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Abstract- Face-based emotion identification is an important area of study in man-machine 

interaction research. Face accessories, uneven light, shifting settings, and other factors are some 

of the difficulties in the field of emotion recognition. The drawback of traditional emotion 

detection techniques is that feature extraction and categorization are mutually optimized. 

Researchers are paying more attention to deep learning (DL) techniques in an attempt to solve 

this problem. In classification tasks, DL approaches are becoming more and more crucial. This 

study addresses emotion recognition through transfer learning approaches. Nasnet Mobile 

Network Features with GRU-CNN (NMGC) classifier is used in this work. Finally, updating the 

weights is the only method available to train the newly added layers. An accuracy of 98.63% 

was achieved in the experiment when assigning emotions based on the CK database. 

Keywords- emotion recognition, face identification, deep learning, feature representation, 

accuracy 

1. INTRODUCTION 

In communication, emotions play a critical role. A variety of uses benefit from facial expression recognition, such 

as smart card applications, social robots, e-learning, criminal justice systems, security monitoring, and customer 

satisfaction identification [1]. Emotion recognition, Face detection, and feature extraction are the three main parts 

of the typical emotion identification system. Local binary patterns, Principal component analysis, Bezier curves, 

feature level fusion techniques, Principal component analysis [2], two-directional two-dimensional Modified 

Fisher principal component analysis, clustering methods, two-directional two-dimensional Fisher principal 

component analysis, Independent Component analysis, etc. are the most widely used feature extraction techniques, 

according to the literature. The features are then supplied into classifiers to be classified, like Decision trees, Naïve 

Bayes, k-nearest neighbors, Hidden Markov models, Support vector machines (SVM), etc. Conventional systems 

suffer from independent feature extraction and classification processes [3]. Therefore, improving the system's 

performance is difficult. DL networks address conventional methodologies through an end-to-end learning 

process. For DL, the larger the dataset, the more critical factor is dataset size. To enhance DL performance, 

researchers are employing techniques such as translations, data augmentation, cropping, normalizations, scaling 

and noise addition methodologies to supplement the volume of data [4]. Regarding segmentation and classification 

tasks, CNNs are the most effective algorithms. One of the key benefits of this CNN is the automatic feature 

extraction. One DL technique is transfer learning, which involves using knowledge transferred from one task to 

another to retrain a model for that task. Time-saving and accuracy-boosting are two of transfer learning's primary 

benefits [5]. 

We present some of the most present findings in the convolutional neural network (CNN) expression recognition 

field. The multi-region ensemble CNN technique for facial expression identification was first presented by [6]. 

The features derived from the three regions of the mouth, nose, and eyes are obtained by three sub-networks. 

Subsequently, three subnetworks' weights are combined to predict those emotions. This work makes use of the 
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databases RAF-DB and AFEW 7.0. The author in [7] suggested using the auxiliary model to recognize emotions. 

The information from the three main sub-regions of the mouth, nose, and eyes is integrated with the overall face 

image using the weighting technique in this work to capture the maximum amount of information. The four 

databases listed below evaluate the model: CK, SFEW, JAFFE, and FER2013 [8]. The author demonstrated face 

emotion recognition using VGG16 and Resnet50. This work makes use of the databases FER2013 and JAFFE. 

The results of the experiment demonstrate that, when compared to other advanced methods, Resnet50 achieves 

the best classification accuracy [9]. 

Deep CNN-based features were proposed by [10] as a method for emotion recognition. In this work, a multi-class 

SVM is used for classification, while VGG16 is used for feature extraction. With the CK database, the suggested 

algorithm produced an accuracy of 86.04% with the face detection algorithm and 81.36% without. The author in 

[11] Inception V3 model was used for emotion recognition. The work received a test accuracy of 39% after being 

assessed on the KDEF database. A system for identifying emotions that managed position variations and 

occlusions using the ALEC V2 architecture was described by [12]. The model achieves 92.5% accuracy when 

tested on real-time hidden images. Based on facial expression detection, the author proposed pre-trained CNN 

features in [13]. In this work, the features are extracted using a pre-trained VGG19 network, and the expressions 

will be predicted using SVM. The experiment produced 92.86% and 92.26% accuracy levels, respectively, using 

the databases JAFFE and CK. 

An SVM classifier-based transfer learning strategy was presented by [14]. To extract the features for this study, 

CNNs and AlexNet are used. The features are then fed into SVM for classification. The work was completed with 

good precision utilizing the CK and NVIE databases. CNNs for facial emotion recognition were demonstrated. 

Several models, including VGG 16, ResNet50, and VGG 19, were used in the experiment with the fer2013 dataset. 

With an accuracy of 63.07%, VGG 16 outperformed the other three models. The author demonstrated a LeNet-

based system for understanding emotions. A composite dataset (JAFFE, KDEF, and own proprietary data) is used 

in this work. In this study, undesirable pixels not needed for expression detection are removed using the Haar 

cascade library. An accuracy of 96.43% was attained in this attempt. For facial expression identification, the 

VGG16 and Resnet50 architectures were first presented by [15]. This paper proposes a hybrid Nasnet Mobile 

Network Features with GRU-CNN (NMGC) classifier models. In this work, the NMGC model outperformed the 

baseline CNN, the individual GRU and MobileNet models, and their respective levels of accuracy. The researchers 

looked into the face expression identification process using learning. The combined datasets of CK and JAFFE 

and the pre-trained networks of NMGC architectures obtained an average accuracy of 98.6% in this work. 

The work is provided as: section 2 gives the comprehensive analysis of diverse approaches investigated by the 

researchers. The integrated learning model is explained in section 3 with experimental outcomes in section 4. The 

conclusion is provided in section 5. 

2. RELATED WORKS 

Effective computing is one of the areas of research that is most active at the moment. Effective computing is 

developing technologies to understand better and replicate human effects [16]. Efficient computing aims to make 

computers smarter so they can communicate with humans. Effective computing is used in various disciplines, 

including virtual sales assistants, Internet banking, neurology, medicine, and security [17]. Emotion recognition 

through verbal cues, body language, and facial expressions is the initial step in affective computing. The model 

illustrates the division of emotions theories into three categories: neurological (Facial feedback theory), cognitive 

(Lazarus theory), and physiological (James–Lange and Cannon-Bard theories). According to the James-Lange 

paradigm, the interpretation of the physiological reaction is what causes emotion to occur. Walter Cannon then 

challenged the James-Lange theory and proposed the Cannon-Bard hypothesis, which maintains that bodily 

responses and emotions occur simultaneously. The physiological response happens first in the Lazarus hypothesis, 

also known as the cognitive appraisal theory, and the individual then considers why they are experiencing the 

feeling [18]. Lastly, the theory of facial feedback describes how facial expressions convey emotion. 

The author in [19] use a novel DL-based spoof face identification algorithm. Two DL models are adapted to carry 

out this process, known as receptive fields CNN and LRF-ELM models. It is provided with an associated layer 

and a pooling layer arranged before the associated layer. CNN model is included with the continuation layers of 

associated and pooling layers. The CNN architecture is also provided with fully associated layers. The 

experiments show that this approach is run on two mainstream parody face recognition databases, CASIA and 

NUAA. The efficiency of the approach LRF-ELM, which is run on these databases, is highly improved. The 

author in [20] established an IA-gen process to reduce the image variations by recreating the expressions from the 
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inputted face images. The conditional generative models are initially utilized to create six prototypic facial 

expressions from inputted face images while maintaining the identity information as unchangeable. Generative 

Adversarial Networks are introduced to make the conditional generative models create prototypic facial 

expressions from the inputted images. Then, regular CNN (FER-Net) is utilized to classify the expressions. This 

approach is implemented on Oulu-CASIA, BU-4DFE, CK+ and BU-3DFE databases, and the performance of this 

method is enhanced effectively. The author in [21] used a new method that recognizes the expressions of the face 

image with low computational complexity. This approach builds a model of facial attributes based on a weighted 

selection scheme. It uses Hidden Markov Models to divide an input video into one of these six expressions: anger, 

happiness, fear, surprise, and sadness. The permanent segments like apex, onset, and neutral expression elements 

are acquired using a variable-point detecting unit. The calculations on subject-independent analysis are performed 

using Cohn- Kanade and Beihang University facial expression datasets. The intensity of the estimation of the 

expressions and the performance of the face identification process are greatly enhanced [22]. 

The author in [22] control multi-dimensional data using LDA and three-fold SVM to minimize false labeling and 

complexity. Specific FER is utilized, and six basic expressions are considered multi-class data. The images are 

split into seven triangles using two focal points. An integrated global and local feature descriptor is formed. The 

discriminant attributes are acquired by applying and processing discrete Fourier transforms with LDA and 

correctly mapping the input feature space to the specific output space. The Japanese Female Facial Expression, 

Cohn-Kanade DFAT, and FER 2013 datasets compute the system's performance [23]. The experimental outputs 

show that the multi-dimensional data using SVM and LDA approach is efficient and straightforward for data 

evaluation (quadratic). In [24] formed an expression recognition process based on cognition and mapped binary 

patterns. An LBP operator is primarily utilized in this approach to acquire facial contours. Later, a pseudo-3D 

model divides the face regions into the six basic expression sub-areas. The extraction of features is performed by 

mapping the sub-areas and global facial expression images to LBP operators. The two classification models 

utilized in this method, SVM and softmax, and two emotion models are utilized, known as the circumflex emotion 

model and basic emotions model. The astounding factors in the image can be erased efficiently. Because of the 

circumflex emotion model, the efficiency of this method is enhanced than the existing emotion techniques [25]. 

The author in [26] extract the expressions from a single-face image by integrating geometric and appearance 

attributes with SVM classification. Generally, the appearance attributes are calculated by splitting the face area 

into a regular framework such as a holistic format. However, in this approach, the appearance attributes are 

evaluated by splitting the entire face area into domain-specific local areas. The geometric attributes can also be 

removed from the domain-specific areas [27]. The major local areas were also discovered using an incremental 

searching method that reduces the dimensions of features and increases identification accuracy [28]. The facial 

expression recognition outcomes that utilize the attributes from domain-specific areas are compared with the 

outcome acquired by holistic representation. FER performance is computed on publicly available advanced CK+ 

facial expression datasets [28] – [30]. 

3. METHODOLOGY 

This section gives the detailed analysis of proposed NMGC model for emotion recognition with facial expression. 

The input images from online available dataset is provided for pre-processing, feature representation and 

classification. The experimental outcomes are provided in the consecutive section. Fig 1 demonstrates the work 

flow of the anticipated NMGC model. 
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Fig 1 Overall block diagram  

3.1. Pre-processing 

The dataset was processed using a variety of experimental image processing techniques. CLAHE, on the other 

hand, significantly increased prediction accuracy. To prevent excessive contrast enhancement, which could 

produce processed images with strange appearances and unwanted artifacts, the CLAHE cut histogram at a 

predetermined clipping value. In addition, mishandling the application of contrast enhancement methods may 

result in an unsatisfactory appearance in disappearing areas, usually the small veins. By adding a global threshold 

value to the filter's fixed contrast point, the improved CLAHE could solve the issue. Subsequently, the pre-defined 

global threshold value would adaptively improve the targeting image's histogram. This section demonstrate the 

better efficiency of the enhanced CLAHE, which surpasses the fixed clipping feature provided by the traditional 

CLAHE. Notably, the suggested model enhanced the image's distinctiveness, particularly the little veins. To widen 

the width of the intensity distribution within a suitable range and enable the entry of more valuable data into the 

CNN model, we then performed normalization. The images could cause undesired distortion. The region (light 

ring) could be swapped for the original black background to fix the issue. It was possible to run the correction 

procedure in the "LAB" color space before switching it back to the RGB color system.  

𝐶𝐿𝐼𝑃 𝐿𝑖𝑚𝑖𝑡 =  [
𝜑

𝐿
] + [𝛽 .  (𝜑 −  [

𝜑

𝐿
])] (1) 

𝐶𝐿𝐼𝑃 𝐿𝑖𝑚𝑖𝑡 =   
𝑇

80
 

(2) 

Here, 𝑇 represents global threshold, 𝜑 represents pixel block population, 𝛽 represents clip factor and 𝐿 represents 

gray scale. 

3.2. NasNet 

NASNetmobile design uses reinforcement learning techniques to investigate the best CNN architectures. The 

Google Brain team has achieved substantial progress in Neural Architecture Search (NAS). Although there are 
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differences in the sizes of NAS designs, it should be noted that NasNetMobile is a reduced version. There are over 

4.5 million parameters in NASNetMobile. 224 × 224 pixels is the size of the approved input image. 

3.3. GRU 

Gated Recurrent Unit (GRU) networks are improved versions of recurrent neural networks (RNNs). RNN cannot 

provide a long-term nonlinear relationship when the input sequence is extended because long-term dependencies 

emerge. This suggests that the learning sequence has instances of gradient explosion and vanishing. Numerous 

optimization theories and enhanced methods have been put forth to address this issue, including long short-term 

memory networks, independent RNNs, bidirectional long short-term memory, GRU networks, and echo state 

networks (Cao, 2020). The two main goals of the GRU network are the long-term reliance and gradient 

disappearance issues with RNNs. With fewer parameters than an LSTM, a GRU network functions similarly to 

long short-term memory networks that use forget gates. Fig 2 illustrates how the GRU network optimizes the 

learning mechanism by utilizing reset and update gates. The model is assisted in deciding how much past data 

(from earlier time steps) should be carried over into the future by the update gate and how much previous data 

should be ignored by the reset gate. The GRU network's update gate model is computed using the following 

formula. 

𝑧(𝑡) =  𝜎(𝑊(𝑧). [ℎ(𝑡 − 1), 𝑥(𝑡)]) (3) 

The update gate function is represented by 𝑧(𝑡), the sigmoid function is represented by 𝜎, 𝑊(𝑧) represents the 

update gate's weight, ℎ(𝑡 −  1) indicates the output of the preceding neuron and 𝑥(𝑡) indicates the input of the 

current neuron. The GRU neural network's reset gate model is computed using the formula below: 

𝑟(𝑡) =  𝜎(𝑊(𝑟). [ℎ(𝑡 − 1), 𝑥(𝑡)]) (4) 

Here, 𝑥(𝑡) is the input of the current neuron; 𝜎 is the sigmoid function; 𝑟(𝑡) is the reset gate function; and 𝑊(𝑟) 

is the reset gate weight. The Equation below displays the value of the GRU hidden layer's output. 

ℎ(𝑡) =  𝑡𝑎𝑛ℎ(𝑊ℎ. [𝑟𝑡 ∗ ℎ(𝑡 − 1), 𝑥(𝑡)]) (5) 

 

The variables ℎ(𝑡), ℎ(𝑡 −  1), 𝑥(𝑡), 𝑊ℎ (the update gate weight) and tanh (the hyperbolic tangent function) 

represent the input and output values of the current neuron, as well as the previous and subsequent neurons, 

respectively. The hyperbolic tangent function 𝑡𝑎𝑛ℎ(), the input of the current neuron, 𝑊ℎ is the weight of the 

update gate, the output of the previous neuron, 𝑥(𝑡), the amount that ℎ(𝑡), and the output value to be decided in 

this neuron, ℎ(𝑡 −  1) are all controlled by 𝑅𝑡. It regulates the amount of memory that must be kept up to date. 

The following Eq. (6) displays the data for the final result from the hidden layer. 

ℎ(𝑡) = (1 − 𝑧(𝑡). ℎ(𝑡 − 1) + 𝑧(𝑡) ∗ ℎ(𝑡)) (6) 

 

 

Fig 2 Generic GRU 
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3.4. CNN 

Here, Feed-forward neural networks with a known, grid-like structure processing data are called convolutional 

neural networks, or CNNs. Both supervised and unsupervised learning can be used. Despite its original primary 

aim being field image processing, CNN has shown outstanding success in various real-world applications, such 

as natural language processing and speech recognition. The typical CNN architecture used for image 

categorization is the foundation for the CNN model. As seen in Fig 3, it comprises a classification section and a 

feature extraction. These components include maximum merge layers, batch normalization, and convolution. The 

architecture's hidden layer is made up of these layers. Convolution operations are carried out by the convolutional 

layer using the given filter and kernel parameters. As the maximum pooling layer reduces the feature space's 

dimension, it computes the network weights for the subsequent layer. For each training mini-batch, batch 

normalization is utilized to lessen the impact of various input distributions, improving training. Training with 

CNN models is fast and accurate due to their activation functions. Activation functions used by CNN include the 

Rectified Linear Unit (ReLU), hyperbolic tangent (Tanh), and Sigmoid. As indicated by the equations below, we 

employed two activation functions in this model: the input and hidden layers' ReLU function and the output layer's 

Sigmoid function. 

ℎ𝑖
𝑚 = 𝑅𝑒𝐿𝑈 (𝑊𝑖

𝑚−1 ∗ 𝑉𝑖
𝑚−1 + 𝑏𝑚−1) (7) 

Where, the convolutional layer is represented by hi m, the nodes are represented by 𝑉𝑖
𝑚−1, the neurons' weights 

are represented by 𝑊𝑖
𝑚−1 and the bias layer is represented by 𝑏𝑚−1). 

𝑆(𝑥) =  
1

1 + 𝑒− ∑ 𝑊𝑖+𝑥𝑖+𝑏𝑘
 

(8) 

 

Where, 𝑏 is the bias, 𝑒 is Euler's number = 2.781, 𝑊𝑖 is the input weight and 𝑋𝑖 is the input. 

 

Fig 3 Generic CNN 

4. NUMERICAL RESULTS AND DISCUSSION 

The proposed outcomes of the NMGC model are covered along with the corresponding explanations and 

numerical results. The machine is set up for the simulation and runs in the MATLAB 2020a environment, with 8 

GB of RAM, a 64-bit OS, and an Intel Core I5 CPU. Here, two experiments are modeled to validate anticipated 

model performance. Initial work examines the performance of anticipated algorithms and validates NMGC 

training time, which is lower than the conventional CNN model. Facial emotion recognition data were acquired 

from the expression dataset, as in Table 1. This dataset comprises training images and testing images. It has 48 ∗
48 grayscale images. Faces are located in the middle of every image. Henceforth, experimentation data are directly 

provided as inputs to the network for training purposes without any preprocessing. Here, training and testing are 

done with an 80:20 ratio is done here. Generally, all entries are from the original dataset. This is utilized for both 

validation and training.  
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Table 1 Dataset samples 

Dataset Facial expression 

dataset 

Neutral 50 

Disgust 53 

Anger 51 

Fear 58 

Sad 59 

Happy 66 

Surprise 63 

 

Then, to validate NMGC effectiveness, three factors are measured. They are feature extraction without or with 

weighted sharing, and the fusion-based learning model and NMGC optimality prediction are validated. Here, 

NMGC is shared among diverse kinds of attribute mapping in FE subsets. However, diverse attribute mapping is 

provided separately to diverse CNN for fusion analysis. Then, it is essential to integrate prediction expression and 

feature fusion. It is essential to perform learning and parameter computation. Some factors like accuracy, 

computation time and quantity are measured. The anticipated NMGC model executes slowly with 4.1 Hz. 

Moreover, NMGC acquires slightly superior results than conventional models. This is owing to an extremely 

restricted number of samples used to train NMGC. Therefore, if there are some appropriate training samples, 

NMGC still holds a higher potential to outperform traditional models. However, it has to learn huge parameters 

and consumes huge training time. Table 2 depicts the accuracy computation of the proposed NMGC with the CNN 

model. Here, the period is set as 7.4 Hz, and the accuracy of the NMGC is 98.63% which is 12.63% higher than 

the CNN model. 

 

Table 2 Accuracy evaluation 

Methods Parameter Period Accuracy 

CNN ≅ 40 MB 7.4 Hz 86 

NMGC ≅ 30 MB 7.4 Hz 98.63 

  

The NMGC model is compared with GRU, CNN and ALEC learning to depict the significance of learning-based 

fusion. Here, NMGC features are extracted from a subset of GRU-CNN feature extraction. From Table 3, network 

fusion acquires superior outcomes than SVM, whereas NMGC integrated fusion and learning process in end-to-

end training acquires superior results than GRU and CNN. To validate the consequences of the fusion model, 

every initialized GRU-CNN feature extraction parameter is learned from fusion subset parameters. This is equal 

to learning hierarchical weighting merged with high-dimensional pre-trained features. This NMGC acquires better 

results than CNN, GRU and ALEC. This model depicts that merging training frameworks is essential for 

anticipated NMGC. 

 

Table 3 Classification results 

Models Classification results 

GRU 84.17 

ALEC 85.73 
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CNN 86.86 

NMGC 98.63 

 

From Table 3, four different models are considered for attaining classification accuracy. They are CNN, GRU, 

ALEC and NMGC. The predicted NMGC has a better classification result with 98.63% based on the suggested 

model which is greater than other methods. To confirm that the predicted NMGC model is optimal for predicting 

expression, some essential classifiers are considered. Experiments were performed in an expression dataset with 

dimensionally fused deep features offered by NMGC. The classifier parameters are chosen carefully by a training 

set of all training phases as in Table 3. In contrast, CNN is set to have default values from 1-1000 times for 

training. From the table provided below, it is known that every classifier can attain more effectual results than a 

regression model. Thus, this proves that dimensionality fusion is extremely discriminative. Regarding speed and 

accuracy, each classifier has advantages. Now, with deep features provided by NMGC, GRU is utilized for the 

best classifier-based expression prediction. The GRU, CNN and ALEC models are compared with the proposed 

NMGC model. The suggested NMGC model has a prediction accuracy of 98.63%, which is 1.03%, 2.16%, and 

3.72% greater than previous methods. In the same way, the suggested model is contrasted with several machine 

learning techniques, including the regression model, k-NN, NB, RF, and k-SVM (Kernel SVM). As seen in Table 

4, the regression, k-NN, NB, RF, and k-SVM models are 6.86%, 2.05%, 1.97%, 2.71%, and 1.13% lower in 

prediction accuracy than the suggested NMGC model which has an accuracy of 95%. 

 

Table 4 Accuracy computation of NMGC with existing models 

Classifier Accuracy 

Regression 81.03 

K-NN 85.84 

NB 85.92 

RF 85.18 

Kernel SVM 86.76 

NMGC 98.63 

 

At last, it is considered that NMGC offers issues encountered in the optimal prediction of fused deep features. 

The batch size of the proposed NMGC is 32, epochs is 100 and activation is STEM_BN1. Experimental outcomes 

request features that can acquire effectual results than convolutional deep features. Here, the generalized 

competency of the NMGC model under cross-dataset validation is provided. In this experiment, NMGC was 

trained and evaluated. From the evaluated experiments, NMGC provides an average cross-dataset recognition 

accuracy. This work shows the highest outcomes that are trained and evaluated.  NMGC acquires better 

performance than other techniques with some expectations. For trained modeling, NMGC shows the least facial 

expression dataset correspondingly. It recommends NMGC training over an expression dataset owing to the huge 

training data. This expression dataset is only sometimes consistent with other models. This is because facial 

images vary in huge posing factors. This causes certain misalignments in landmark points. Here, all training 

images are combined with facial expression datasets for training and computed performance of NMGC with other 

CNN models over manually collected expression data. Some poor performances are attributed to two factors: It 

is extremely complex for certain models to recover missing facial parts with real-time models. Next is a weaker 

ability to concentrate on distinctive facial regions. NMGC acquires the lowest and highest classification accuracy, 

corresponding with disgust and happy categories. Some confused categories are sad, surprise, fear and disgust. 

Some failed samples are also encountered with the facial expression dataset. Even though NMGC is more robust 

with classification, it experiences higher facial occlusions. It is validated as the inevitable cause of huge 

misalignment in facial expressions. Therefore, NMGC needs to be more competent to concentrate on previously 

planned facial patches. It constructs weight, which is not adaptive when occlusion occurs. Only probable 

approaches to deal with these complex examples will be explored. 
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4.2. Performance metrics 

 

Performance measures for the proposed NMGC model include precision, accuracy, specificity, sensitivity, recall, 

F-measure, ROC, confusion matrix, and MCC. These are assessed using True Positive (TP), False Positive (FP), 

True Negative (TN), and False Negative (FN). 

 

a) Accuracy 

 

An overall indicator of classification effectiveness is accuracy. It is stated as follows in Eq. (9): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
      (9) 

b) Sensitivity 

 

It is depicted as a classifier measure to identify positive class patterns. As shown in Eq. (10), it is represented as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 

c) Specificity 

 

It is depicted to measure classifier competency to identify negative class patterns as in Eq. (11):  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11) 

d) ROC curves 

 

The prediction accuracy is measured using the ROC curve. Generally, this curve is plotted using the sensitivity 

and specificity measure with various threshold values. It is also determined as TPR (recall) and FPR (fall out) 

rates. The curve is plotted among the sensitivity and fall out of the classifier model. Fallout is considered the value 

of the specificity rate. 

 

e) Mathew’s correlation coefficient (MCC) 

 

MCC is the classification rate in binary class problems ranging from -1 to +1. Here, -1 specifies the mistake or 

error, and +1 specifies the appropriate label. However, '0' relies on random prediction, and it is expressed as in 

Eq. (12): 

 

𝑀𝐶𝐶 =  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (12) 

 

The model's functionality is used to assess NMGC. Phases of training, testing, and validation are applied to the 

samples. During simulating, only 10% of the samples are used for testing. The slices are rotated and cropped in 

900, 1800, 𝑎𝑛𝑑 2700) angle degrees to improve the testing and training process. The nodules are vertically and 

horizontally flipped. Various control metrics are modeled to confirm that the NMGC performance is significant. 

Some conditions need to be maintained during the experimentation process for certain factors and diverse effects 

to be evaluated. MCC completely relies on specificity and sensitivity values. Therefore, it is directly processed 

while performing the computation with the MATLAB 2020a simulator.  
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Fig 4 Accuracy comparison 

 

 
Fig 5 Loss comparison 

 

 
Fig 6 Loss and accuracy based on 100 epochs 

 

 

Fig 7 Facial emotion expression using sample data 

Fig 7a Input images Fig 7b Contrast stretching 

image 

Fig 7c Equalized image 
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Table 5 Accuracy comparison of NMGC with other approaches 

Approaches Iteration 20 Iteration 40 Iteration 60 Iteration 80 Iteration 100 

NMGC 98.6 96.72 95.94 95.94 93.24 

CNN 70 72 68 70 66 

GRU 68 70 72 72 68 

ALEC 71 70 71 58 55 

 

Table 6 Recall comparison of NMGC with other approaches 

Approaches Iteration 20 Iteration 40 Iteration 60 Iteration 80 Iteration 100 

NMGC 98.33      98        97.3        97     97.5 

CNN 92   96    92    90    94 

GRU 88  87    87 89    90 

ALEC 88    88   84    90   95 

 

 

Table 7 Precision comparison of NMGC with other approaches 

Approaches Iteration 20 Iteration 40 Iteration 60 Iteration 80 Iteration 100 

NMGC 99.72 98.3 99.8 98.2 98.99 

CNN    60     63    61      60       60.8 

GRU    56     55   61     55   62 

ALEC    57       51    59   53    50 
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Table 8 F-measure comparison of NMGC with other approaches 

Approaches Iteration 20 Iteration 40 Iteration 60 Iteration 80 Iteration 100 

NMGC 99.02 99.3 99.6 99.2 99.5 

CNN 74 75 76 71 70 

GRU 69 69 75 66 72 

ALEC 64 69 73 63 65 

 

 

 
Fig 8 Performance comparison 

 

Tables 4 to 8 show validation accuracy of anticipated NMGC with diverse performance metrics. For the first 

iteration, the NMGC's prediction accuracy is 98.63%, recall is 98.33%, precision is 99.72%, and F-measure is 

99.02%. Fig 8 compares several measures including accuracy, recall, precision, and F-measure between NMGC, 

CNN, GRU and ALEC. The prediction accuracy is measured for five different iterations. In the initial iteration, 

the NMGC model shows 98.63% accuracy, 16.7967%, 19.1716%, and 16.1739% higher than CNN, GRU and 

ALEC models. For the first iteration, the suggested NMGC model's recall is 98.33% which is 0.832%, 4.6474%, 

and 5.0498% higher than CNN, GRU and ALEC models. The suggested NMGC model has a precision of 99.72%, 

which is higher than previous models by 15.2435%, 19.1634%, and 17.8588%. The suggested NMGC model has 

an F-measure of 990.2%, greater than previous models by 9.6842%, 14.5561%, and 19.9665%. Fig 7a to Fig 7c 

depicts the facial expression validation with the sample data and the appropriate classification of emotions using 

the NMGC model, respectively. Then, NMGC acquires the finest outcomes as convolution layer operation gives 

shape and texture characteristics of two diverse dimensions. Fig 8 shows the sample facial expression images 

evaluated with the proposed NMGC. The anticipated NMGC model is compared with various prevailing methods 

like CNN, GRU and ALEC giving a superior trade-off among the prevailing techniques.  
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Fig 9 ROC curve 

The suggested model's ROC computation with the sensitivity and specificity measures is displayed in Fig 9. First, 

NMGC performs the classification of facial expressions and classification outcomes compared to the anticipated 

model. The anticipated model works better than CNN in completing classification accurately. Henceforth, 

NMGCs can be satisfactory in the recognition process. An experimental study in the prevailing model shows that 

CNN has nine inputs and one output to show better results. NMGC model proves better specificity, accuracy, 

sensitivity, and AUROC results for emotional recognition datasets. However, it undergoes a manual feature 

extraction process, which is time-consuming.  

 

5. CONCLUSION 

 

This work presents a framework known as NMGC which is a hierarchically supervised model for recognizing 

human emotion. More specifically, anticipated models cast off deep NMGC to provide outputs of individual 

emotions. Here, some samples are trained with NMGC under the assistance of certain baseline architecture with 

effectual configurations. It includes numerous parameters and diverse initializations from trained models of 

emotion recognition databases. With the class probabilities of these individual networks, a hierarchical framework 

is formed dependent on NMGC. Next, this process is repeated with a set of NMGC as baseline architecture. The 

anticipated model is evaluated with a facial expression dataset, and its corresponding performance was measured 

with some strategies like CNN, GRU, ALEC and DF-CNN for computing the accuracy of NMGC over them 

where NMGC outperforms CNN, GRU and ALEC in some cases of experimental validation and proves to be 

superior. The future direction of this work is to develop and analyze a structural model that can internally merge 

classification NMGC with crafted features in the training and testing process. Here, both steps are performed 

separately, which provides advancements in offering feedback to one another during the training procedure. As 

this work employs CNN, which is a DL concept, thousands and thousands of images have to be provided for 

training. Therefore, online datasets are considered here. Real-time data will be collected and processed as a future 

research extension to attain superior outcomes. 
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