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Abstract 

In control system environments, there are high levels of sustained attention, decision making, 

problem solving, as well as time-sensitive and high-stakes considerations. Cognitive functions that 

induce high levels of mental workload on engineers, and may contribute to human error, fatigue, 

and compromised system safety, if left unmonitored. Therefore, understanding mental workload as 

well as quantifying mental workload will aid in creating adaptive interfaces and improving overall 

operational efficiency. This study documented the use of electroencephalography (EEG) as a non-

invasive neurophysiological measure of mental workload in control system engineers. EEG 

measures provide insight that are real-time, objective indicators of cognitive demands because the 

electroencephalogram measures through changes in brain activity expressed differently by varying 

task loads or intensities. In this study, participants completed simulated control system tasks that 

simulated routine and emergencies. Continuous EEG data were recorded throughout the 

demonstration, and data collected during emergencieswere the focus of the analysis. In addition to 

event-level analysis of demand/workload through a reanalysis of the EEG data, key indicators used 

to estimate participants' workload were frontal theta power and parietal alpha suppression while 

engaging in control system tasks, as these measures correlate well with mental effort and attentional 

regulation. Results found EEG workload patterns that distinguished cognitive load according to 

varying levels of task complexity and task duration; with more complex tasks and tasks of longer 

duration created higher workload in terms of theta activity and lower workload in terms of alpha 

power. Overall, the findings of this study highlight the potential of EEG-based monitoring in real-

time in operational settings to detect mental overload before performance decline. The study 

highlights critical implications for enhancing human reliability, preventing fatigue-related errors, 

and informing the development of intelligent workload-aware systems in complex operational 

environments. 

Keywords: EEG, Mental Workload, Cognitive Load, Control Systems, Brainwaves, 

Neuroergonomics, Human Reliability. 

 

I. INTRODUCTION 

 

Mental workload corresponds to the amount of cognitive demand necessary to carry out a task, particularly in 

high-demand environments such as during an occupation with high demand on prolonged attention, rapid-fire 

decision-making, and multitasking [1]. In control systems environments, whether in industrial automation, power 

plants, or air traffic control, engineers need to monitor real-time dynamic systems in high-pressure situations, 

which contributes to extreme cognitive cost. Given that the dynamic systems are complex, it is easy to surmise 

that any errors in attention and decision-making can result in catastrophic failure. Understanding mental workload 

and how to measure it is necessary in these environments to increase performance reliability and decrease risk to 

systems and humans. A potentially effective tool for evaluating mental workload is Electroencephalography 

(EEG), which allows for non-invasive, real-time monitoring of the brain's electrical activity. EEG or neural 

assessments remove the subjectivity of self-reported levels of cognitive activity and provide ongoing, 

physiological assessment of the brain's response to the task demands of limitations of their occupations [2]. 

Evidence in the use of EEG to measure mental workload is still very limited, both in terms of not developing a 
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general neuropsychological framework to assess an engineer's mental workload in real-time work environments 

[6]. Most of the studies focused on one specific field (aviation, medical, etc.) and only recently began exploring 

how control system engineers neurologically respond to various task complexities, making this population one 

that has yet to be evaluated in terms of how different task complexities impact mental workload. This study seeks 

to address that gap by posing two key research questions: Can EEG reliably measure mental workload variations 

in control system engineers? And what neural patterns are consistently observed across different phases of 

cognitive task execution?[3][14] 

 

II. NEUROCOGNITIVE BASIS OF WORKLOAD 

 
2.1. Brainwave Signatures of Mental Workload 

A thorough understanding of mental workload must be grounded in neurocognitive processes that underlie mental 

task performance, in particular, the electrical activity of the brain while performing tasks [7]. Timing and volitional 

tasks induce EEG-related electrical brain activity, providing a means to identify changes in neural electrical 

activity that can distinguish between the cognitive states associated with the cognitive demands of the task. These 

electrical signals are arranged as frequency bands which contribute travel to subjective cognitive demands for a 

given task to include: theta waves (4 - 7 Hz) most pronounced in the frontal cortex of the brain, are associated 

with memory load and cognitive processing; alpha waves (8 - 12 Hz) typically displayed by the parietal regions 

of the brain, alpha power decreases as the mental loads associated with the tasks increase, signalling reduced 

relaxation and increased attention; and beta waves (13 -30 Hz), our most active cognitive thoughts, attentional 

resource/action, and task performance. Thus, cognitive tasks and demands will change the electrical activity of 

the brain, which ultimately results in measurable indices of mental workload [11]. 

2.2. Theoretical Models Supporting Cognitive Load Assessment 

A crucial component when assessing cognitive workload is the use of the P300 event-related potential (ERP). The 

P300 is a positive wave occurring approximately 300 ms after an infrequent stimulus has been presented. As such, 

reduced P300 amplitude is often recognized as auditorially focusing, while mental fatigue and decreased visual 

or orienting attention processing occur. In parallel, neural signatures such as frontal theta power change 

directionally as a potential continuous insight to sustained cognitive engagement. With the use of these neural 

processes, one can continuously monitor mental effort rather than rely solely on zero or interval self-reports and 

behaviour assessments [8]. Alternatively, from a theoretical instantiation, two key foundational principles 

establish the ability to classify with working load mental activity. Cognitive Load Theory (CLT) conceptualizes 

constraints on embedded working memory and performance that occur under a differential context of cognitive 

load through one’s actions and types of loads (intrinsic, extraneous, and germane). Meanwhile, Multiple Resource 

Theory (MRT) explains how competing demands on shared cognitive resources can impair efficiency [10]. 

Together, these theories and neurophysiological markers form the basis for quantifying and interpreting mental 

workload using EEG. 

 

III. PSYCHOLOGICAL AND APPLIED NEUROSCIENCE CONTEXT 

 

During the last 20 years EEG EEG-based studies have received growing attention and value for assessing mental 

workload in high-stakes environments, such as air traffic control, military set-ups, and commercial aerospace 

navigation. The human operators in these situations must sustain continuous vigilance, manage multiple streams 

of information, and make decisions under time pressure, as they have a high workload. Researchers have clearly 

shown that EEG can provide a reliable and real-time alternative to assessing workload using pre-existing or new 

tools used in the verification process [9]. For instance, in military simulations, more frontal theta activity (4-7 Hz) 

is linked with increased demands of the tasks that operators are performing, and decreased parietal alpha power 

(8-12 Hz) corresponds with maintaining attention to a task during pilot training exercises [5]. 

This body of work is distinct in the emerging field of neuroergonomics, which is where neuroscience meets human 

factors engineering,to build systems that facilitate human performance and allow for better designs. The important 

concept is that we can design systems that apply new neurophysiological bottom-up approaches, which permit 

operators to effectively task-brain states in real-time, rather than simply providing feedback using traditional 

assessment methods to learn how the operator was functioning. Neuroergonomics provides opportunities for a 

"future-proof" workload. This is especially important in safety-critical employment like control system 

engineering [13]. 

Regardless of the promise of these possible techniques, we continue to see subjective workload measurement 

tools, such as NASA-TLX, continue to be perhaps the most widely utilized methods for measuring workload. 

Self-report protocols are often useful; however, self-reports ask for retrospective measures, which introduces bias 

and often limitsthe immediacy of the work being performed. EEG, on the other hand, allows for continuous, 
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objective, and direct insight into cognitive processing and thus represents a more reliable means of understanding 

mental workload in dynamic operational contexts. 

 

IV. PARTICIPANT AND EXPERIMENTAL DESIGN 

 

The data were collected from a sample of control system engineers with varied experience who would provide 

variation in cognitive response to the study. The experiments occurred in a controlled, simulated control room 

environment that closely resembled real-time monitoring and decision-making. Participants completed two 

cognitive tasks, routine task and emergency task, to trigger different cognitive workload scenarios [12]. EEG data 

were collected with a multi-channel EEG device with electrodes placed according to the 10-20 international 

system to capture electrical signals at a continuous sampling rate for a practically fixed time period during each 

pseudonymized session [4]. Ethical approval was requested and granted for the data collection. All participants 

provided informed consent and psychological safety and comfort of participants were the focus of this study [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Experimental Workflow for EEG-Based Mental Workload Assessment 

Figure 1 represents the experiment overall in how mental workload is measured in control system engineers using 

EEG. Participant preparation works as the first step. The evaluation considers simulated routine and emergency 

tasks and all EEG signals were collected/recorded, de-artifacted, feature extracted (theta, alpha, beta and 

engagement indices) and statistically analyzed before interpretation of cognitive states such as overload and 

fatigue. The evaluation concludes with insights generated by participant performance and cognitive dynamics to 

inform designs from an adaptive system perspective for operator support.  

 

V. EEG INDICES AND DATA COLLECTION PROCEDURES 

 

In order to measure mental workload in control system engineers accurately, EEG data collection shall be 

performed under controlled conditions and also follow rigorous protocols for pre-processing. Each participant 

was fitted with an EEG cap conforming to the international 10–20 standard, and in particular, electrodes were 

placed above all of the frontal and parietal lobes for our analyses of task performance. Participants were able to 

perform the task while EEG signals were continuously recorded while they interacted with simulated control 

system interfaces that represented different levels of cognitive demand. 

Start 

Simulated Control Task Execution (Routine / High) Load) 

Participant Setup (EEG Cap Placement, Calibration) 

Real-Time EEG Data Acquisition 

EEG Feature Extraction (Theta, Alpha, Beta, Engagement Index) 

Data Analysis (ANOVA, Time-Series, Pattern Detection) 

Preprocessing (Artifact Removal, Filtering) 

Psychological Interpretation (Fatigue, Overload, Attention Shift) 

End 
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In order that we could believe the accuracy of the final analysis, the raw EEG data were processed in several pre-

processing steps to provide spatially and temporally clear signals. Artifact rejection was performed to eliminate 

the noise signal caused by movements such as eye blinks, facial muscle movements, and electrical disturbances 

in the raw signal. Once the signals had been pre-processed and artifacts removed, independent component analysis 

(ICA) Then, band-pass filtering was performed to isolate our bands of interest. 

 

Table 1: Comparison of EEG Workload Indices Across Task Conditions 

Task Condition Frontal 

Theta (µV²) 

Parietal 

Alpha (µV²) 

Engagement Index 

(β / [α + θ]) 

Low Cognitive 

Load 

3.4 ± 0.7 8.1 ± 1.0 0.72 

High Cognitive 

Load 

6.1 ± 1.2 5.2 ± 0.9 1.18 

Table 1 compares frontal theta power, parietal alpha power, and the engagement index of workload metrics derived 

from EEG with different task conditions (low-load and high-load) so that the neural differences in cognitive 

demand experienced by control system engineers during simulation tasks can be compared. Frontal theta and 

parietal alpha were shown to be augmented under high workload conditions, indicative of increased cognitive 

effort and attentional demand, as the engagement index. Engagement index is the only composite measure 

provided from this table, and this showed a marked increase in engagement index associated with high-load 

conditions. Table 3 is a quick reference for summarizing neural workload responses and represents direct evidence 

to assist the interpretation of cognitive load changes required by the task according to EEG neural data. 

In experiments incorporating eye-tracking, gaze data were analyzed alongside EEG to improve contextual 

interpretation of gaze use, particularly in situations requiring intense visual monitoring.Sensorial presence 

provided a greater capacity for evaluating cognitive load and attentional engagement. Important EEG workload 

indices that were extracted from the cleaned data included: Frontal Theta Power, which was shown to increase 

during periods of high cognitive computational load and decision-making. Parietal Alpha Suppression: reflects 

both visual-spatial vigilance and a decrease in cognitive relaxation; Engagement Index (EI): = Beta / (Alpha + 

Theta); is an assessment of mental effort and sustained attention. Task Load Index (TLI): a compound of dynamic 

metrics showing variations of workload during the execution of the tasks. Together, these indices provide a multi-

dimensional proxy of mental workload, offering insight into the 'general' over time, rather than only measuring 

spikes or transient cognitive states in real time. 

 

 
Figure 2: Real-Time Mental Workload Fluctuations During Task Performance 

Figure 2 depicts the changes over a 5-minute simulated control system task for three prominent EEG indices: 

Frontal Theta, Parietal Alpha, and Engagement Index. The x-axis values constitute time (in minutes) while the y-

axis values represent the normalized EEG values (arbitrary units). In this case, one image shows a complete picture 

of cognitive load as shown by theta and engagement peaks at mental effort increases, while the dip in alpha 

indicates a corresponding drop in relaxation (and possible increase in attention). 
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VI. DATA INTERPRETATION AND PSYCHOLOGICAL IMPLICATIONS 

 

The EEG data collected in the simulated control tasks were analyzed and examined through several statistical and 

computational methodologies, all based on the workload patterns we could not identify. In analyzing the EEG 

indices, ANOVA and correlation matrices allowed us to see disaggregation of EEG activity differently across 

phases of reference experiments and groups of participants, while time-series analysis also considered workload 

over time. The cluster analysis expands upon the previous analysis, making the distinction between 

engagement/activity of the brain between high-load and low-load tasks, where there was an identifiable shift in 

cognitive engagement. These outcomes were portrayed and visualised in a usablemanner through heat maps of 

the activity of the electrode during the tasks and timeline graphs demonstrating periods of cognitive fatigue, 

disengagement, or recovery. 

From a psychological perspective, the results provide insight into the response of control system engineers to 

continuous mental effort, as several periods of sustained frontal theta activation (increases in cognitive demand) 

were observed, and alpha suppression (visually intensive task) appeared to occur together. Where reductions in 

beta activity occurred, it indicated moments of underload or disengagement, with the engineer's attention lapsed, 

or insufficient cognitive processing time before taking another action. As a preliminary study, this encourages 

potential thresholds, where performance can be degraded and counting errors can occur, once exceeded the 

thresholds; and while being able to observe continuously EEG accompaniment related to workload could provide 

the basis for adaptive interfaces that react to mental state changes, we could reduce human error and improve 

system safety. Limitations will persist, particularly in moving situations where there is a reasonable expectation 

of introduced artifacts to the EEG signal; however, taken as a whole, this approach could support burnout 

prevention and mental health monitoring interventions, while providing support for individuals in demanding and 

high-risk occupational groups. 

 

VII. CONCLUSION 

 

This investigation provides evidence that EEG is a useful and effective method for measuring mental workload in 

control system engineering settings. EEG measures and records a human’s neural activity as it occurs, a key 

difference between EEG and traditional subjective indicators. EEG provides insight into cognitive load that may 

not be possible to obtain through traditional subjective measures. This research confirms the usefulness of EEG 

monitoring to gauge mental strain, but likely even more important is the implications of EEG monitoring for 

design and operations. Integrated EEG monitoring of mental workload for evaluating a system’s design could 

imply more user-friendly and responsive control systems, subsequently leading to decreased error by humans, 

better performance, and training that could be even more closely tailored for individual models of experience. 

This investigation could also be used to develop computational adaptive control systems for characterizing and 

deploying to engineer cognitive state, a potential to optimize workload, while monitoring for overwhelming states 

quickly. With cognitive demands in technological advances becoming more complex, using neurophysiological 

data to guide system design is important to support human operators in collaboration and ultimately keep them 

safe over long-time spans of control. 
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