maintain the 

adaptability, safety, and efficiency of their respective systems. This paper illustrates why it is most critical to move 

beyond monitoring and to include real-time affective state detection metrics in the aims of human-centered design 

and industrial approaches. By using multimodal tools like EEG, GSR, eye-tracking, HRV, and posture, we can 

monitor cognitive load, emotional states, and fatigue, and be alerted to provide interventions before operators are 

unable to perform well and safely or when they are at risk of experiencing declines to their overall 

wellbeing.Human monitoring has potential benefits regardless of the application to enhance operator safety, 

minimize errors, and reduce accidents with accompanying boosts in mental health and continued engagement in 

the workplace. Understanding and responding to the psychological effort required in advanced tech environments 

is fundamental to designing resilient, responsive, and sympathetic industrial systems and human factors.Finally, 

Operator Task Execution 

Sensor Inputs (EEG, GSR, Eye-

tracking, HRV, Posture) 

Signal Preprocessing 

Multimodal Data Fusion 

Affective State Mapping 

System Feedback / 

Adaptive Interface 
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this article emphasizes the mutual value of combining multi-disciplinary fields including engineering, psychology, 

neuroscience, and human-computer interaction. Future studies may want to introduce more sophisticated data 

fusion models, adaptive interaction systems, and affective monitoring systems in an integrated industry and or a 

stand-alone context. As psychological awareness is developed into the structure of smart manufacturing 

technologies, we will be closer to realizing systems that respect and accommodate the complex experience of the 

human being as citizens of an intelligent system. 
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