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Abstract 

Cognitive load is an important factor in impacting performance when dealing with complex 

problem-solving tasks, especially in engineering design contexts that require sustained mental effort 

and limited decision-making space. Although theoretically relevant, empirical research has been 

limited in its measurement of cognitive load in a domain-specific design context. This study 

evaluated a measurement scale of cognitive load designed for engineering design tasks from a 

psychometric perspective. One hundred twenty undergraduate engineering students performed, in 

order, three design scenarios of increasing complexity, and completed a modified cognitive load 

questionnaire derived from Cognitive Load Theory. The reliability analysis indicated acceptable 

internal consistency (Cronbach’s α = .87); exploratory factor analysis revealed a three-factor 

structure that distinguished between intrinsic, extraneous, and germane cognitive load. Moderately 

significant correlations between task performance and perceived task complexity established some 

construct validity. The findings from this study confirm that this adapted instrument is effective in 

capturing cognitive load within a domain-specific context such as engineering. The results also 

indicate that there is a need for task-specific cognitive load instruments to help inform instructional 

design and the development of curricular material in engineering contexts. This study provides a 

reasonable scope for measuring mental effort and identifying the cognitive load required to engage 

in a specific problem-solving task in undergraduate engineering education, thereby contributing to 

both educational psychology and design pedagogy. Moreover, this study provides a psychometric 

basis for developing a framework to measure mental effort and cognitive load, which can be scaled 

up depending on the size and complexity of the learning context. 

Keywords:Cognitive Load, Psychometrics, Engineering Design, Mental Effort, Task Complexity, 

Scale Validation, Educational Assessment 

 

I. INTRODUCTION 

 

In high-demand cognitive environments such as engineering design, practitioners are often required to solve 

complex problems, think iteratively, and make strategic design decisions, often within tight time and resource 

constraints. Each of the aforementioned requirements introduces cognitive demand, making the concept of 

cognitive load highly relevant to our understanding of performance and learning. The concept of cognitive load is 

grounded in the concepts of Cognitive Load Theory (CLT) and can be defined as the cognitive effort required to 

process information, where cognitive load has three components: intrinsic load (task complexity), extraneous load 

(discrepancy between instruction or environment and learning), and germane load (cognitive resources that are an 

advantage to learning and the construction of schemas). Various instruments aim to measure these types of loads 

(e.g., NASA-TLX; rating scales 1-item) in a variety of domains. However, none of these instruments are sensitive 

to the context where cognitive demands exist and frequently lack specificity and construct validity. This presents 

a need for reliable, psychometrically sound domain-sensitive instruments to study cognitive load in task 

environments [1]. This study presents an instrument to achieve the above,which examines the psychometric 

properties of a new cognitive load scale used in engineering design activity [12]. Specifically, the study examines 

the internal consistency, the factorial structure, and construct validity of the proposed instrument, hypothesising 
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that the one-factor scale would be a three-dimensional behaviour concerning cognitive load and a model of 

cognitive load will emerge, consistent with theoretical expectations from CLT [9]. 

 

II. MEASUREMENT & VALIDATION FOCUS 

 

2.1. Instrument Design and Structure 

To examine cognitive load in engineering design contexts, a modified self-report instrument was employed based 

on previous self-report measures like NASA-TLX and the Paas Cognitive Load Rating Scale, and then modified 

for task relevancy in design engineering. The instrument was comprised of 15 items that represented the 3 

fundamental elements of Cognitive Load Theory: intrinsic, extraneous, and germane loads. Respondents rated the 

perceived cognitive effort associated with each item on a 7-point Likert Scale (1=very low, 7=very high), after 

they completed two design tasks of differing complexity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Research Workflow for Psychometric Evaluation of Cognitive Load in Engineering Design 

Contexts 

Figure 1 represents the systematic research process applied in the psychometric assessment of cognitive load 

within engineering design tasks. The process begins with the assignment of domain-based design tasks, leading 

to a measurement of cognitive load via a validated instrument [2] [11]. The work branched out into two 

streams:Scale Development included item generation, pilot testing, and psychometric validation; andData 

Collection included structured procedure development, instrumentation, and sample acquisition. For both paths 

to data collection, these paths culminated in Data Analysis, where factor analysis and reliability statistics were 

calculated to determine the validity and applicability of the instrument. 

2.2. Validation Procedures and Reliability Testing 

The instrument underwent evaluation of content validity, which was completed independently and included 5 

members of the community with expertise in cognitive psychology, instructional design, and engineering 

education who provided feedback on clarity of items, relevance of items in design engineering contexts, and 

representation of the dimensions of cognitive load [7] [15]. Data was obtained from a purposive sample of 120 

undergraduate engineering students, a population that was seen to have a minimum threshold of exposure to 

structured design thinking [4]. Reliability analyses were strongly supported by Cronbach's α values ranging from 

.81 to .88 across the three subscales, and a test-re-test reliability procedure over two weeks yielded moderate 

stability (r = .79). Exploratory Factor Analysis (EFA) showed a strong three-factor structure consistent with the 
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theoretical distinctions of the cognitive load dimensions, and Confirmatory Factor Analysis (CFA) confirmed this 

three-factor structure with acceptable model fit indices (CFI = .94, RMSEA = .06). This approach to the 

methodology provides strong evidence of the psychometric quality of the scale within engineering design 

contexts. 

 

III. Cognitive Theory & Experimental Emphasis 

 

3.1. Foundations of Cognitive Load Theory 

The theoretical basis for this research comes from Cognitive Load Theory (CLT), which Sweller (1988) introduced 

and Paas and Van Merriënboer (1994) expanded. CLT proposes that human working memory has a limited amount 

of space, and the successful learning or performance of a task depends in part on how cognitive resources are 

allocated as information is processed [3]. CLT establishes the relationship between various cognitive loads 

imposed during a task in three types of cognitive load: intrinsic load, which stems from the material/task’s inherent 

complexity; extraneous load, which is imposed by poorly designed instruction or environmental factors; and 

germane load, which means the mental effort involved in knowledge acquisition and long-term learning [6]. These 

theoretical constructs directly influenced the development of the psychometric instrument used in this study [13] 

[14].  

3.2. Theoretical Mapping to Instrument Dimensions 

All items were designed to reflect one of the three types of cognitive load, while accounting for the theoretical 

definitions; specifically, the intrinsic load items concentrated on perceived complexity of the task, and the 

extraneous load items focused on irrelevant distractors or unclear instructions. Germane load materials focused 

on the contemplation process for integrating design strategies into the project. This theoretical alignment provided 

us with meaningful insights into participants' responses and a rich description of how task complexity impacted 

cognitive demand in the three types of loads. As a result, CLT was not only a conceptual framework but also 

guided instrument construction and analytical interpretation and added psychological rigour to the current study 

[8]. 

 

IV. TASK-SPECIFIC AND CONTEXTUAL EMPHASIS 

 
4.1. Design Tasks and Complexity Levels 

The cognitive load tool was administered within the context of authentic engineering design tasks designed to 

capture a range of complexity (or challenge) and cognitive demand. Participants completed three different design 

tasks:  a low-complexity schematic drawing task, in which participants identified the basic functional layout of 

components; a medium-complexity CAD modelling task, in which participants incorporated dimensional 

constraints, manipulated geometric configurations, and modified dimensional details; and a high-complexity 

conceptual design, which required creative problem solving and multi-criteria decision making. Each task was 

chosen to mirror potential engineering challenges and was designed to increase in complexity and demand on 

sustained attention, working memory, and strategic planning. 

4.2. Cognitive Challenges in Engineering Contexts 

 While a range of cognitive load measures exists, and can be effective in authentic educational settings, there is a 

lack of sensitivity to context to measure specifically the cognitive processes common to design engineering. 

Universal tools are likely to fail to capture subtle cognitive demand and to measure design behaviours such as 

repetitive use of visualisation, utilization of parametric reasoning, and spatial cognition that more closely represent 

'real-world' engineering performance. Through integrated angles of cognitive assessment, this study generates a 

new understanding of design activities that implement applied cognitive psychology and technical education in 

their respective domains. This type of research provides insights that are not only more relevant to instructional 

planning than the existing theoretical frameworks but also represent cognitive load assessment in a practical and 

usable way. The contextual method of exploring cognitive load has increased the 'ecological validity' of this 

research, and applied a strong framework from which to understand how the cognitive complexity of the task 

interacts with cognitive load. 

 

V. INSTRUMENT DEVELOPMENT & INNOVATION ANGLE 

 
5.1. Theoretical Item Generation and Expert Review 

The cognitive load measurement tool used in this study is contextually modified, building on a careful, theory-

based process to build relevance to the engineering design context. Following the core dimensions from Cognitive 

Load Theory, the original item pool was crafted theoretically into three areas (mental effort, perceived difficulty, 
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and temporal pressure). Each area was mapped to the cognitive load components of intrinsic, extraneous, and 

germane, to check construct coverage.  

5.2. Pilot Testing and Contextual Refinement 

For instance, an item for intrinsic load asked participants to indicate the complexity of the design decision-making 

process, while extraneous load items asked about distractions such as “confusing task instructions or unclear 

design constraints. Germane load was captured through reflective statements, such as I exerted mental effort in 

improving my way of approaching problems as I was completing the task. After the item development was 

complete, the tool was reviewed by a panel of experts in cognitive psychology, instructional design, and 

mechanical engineering education, according to the theoretical constructs and against a two-dimensional design 

task. The panel was asked to assess whether each item indicated the clarity, domain, and dimension represented. 

A pilot study was conducted with 20 engineering students to evaluate the readability of the items, variability of 

the responses, and scale operation. Subsequently, changes were made to improve wording, based on panel 

feedback and pilot data, and any items that were redundant. This iterative, evidence-based development process 

resulted in an instrument that is both psychometrically sound and contextually innovative, offering greater 

sensitivity to the unique cognitive characteristics of engineering design tasks. 

 

VI. ADVANCED ANALYTICS FOCUS 

 
6.1. Factor Structure and Dimensional Analysis 

To test the psychometric qualities of the cognitive load instruments in engineering design contexts involved a 

complete suite of statistical tests and procedures. We began with an Exploratory Factor Analysis (EFA) using 

principal axis factoring and an oblique rotation to identify the nature of the structure described in the instrument. 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was calculated to be 0.89, and the Bartlett’s Test 

of Sphericity was significant, p <.001, indicating the data is suitable for factor analysis. The EFA results showed 

three factors, respectively representing intrinsic, extraneous, and germane cognitive load, that accounted for 

68.4% of total variance. We then conducted a Confirmatory Factor Analysis (CFA) using AMOS to confirm this 

structure. The reported model fit was good (CFI = 0.96, TLI = 0.94, RMSEA 0.05, SRMR 0.04) as all measures 

were within acceptable thresholds. Internal consistency across subscales was strong, with all producing 

Cronbach's α values well above 0.80, indicating consistency within the sub-variables.  

6.2. Model Fit and Reliability Statistics 

The values and matrix included inter-item correlation supporting an internally consistent measure, with many 

items moderately correlated, only within the respective factors. Although the main intended work did not involve 

Structural Equation Modelling (SEM), the latent variable relationships posited from the CFA do imply the cancer 

Sed for the SEM approach in future studies. All statistical tests and analyses were conducted with SPSS v28 and 

AMOS v26. Our statistical tests and analysis represent a reliable statistical methodology. 

• Cronbach’s Alpha (α) for internal consistency: 

𝛼 =
𝑁 ∙ 𝑐̅

𝑣̅ + (𝑁 − 1) ∙ 𝑐̅
 

Where: 

N = number of items 

𝑐̅ = average inter-item covariance 

𝑣̅= average variance 

• Confirmatory Factor Analysis (CFA) model equations: 

𝑦 = Λ𝜂 + 𝜖 

Where: 

y = observed variable 

Λ = factor loading matrix 

η = latent variable 

ε = measurement error 
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Table 1: Exploratory Factor Analysis of the Cognitive Load Instrument Items 

Item 

No. 

Item Statement 

(Abbreviated) 

Factor 1 

(Intrinsic) 

Factor 2 

(Extraneous) 

Factor 3 

(Germane) 

Communality 

(h²) 

Q1 The task required high 

mental effort 

0.78 — — 0.61 

Q2 Task complexity was high 0.74 — — 0.58 

Q3 Instructions were unclear — 0.72 — 0.54 

Q4 Unnecessary steps 

distracted me. 

— 0.75 — 0.57 

Q5 I tried to improve my 

problem-solving strategy. 

— — 0.80 0.65 

Q6 I actively reflected on how 

to complete the task better. 

— — 0.76 0.63 

… … … … … … 

Table 1 shows the output of the Exploratory Factor Analysis (EFA) of the 15-item instrument of cognitive load. 

The table below groups items by the dominant factor loading, with the three groups corresponding to the three 

theoretical dimensions of cognitive load (Intrinsic, Extraneous, and Germane). We should note that factor loadings 

above 0.40 can be considered acceptable. The EFA demonstrates construct validity for the instrument, in that the 

factor structure is clear and relates to the three-factor structure prescribed in the Cognitive Load Theory. 

 

VII. CONCLUSION 

 

This research has demonstrated strong evidence for the reliability and validity of a contextualized cognitive load 

measurement instrument constructed specifically for engineering design activities. The instrument exhibited 

excellent internal consistency, a defined three-factor structure consistent with Cognitive Load Theory, and 

acceptable model fit indices based on confirmatory analysis. The results collectively support the use of this 

instrument as a contextualized measurement to assess mental effort, task complexity, and instructional 

inefficiencies in technical settings. In addition to psychometric validity, we have extended the growth of cognitive 

assessment research in engineering education, in which measuring students' cognitive workload can ultimately 

lead to a more effective model for curriculum design, learner monitoring systems, and even the cognitive 

efficiency of user interfaces in design software. On the other hand, this study had several limitations that must be 

considered, such as the lack of variable diversity in the population sample and the self-report nature of the 

instrument, which could suggest unverifiable subjective biases. Future research is needed to cross-validate a 

sample of participants in terms of diversity, real-time physiological means of cognitive load measures in 

conjunction with the instrument, and plausible predictive accuracy regarding performance. Approximately, this 

work builds a firm base to connect applied cognitive psychology and engineering education, while also enabling 

more refined and evidence-based pedagogical interventions. 

 

REFERENCES 

 
[1] Emarloo, Z., & Doustkam, M. (2015). Psychological treatment efficacy in primary 

dysmenorrhea. International Academic Journal of Innovative Research, 2(1), 1–9.  

[2] Gharagozlou, H., & Mahboobi, M. (2015). Assessment of need for attention to the issue of security in 

usage of Information Technology (Including Case study). International Academic Journal of Science and 

Engineering, 2(2), 31–45. 

[3] Unciano, N. (2025). AI-augmented metasurface-aided THz communication: A comprehensive survey and 

future research directions. Electronics, Communications, and Computing Summit, 3(2), 1–9. 

[4] Unciano, N. (2025). Edge-accelerated deep neural networks on FPGA for real-time IoT video analytics. 

Electronics, Communications, and Computing Summit, 3(1), 1–10. 

[5] Mehra, P., & Patel, K. (2024). A Metrics Driven Approach to Brand Management and Brand Health 

Check. In Brand Management Metrics (pp. 31-47). Periodic Series in Multidisciplinary Studies. 

[6] Nair, S., & Rathi, D. K. (2023). Development of Graphene-Based Membranes for High-Performance 

Desalination. Engineering Perspectives in Filtration and Separation, 1(1), 9-12. 

[7] Sujatha, S. (2024). Strategic Management of Digital Transformation: A Case Study of Successful 

Implementation. Global Perspectives in Management, 2(1), 1-11. 

[8] Sridhar, A. P. (2025). Analyzing Social Engineering Attack Patterns Using Behavioral Psychology and 

AI-Driven Defense Mechanisms. Journal of Internet Services and Information Security, 15(1), 502-519. 

https://doi.org/10.58346/JISIS.2025.I1.033 

https://www.tpmap.org/
https://doi.org/10.58346/JISIS.2025.I1.033


TPM Vol. 32, No. S4, 2025          Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

  

1064 
 

 

[9] Anh, V. P. G., Thihuyen, T. N., & Anh, T. L. (2025). How Is the Performance Assessment System in 

Small and Medium Enterprises in The Manufacturing? Experimental Study in Vietnam. Quality-Access 

to Success, 26(205). 

[10] Brainee, H. J. (2025). The Inheritance of Loss: Examining the Psychological and Emotional Effects of 

Descendants in Post-Trauma Societies. Indian Journal of Information Sources and Services, 15(2), 98–

109. https://doi.org/10.51983/ijiss-2025.IJISS.15.2.14 

[11] Praveenchandar, J., Sankalp Karthi, S., Sowndharya, R., Dayanand Lal, N., Biswas, D., & Nandy, M. 

(2024). A Deep Learning-based Psychometric Natural Language Processing for Credit Evaluation of 

Personal Characteristics. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable 

Applications, 15(4), 151-165. http://doi.org/10.58346/JOWUA.2024.I4.010 

[12] Tejesh, K., Thiru Chitrambalam, M., Swarna Latha, Y., Pattanaik, B., Manju Bargavi, S. K., Kushwaha, 

R., & Dev, A. (2025). Assessment of nano-particles for the removal of bacteria and viruses from aquatic 

systems. International Journal of Aquatic Research and Environmental Studies, 5(1), 256–261. 

https://doi.org/10.70102/IJARES/V5I1/5-1-28 

[13] Badiee, D., Jazayeri, R. S., Ahmadi, A., & Bahrami, F. (2015). Investigating the effectiveness of 

Acceptance and Commitment Therapy (ACT) on Functioning of Family with Children suffering from 

Mental Retardation. International Academic Journal of Social Sciences, 2(1), 17–23. 

[14] Kavitha, M. (2025). Hybrid AI-mathematical modeling approach for predictive maintenance in rotating 

machinery systems. Journal of Applied Mathematical Models in Engineering, 1(1), 1–8. 

[15] Kolour, H. R., & Kazemzadeh, R. (2015). Organisational and psychological empowerment in the HRM-

performance linkage. International Academic Journal of Organizational Behavior and Human Resource 

Management, 2(2), 21–37. 

[16] Karthika, J. (2025). The role of Yoga Nidra in mental resilience and performance consistency in elite 

athletes. Journal of Yoga, Sports, and Health Sciences, 1(1), 39–44. 

[17] Rao, I., & Saxena, M. (2025). Exploring the Connections of the Mental Health and 

Sustainability. International Journal of SDG’s Prospects and Breakthroughs, 3(1), 8-14. 

[18] Das, A., & Kapoor, S. (2024). Comprehensive Review of Evidence-Based Methods in Preventive 

Cardiology Education: Perspective from Analytical Studies. Global Journal of Medical Terminology 

Research and Informatics, 2(4), 16-22. 

https://www.tpmap.org/
https://doi.org/10.51983/ijiss-2025.IJISS.15.2.14
http://doi.org/10.58346/JOWUA.2024.I4.010
https://doi.org/10.70102/IJARES/V5I1/5-1-28

