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Abstract 

The human brain is a remarkable entity, central to all bodily functions. Given its critical role, prompt 

reporting of any irregularities mainly tumors that further lead to cancer in its structure is vital for 

reducing mortality rates. Segmenting abnormal regions is key for effective treatment planning and 

monitoring. The most crucial task in this process is the differentiation of healthy tissue from 

abnormal areas. To date, various imaging techniques have been employed for the early detection of 

these anomalies, with Magnetic Resonance Imaging (MRI) standing out as a notable and 

noninvasive diagnostic tool. This research presents an integrated architecture Multi-Attribute 

Aggregation (MAA) and an Adaptive Gradient Dice Loss (AGDL) (MAA+AGDL) mechanism to 

significantly improve the accuracy of segmenting brain tumors from MRI scans. The novel 

framework employs a dual-path architecture that processes foreground and background regions 

separately, incorporating enhanced feature extraction through improved encoders, a multi-attribute 

aggregation module for comprehensive feature representation, and mapping prediction modules for 

precise segmentation. To overcome traditional challenges associated with gradient vanishing and 

feature misalignment, the framework integrates an AGDL mechanism for stable training and a 

Deformable Convolution-based Feature Alignment (DCFA) for adaptive feature alignment. 

Evaluated on the BRATS 2019 and 2020 datasets, our model demonstrates superior performance 

over existing approaches, achieving higher Dice Similarity Coefficient scores, improved sensitivity, 

and reduced Hausdorff Distance. These advancements signify a substantial step forward in the use 

of deep learning for medical imaging, promising enhanced clinical diagnostics and treatment 

planning for brain tumor patients.   

Keywords: Multi-Attribute Aggregation (MAA); Adaptive Gradient Dice Loss (AGLD); Brain 

Tumor Segmentation; Deep Learning Framework; Magnetic Resonance Imaging (MRI). 

1 INTRODUCTION 

The central nervous system (CNS) of humans encompasses the brain, the primary component of the human 

nervous system, along with the spinal cord. It is the brain that governs the body's myriad functions, encompassing 

processing, integration, coordination, decision-making, and dispatching directives to the body. Featuring a highly 

intricate anatomical architecture, the human brain is central to our neurological functions. Disorders affecting the CNS 

range from brain tumors, injuries sustained through trauma, and developmental irregularities, to conditions such as 

multiple sclerosis, strokes, dementia, infections, and even migraines. The incidence of brain tumors has been on an 

upward trajectory worldwide, attributed to the proliferation of cancerous cells that migrate to the brain via the vascular 

system. Between 2004 and 2022, there has been a notable increase in brain tumor cases, estimated between 10% to 

15%. [1]-[3] Imaging techniques such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are 

mailto:Subiasalma89@gmail.com
mailto:vineetkumarvk97@gmail.com


TPM Vol. 32, No. S4, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 
 

776 
 

  

critical in diagnosing brain irregularities. MRI, in particular, is a noninvasive tool that excels in investigating CNS 

disorders, offering detailed views of the brain in slices without invasive procedures. This modality stands out for its 

sensitivity in detecting CNS conditions, providing invaluable data for diagnosis. MRI's superiority over CT includes 

enhanced image quality and the ability to observe brain structures in real-time without exposing patients to ionizing 

radiation [4]. Its ability to generate high-contrast images across three dimensions—axial, sagittal, and coronal—

enables comprehensive analysis of the brain, spinal cord, and vascular structures. Unlike CT scans, MRI uses a 

combination of magnetic fields and radio waves to produce detailed images, eliminating radiation exposure risks. 

MRI's high contrast resolution is particularly beneficial for examining the brain's soft tissues, offering clear views in 

three-dimensional planes to aid in understanding the brain and spinal cord's complex anatomy. The technology is adept 

at distinguishing between different types of tissue, making it essential for diagnosing various CNS disorders. MRI 

sequences like T1-weighted, T2-weighted, and Fluid-Attenuated Inversion Recovery (FLAIR) scans provide diverse 

insights into brain tissue properties, aiding in the differentiation of fluids like cerebrospinal fluid (CSF) from other 

abnormalities, these modalities are presented in figure 1[5]-[7]. 

 

Figure 1 Different MRI imaging modalities, from left to right T1, T1ce, T2, and FLAIR 

The field of brain tumor segmentation has seen significant advancements with the adoption of machine learning 

and deep learning techniques [5]-[11]. Traditional methods relied on extracting specific features from MRI data but 

faced challenges due to the diverse nature of brain tumors and the limitations of certain MRI modalities. Deep learning 

approaches, particularly Convolutional Neural Networks (CNNs) and advanced structures like the U-Net [8], have 

demonstrated a strong capability for automatic brain tumor segmentation by learning complex features directly from 

the data. These techniques have evolved to address the heterogeneity of tumors and incorporate multimodal MRI data 

for more precise segmentation. Innovations such as multi-task networks, deep feature fusion frameworks, and 3D 

CNNs [9] have significantly improved the accuracy and efficiency of brain tumor segmentation. Recent strategies 

have also focused on overcoming the challenges posed by incomplete MRI datasets in clinical settings, which can 

result from varied scanning protocols and patient conditions. Solutions such as Generative Adversarial Networks 

(GANs) [10] and Variational Autoencoders (VAEs) [11] have been explored to reconstruct missing modalities, 

enhancing segmentation performance even when complete multimodal data isn't available. This progress reflects a 

broader move towards leveraging deep learning for nuanced understanding and management of CNS disorders, 

underscoring the importance of continuous innovation in medical imaging technology. Moreover, deep learning has a 

heavy reliance on large annotated datasets, which are often scarce and expensive to obtain in the medical field. While 

deep learning models excel in extracting complex features and patterns from extensive data, they struggle to generalize 

from limited or highly specific datasets, limiting their applicability in varied medical scenarios. The incorporation of 

meta-learning introduces the ability to learn and adapt quickly from a few examples, overcoming the data dependency 

hurdle. This synergy not only boosts segmentation accuracy in scenarios with limited data but also mitigates the issue 

of overfitting, a common challenge in deep learning models, by enabling models to generalize better to new, and 

unseen medical images. 
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1.1 Motivation and contribution 

The issue of brain tumors and their impact on mortality rates worldwide has become a growing concern. To 

combat this, researchers have developed an innovative approach to improve the accuracy of diagnosis. The automated 

brain tumor segmentation model that has been created allows experts to identify brain tumors more efficiently, 

ultimately leading to a more timely diagnosis. Traditional methods, while useful, often fall short of capturing the 

complex features of brain tumors, leading to a pressing need for more advanced, automated, and precise segmentation 

techniques. The motivation behind this research stems from the necessity to enhance the accuracy and efficiency of 

brain tumor diagnosis, which is crucial for timely intervention and effective treatment planning. 

This research introduces a novel integrated architecture combining Multi-Attribute Aggregation (MAA) with 

Adaptive Gradient Dice Loss (AGDL) to significantly improve brain tumor segmentation from MRI scans. The 

proposed framework stands out for its dual-path approach for foreground and background segmentation, innovative 

use of deformable convolution-based feature alignment, and the application of an adaptive gradient dice loss 

mechanism to enhance segmentation accuracy. Specifically, the study contributes to the field in several key ways: 

• Innovative Integration of MAA and AGDL: By integrating MAA with AGDL, the framework improves 

upon existing models in terms of segmentation accuracy, demonstrating superior performance on the BRATS 

2019 and 2020 datasets with enhanced Dice Similarity Coefficient scores, sensitivity, and reduced Hausdorff 

Distance. 

• Dual-Path Segmentation Approach: The dual-path architecture, designed for precise segmentation of both 

foreground and background regions, incorporates advanced encoders, multi-attribute aggregation modules, 

and mapping prediction modules. This approach facilitates a more nuanced and accurate segmentation 

process. 

• Adaptive Gradient Dice Loss Mechanism: The introduction of an adaptive gradient optimization to the 

Dice loss function addresses the challenge of gradient vanishing, ensuring a more stable and effective training 

process. 

• Deformable Convolution-based Feature Alignment: The utilization of deformable convolution layers for 

feature alignment across different image scales represents a significant advancement in capturing and 

aligning critical features for accurate tumor segmentation. 

• Extensive Evaluation and Validation: The comprehensive performance evaluation on the BRATS datasets, 

using metrics such as Dice Similarity Coefficient, sensitivity, specificity, and Hausdorff Distance, validates 

the effectiveness and efficiency of the proposed framework in real-world clinical settings. 

2 RELATED WORK 

The rapid detection of brain tumors presents a formidable challenge, yet the advancement of deep learning 

technologies has offered promising avenues for their accurate identification using digital imagery. Notably, the U-Net 

framework [12], as introduced in one study, marks a significant stride in brain tumor image segmentation, specifically 

within the Brain Tumor Segmentation Challenge (BraTS). This study proposed enhancements to the U-Net 

architecture, focusing on post-processing, region-specific training, data augmentation, and further analysis to refine 

segmentation performance. Despite these improvements, the model faced limitations due to the absence of explicit 

spatial constraints and scalability issues. Further research introduced a 3-Dimensional U-Net design [13], integrating 

channel and spatial attention within the decoder network to forge an attention-based Convolutional Neural Network 

(CNN) capable of brain tumor detection from MRI scans. The complexity of this model, however, raised concerns 

regarding its computational demand and interpretability. Subsequently, the UNet++ [14] architecture was proposed, 

featuring a fully trained encoder-decoder network where nested dense skip connections bridge the encoder and decoder 

networks, reducing the information gap. Yet, selecting the optimal set of hyperparameters for this model posed a 

challenge. Another advancement, the 2-dimensional attention recurrent residual U-Net (AttR2U-Net) [15], employed 

multitask deep supervision (MTDS) to draw semantic insights from images, enhancing segmentation accuracy but at 

the risk of overfitting. Following this, the LKAU-Net [16-17] model emerged, building on the U-Net structure with 

the integration of large-kernel attention mechanisms.  

This approach improved brain tumor segmentation by capturing long-range dependencies through large-kernel 

convolutions and focusing on critical regions with attention mechanisms. Lastly, the PraNet model introduced a 

parallel reverse attention network utilizing a parallel partial decoder (PPD) to refine the segmentation of polyps from 



TPM Vol. 32, No. S4, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 
 

778 
 

  

colonoscopy images. Despite its success in enhancing segmentation precision by leveraging high-level feature 

aggregation, the model's effectiveness was contingent on access to extensive training datasets and was marked by 

significant computational demands. In a recent advancement, the Swin-Unet model [18] was introduced, incorporating 

a transformer architecture akin to the traditional U-Net for medical image segmentation. This innovative approach 

features a symmetric Swin transformer-based decoder with a patch-expanding layer to restore the spatial resolution of 

feature maps. Simultaneously, a hierarchical Swin transformer with shifted windows serves as the encoder, adeptly 

extracting context features. This model signifies a pivotal shift towards incorporating transformer models in medical 

imaging. Another noteworthy development is the Multi-Inception-U-Net [19], designed to enhance scalability. Tested 

against the Brain Tumor Segmentation Challenge (BraTS) datasets from 2015, 2017, and 2019, this model 

demonstrated commendable performance, leveraging the foundational strengths of the U-Net. Specifically, it achieved 

an accuracy of 83% on the training set and 82% on the validation set using the 3D-UNet architecture for MRI brain 

tumor segmentation on the BraTS 2020 dataset. Further exploration in the field led to the introduction of the DCSAU-

Net [20], a novel, deeper, and more compact split-attention UNet model tailored for medical image analysis. This 

model excels by integrating high and low-level information through a primary features conservation framework and 

a compact attention block, showcasing superior performance in medical image segmentation by outperforming 

existing methods in key metrics. The study also presented the SPP-Net [21], a network designed for brain tumor 

segmentation that combines spatial pyramid pooling (SPP) and attention blocks, eschewing traditional residual 

connections. This design choice enables the network to synthesize information across varying down-sampling blocks, 

thus enhancing the comprehensiveness of the reconstruction process. The attention blocks further enrich the model by 

integrating global dependencies with local features, culminating in a notable accuracy score on the Brats 2021 dataset. 

Moreover, the BiTr-Unet [22] model emerged, blending CNN and transformer architectures for segmenting brain 

tumors using multi-modal MRI data. This model demonstrated exceptional performance on the BraTS 2021 validation 

dataset, achieving impressive mean Dice scores and Hausdorff distances across different tumor regions. An additional 

innovative approach combined the U-Net model, CNN, and Self Organizing Feature Map (SOFM) [23] into an 

ensemble technique for precise brain tumor segmentation. This method applied to the BRATS 2020 dataset, 

underscores the ongoing exploration and integration of diverse computational techniques to enhance the accuracy and 

efficiency of medical image segmentation.  

In a comprehensive analysis, the study [24] contrasts two advanced object detection frameworks, YOLOv5 and 

YOLOv7, applied to brain cancer classification and detection within MRI scans. This investigation covers three types 

of brain tumors: meningiomas, gliomas, and pituitary tumors, using sophisticated mask alignment techniques for 

accurate tumor segmentation. Research [25] introduces an enhanced Res-UNet model, integrating attention-guided 

and scale-aware strategies for precise brain tumor segmentation. The model incorporates a mechanism for capturing 

essential contextual information through attention and feature fusion, alongside a strategy for unearthing and 

dynamically integrating multi-scale features, boosting feature detection and enhancement across various scales. Study 

[26] unveils the M2FTrans framework, designed to merge cross-modality features in multi-modality settings, even 

when some modalities are missing. It uses learnable fusion tokens and masked self-attention to maintain long-range 

modality dependencies flexibly and introduces spatial and channel-wise fusion transformers for balancing and 

reducing redundancy across modal features. Finally, [27] proposes a brain tumor segmentation method employing a 

multimodal transformer network adapted to handle incomplete MRI data sets. This method is built upon a U-Net 

framework featuring modality-specific encoders, a multimodal transformer for correlating features across modalities, 

and a shared-weight decoder. This approach aims to seamlessly integrate multimodal and multi-level features for 

enhanced brain tumor segmentation. 

3 PROPOSED METHODOLOGY 

Meta-learning introduces a powerful paradigm for brain tumor segmentation by equipping models with the 

ability to rapidly adapt to new, specific tasks of identifying and segmenting brain tumors from minimal examples. By 

drawing on previously acquired knowledge and optimizing the learning process itself, meta-learning enables the 

creation of highly flexible and efficient segmentation models. This approach is particularly valuable in the medical 

imaging field, where obtaining large, annotated datasets is challenging, and the ability to quickly adjust to different 

tumor types or rare conditions can significantly enhance diagnostic accuracy and patient care. This research work 

adopts the framework of meta-learning as a base and develops a novel architecture MAA+AGDL to enhance the 

performance of brain tumor segmentation; the MAA+AGDL model includes designing the MAA architecture, feature 



TPM Vol. 32, No. S4, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 
 

779 
 

  

reshaping module, optimal features for each class module, Generation of multiple feature relations maps,  a novel 

AGDL mechanism with DFCM. 

3.1 Pre-Processing 

In the proposed methodology for enhancing brain tumor detection in MRI images, a comprehensive 

preprocessing strategy plays a pivotal role in ensuring the accuracy and reliability of subsequent analyses. This strategy 

encompasses several key steps designed to refine and standardize the MRI data, preparing it for effective tumor 

segmentation and identification. The steps include: 

• Image Rescaling: Initially, all MRI scans are rescaled to a uniform resolution of 512 by 512 pixels. This 

standardization is crucial for consistent analysis across various scans, facilitating the comparison and 

evaluation of tumor features within a unified framework. 

• Intensity Normalization: Due to the inherent variability in image intensities and brightness among MRI 

scans, a normalization process is applied to standardize the intensity levels across all images. This step 

ensures that the images can be accurately analyzed, with consistent brightness and contrast levels that are 

conducive to identifying tumor characteristics. 

• Noise Reduction: Recognizing the sensitivity of brain tumor images to noise, a targeted noise reduction 

technique is employed to enhance image quality. The use of a median filter is selected for its effectiveness 

in reducing noise without compromising the integrity of the tumor features. This approach significantly 

improves the visibility of tumors and aids in their precise segmentation. 

3.2 Problem Definition 

The Brain Tumor Segmentation model, employing meta-learning, focuses on training the model with a large 

dataset ℱ𝑏 comprising numerous labeled samples whose classes ℰ𝑏 are known.  his enables the model to quickly 

implement segmentation for previously unknown classes, denoted as ℰ𝑛, in which case ℰ𝑏  ∩  ℰ𝑛 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑁𝑢𝑙𝑙. 
To train the proposed model, a meta-learning-based segmentation technique is utilized. Specifically, for each instance 

of limited data meta-learning, we employ a random sampling method to divide the data into novel classes ℱ𝑛 =

{(𝑈, 𝑆)} for the support image dataset 𝑈 = {(𝐾𝑢
𝑘, 𝒪𝑢

𝑘)}𝑘=1
𝑀  and the query dataset 𝑆 = {(𝐾𝑠

𝑘, 𝒪𝑠
𝑘)}𝑘=1

𝑃𝑠 , where the novel 

class dataset comprises 𝑃 classes and includes two masked images as pairs (𝐾𝑢
𝑘, 𝒪𝑢

𝑘) t for a given period. Here, 𝐾𝑢
𝑘 as 

well as 𝒪𝑢
𝑘 represent the 𝑘 − 𝑡ℎ image and its corresponding segmentation, respectively. However, the 𝒪𝑠

𝑘 is primarily 

used for training purposes. 𝑀 denotes the number of masked image pairs input for each class within the support 

images, and 𝑃𝑠is indicates the number of queries (where 𝑀 = 5 𝑜𝑟 1).  Furthermore, 𝑢 and 𝑠 represent the pairs of 

masked images related to the support data 𝑈 as well as the query data 𝑆. t is noted that the input for the proposed 

model consists of a masked image pair from the support data and a query image, while the output is the predicted 

binary masked segmentation 𝒪𝑠̃ for the query image. In this study, each instance of limited data meta-learning is 

applied to prior studies and experimental setups  

3.3 Architecture  

  The architecture illustrated in Figure 1 demonstrates the functionality of the proposed study, which is divided 

into two parallel paths leading to analogous operations. One path is designated for the prediction of foreground regions, 

while the other is dedicated to predicting background regions. Each path comprises below components: 

• A feature encoder for attribute sharing is utilized to extract attributes from both query and support images. 

• The generation of various descriptors to introduce a specific descriptor that fully represents the class's 

attribute distribution 

• The prediction is based on different Feature Relations maps for the foreground and background areas in the 

query images. 

Specifically, the support and query images are fed into the attribute-sharing encoder, which extracts feature 

vectors from the query and support data. This encoder, pre-trained and based on a ResNet architecture, facilitates 

attribute retrieval. The proposed method incorporates Structure Refinement and Boundary Extension operations on 

masked support images to generate images with structure refinement-supported masks and Boundary extension-

supported masks, respectively. The structure refined support masked images are subtracted from the original image, 

and the original support masked image is subtracted from the dilated masked image, yielding inner and outer boundary 

foreground masks. For background area prediction, average pooling is applied to the support masked images, 
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encompassing both background and exterior boundary areas, to generate respective prototypes. Subsequently, 

element-wise multiplication is performed between the support attributes and background masking to obtain a 

background attribute with foreground values set to zero. These zero values are then removed from the background 

attribute, and a constant number of background attribute points, equivalent to the number of foreground points, are 

sampled. These points are assigned to areas with zero value in the background areas. The attribute vector is reshaped, 

with each point associated with the background passing through a generic multi-layer perceptron (MLP) to generate 

various descriptors. Finally, Feature Relations maps computation represents background and out-boundary prototypes, 

descriptors specific to the background, and query attributes. This data is input into lightweight decoders to predict 

background areas. The operations for foreground path prediction follow a similar process. Figure 2 shows the proposed 

MAA + ADLC architecture. 

 

Figure 2 proposed MAA+ AGDL architecture 

3.4 Multi-Attribute Aggregation 

Initially, the network structure is frozen in the attribute-sharing encoder, denoted as ℎℶ(∙) which is used to 

retrieve attribute vectors for both input support and query images, ℶ  represents the network attribute. The attributes 

for the support and query images are represented as 𝐻𝑢 = ℎℶ(𝐾𝑢) and 𝐻𝑠 = ℎℶ(𝐾𝑠) respectively, where 𝐻𝑢 and 

𝐻𝑠  𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝕋𝐽×𝑌×𝑒 , here 𝐽 and 𝑌 represent the height and width of the attributes, respectively, and 𝑒 denotes the 

channel depth of the attribute.  

 To address common issues related to segmentation and blurry boundaries, a technique is proposed for 

generating approximate boundary masks to improve the segmentation accuracy of the foreground class boundary. 

Initially, image processing methods, including structure refinement and Boundary extension, are applied to the support 
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mask 𝒪𝑢. This results in the SRF (structure refinement) of the support mask 𝒪𝑢
𝑒𝑟𝑜𝑠𝑖𝑜𝑛 and the BE (Boundary extension) 

support mask denoted as 𝒪𝑢
𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 . The structure refinement support mask is then subtracted from the initial support 

mask, and similarly, the initial support mask is subtracted from the dilated mask. These operations generate masks for 

the inner and outer boundaries in the foreground, denoted as 𝒪𝑢
𝑖𝑛𝑛𝑒𝑟  and 𝒪𝑢

𝑜𝑢𝑡𝑒𝑟 , respectively. The process is formulated 

using the following equations (1). 

 

𝒪𝑢
𝑆𝑅𝐹(𝑗, 𝑦) =

𝑚𝑖𝑛𝑖𝑚𝑢𝑚
(𝑧, 𝑎)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐷

𝒪𝑢(𝑗 + 𝑧, 𝑦 + 𝑎) 

 

𝒪𝑢
𝐵𝐸(𝑗, 𝑦) =

𝑚𝑎𝑥𝑖𝑚𝑢𝑚
(𝑧, 𝑎)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐷

𝒪𝑢(𝑗 + 𝑧, 𝑦 + 𝑎) 

 

 

(1) 

Given the equations mentioned earlier (𝑗, 𝑦) represents the initial mask's position, and  (𝑧, 𝑎) denotes the 

pixel placement within the element 𝐷, which is a matrix kernel with dimensions 3 by 3. 

𝒪𝑢
𝑖𝑛𝑛𝑒𝑟=𝒪𝑢 − 𝒪𝑢

𝑆𝑅𝐹 

 

𝒪𝑢
𝑜𝑢𝑡𝑒𝑟=𝒪𝑢 − 𝒪𝑢

𝐵𝐸  

 

(2) 

It is observed that the inner and outer boundary masks, denoted as 𝒪𝑢
𝑖𝑛𝑛𝑒𝑟  and 𝒪𝑢

𝑜𝑢𝑡𝑒𝑟  are retrieved using the 

specified formulation. This process is crucial for predicting the paths in the maps of the foreground and background, 

respectively. In line with traditional practices for the proposed method, retrieving the main data from the foreground 

and background areas of the support images plays a vital role. An average pooling operation is performed on the 

support attribute using the masks of both the background and foreground. This operation yields the prototypes of the 

foreground and background, denoted as  𝑟𝑢
𝑓𝑜𝑟𝑒

 and 𝑟𝑢
𝑏𝑎𝑐𝑘 , respectively. This is expressed as given below in equation 

(3). 

 

𝑟𝑢
𝑘 = (∑ 𝐻𝑢(𝑗, 𝑦). 1[𝒪𝑢(𝑗, 𝑦) = 𝑙]

𝑗,𝑦
) (∑ 1[𝒪𝑢(𝑗, 𝑦) = 𝑙]

𝑗,𝑦
)

−1

 

 

(3) 

 

In the context described, the notations, 𝑙 = 1 while 𝑘 𝑖𝑠 𝑓𝑜𝑟𝑒, serve to differentiate the evaluations applied 

to the foreground and background. While 𝑙 = 0 while 𝑘 𝑖𝑠 𝑏𝑎𝑐𝑘, implying that the evaluation is applied to foreground 

and 1[∙] is used to indicate that it is set to 1 if the condition inside the bracket is true, else equal is 0. The evaluation 

of prototypes for the foreground and background is elaborated in equation (3), where average pooling operations are 

conducted on the support attribute. This operation leverages the previously obtained foreground support masks, both 

outer  (𝑟𝑢
𝑖𝑛𝑛𝑒𝑟) and  (𝑟𝑢

𝑜𝑢𝑡𝑒𝑟), to generate prototypes for the inner supporting boundary. These prototypes are 

instrumental in distinctly differentiating the data for the inner and outer boundaries of the targeted object. The 

formulation can be expressed as: 

 

𝑟𝑢
𝑣 = (∑ 𝐻𝑢(𝑗, 𝑦) ⊙

𝑗,𝑦
 𝒪𝑢

𝑣(𝑗, 𝑦)) (∑ 𝒪𝑢
𝑣(𝑗, 𝑦)

𝑗,𝑦
 )

−1

 

 

(4) 

  

Considering equation (4), as a reference point, the symbol ⊙ represents the Hadamard product, a term used 

to denote element-wise multiplication between two matrices of the same dimensions. In this context 𝑣 =
𝑖𝑛𝑛𝑒𝑟,   𝑟𝑢

𝑖𝑛𝑛𝑒𝑟   denotes the prototype for the inner boundary associated with the supporting image, evaluated using 

the corresponding mask 𝒪𝑢
𝑖𝑛𝑛𝑒𝑟  and 𝑣 = 𝑜𝑢𝑡𝑒𝑟,   𝑟𝑢

𝑜𝑢𝑡𝑒𝑟  denotes the prototype for the outer boundary associated with 

the supporting image, evaluated using the corresponding mask 𝒪𝑢
𝑜𝑢𝑡𝑒𝑟 . The assumption is made that in the worst-case 

scenario, one of the prototypes loses a part of the comprehensive data, leading to an inadequate representation of the 

complete feature for class distribution. To address this, the generation of various descriptors for representation is 
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proposed, which is distinct from traditional practices. This ensures that both the foreground and background areas of 

the support attribute are sampled during the relative operation at random. Consequently, the foreground and 

background are masked on the support attribute to result in the support attribute for the foreground denoted as 

𝐻𝑢
𝑓𝑜𝑟𝑒

 and background 𝐻𝑢
𝑏𝑎𝑐𝑘, which is given below in equation (5). 

 

𝐻𝑢
𝑘 = 𝐻𝑢 ⊛ 𝒪𝑢

𝑘 

 

(5) 

In this context, where the element-wise multiplication is denoted by ⊛.  While 𝑘 = 𝑓𝑜𝑟𝑒, we use 𝒪𝑢
𝑓𝑜𝑟𝑒

= 𝒪𝑢 

and the evaluated output is the support attribute for foreground and when 𝑘 = 𝑏𝑎𝑐𝑘, we use 𝒪𝑢
𝑏𝑎𝑐𝑘 = 1 − 𝒪𝑢 and the 

evaluated output is the support attribute for the foreground. We observe that the values for the points of the background 

for the support attribute in the foreground are = 0, and vice-versa.  

3.5 Feature Reshaping Module 

To address the task of balancing the number of feature points between the foreground and background after 

having filtered out zero-value features and reshaping the support attributes, we proceed with the formulation of the 

feature reshaping as described in algorithm 1. This technique aims to ensure a consistent number of feature points. 

𝑅𝑓𝑜𝑟𝑒 = [𝑟𝑓𝑜𝑟𝑒
1 , 𝑟𝑓𝑜𝑟𝑒

2 , … . , 𝑟
𝑓𝑜𝑟𝑒

𝑃𝑓𝑜𝑟𝑒  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃𝑓𝑜𝑟𝑒×𝑒 and 𝑅𝑏𝑎𝑐𝑘 = [𝑟𝑏𝑎𝑐𝑘
1 , 𝑟𝑏𝑎𝑐𝑘

2 , … . , 𝑟𝑏𝑎𝑐𝑘
𝑃𝑏𝑎𝑐𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃𝑏𝑎𝑐𝑘×𝑒, 

𝑃𝑓𝑜𝑟𝑒 and 𝑃𝑏𝑎𝑐𝑘 denote the complete count of points in the fore as well as background respectively. To ensure a 

consistent number of feature points between the foreground and background attributes, a random sampling method is 

applied to select 𝑃𝑓𝑜𝑟𝑒 and 𝑃𝑏𝑎𝑐𝑘   from their respective sets of feature points, where 𝑅𝑓𝑜𝑟𝑒  ̃ 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃𝑏𝑎𝑐𝑘×𝑒 are 

selected directly from the attribute points of the foreground at random. Contrarily, the attribute points of the foreground 

are repeated 𝑝 times before choosing 𝑡 samples at random from the feature points of the foreground. These datasets 

of feature points for the foreground are combined resulting in the 𝑃𝑏𝑎𝑐𝑘 samples utilized for occupying the areas having 

zero values for foreground attributes. This technique is formulated mathematically as given below in equations (6) 

and (7). 

 

𝑅𝑓𝑜𝑟𝑒  ̃ = ℋ𝑠𝑎𝑚𝑝𝑙𝑒(𝑅𝑓𝑜𝑟𝑒 , 𝑃𝑏𝑎𝑐𝑘) 

 

(6) 

 

While 𝑃𝑓𝑜𝑟𝑒𝑖𝑠 𝑙𝑒𝑠𝑠𝑒𝑟 𝑡ℎ𝑎𝑛 𝑃𝑏𝑎𝑐𝑘: 

 

𝑜 = ⌊(𝑃𝑏𝑎𝑐𝑘)(𝑃𝑓𝑜𝑟𝑒)−1⌋ 

 

𝑡 = 𝑃𝑏𝑎𝑐𝑘 − 𝑜𝑃𝑓𝑜𝑟𝑒  

 

𝑅𝑓𝑜𝑟𝑒
′ =̃ ℋ𝑠𝑎𝑚𝑝𝑙𝑒(𝑅𝑓𝑜𝑟𝑒 , 𝑡) 

 

𝑅𝑓𝑜𝑟𝑒  ̃ = 𝑅𝑓𝑜𝑟𝑒  ̃ ⊕ 𝑅𝑓𝑜𝑟𝑒  ̃ ⊕ … … .⊕ 𝑅𝑓𝑜𝑟𝑒  ⊕̃ 𝑅𝑓𝑜𝑟𝑒
′̃  

 

 

 

 

 

(7) 

 

In this case, 𝑃𝑓𝑜𝑟𝑒 + 𝑃𝑏𝑎𝑐𝑘  𝑖𝑠 𝑒𝑞𝑢𝑎𝑣𝑙𝑒𝑛𝑡 𝑡𝑜 𝐽𝑌, the function that chooses 𝑝 at random is denoted as 

ℋ𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑝) from the point 𝑍, the operation is denoted by ⌊∙⌋, the concatenation for the dimension elements is 

represented as ⊕. The sampling technique at random for the attribute points for the background are same as given 

above and also observed in the algorithm explained below. However, we attain 𝑃𝑓𝑜𝑟𝑒  samples where 

𝑅𝑓𝑜𝑟𝑒  ̃  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃𝑓𝑜𝑟𝑒×𝑒, to occupy the background attribute.  
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Algorithm 1: Feature reshaping algorithm 

Algorithm Feature Reshaping algorithm 

Input Features or attributes in the foreground 𝐻𝑢
𝑓𝑜𝑟𝑒

  

Step 1: The count of points for foreground as well as background is given as 

𝑃𝑓𝑜𝑟𝑒  𝑎𝑛𝑑 𝑃𝑏𝑎𝑐𝑘  

Step 2: Eliminate the feature or attribute points that have the value zero in 𝐻𝑆
𝑓𝑜𝑟𝑒

 and 

Retrieve the feature points of the foreground 𝑅𝑓𝑜𝑟𝑒 from 𝐻𝑆
𝑓𝑜𝑟𝑒

 

Step 4 Choosing 𝑃𝑏𝑎𝑐𝑘  samples at random 𝑅𝑓𝑜𝑟𝑒  ̃  from 𝑅𝑓𝑜𝑟𝑒   

Step 5 If 𝑃𝑓𝑜𝑟𝑒  𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑃𝑏𝑎𝑐𝑘  then  

Choose𝑃𝑏𝑎𝑐𝑘  samples at random 𝑅𝑓𝑜𝑟𝑒  ̃ from 𝑅𝑓𝑜𝑟𝑒 , 

Else: 

Step 8 Obtain 𝑜 by dividing 𝑃𝑏𝑎𝑐𝑘  𝑏𝑦 𝑃𝑓𝑜𝑟𝑒  using equation (7) 

Step 9 The remainder 𝑡 of 𝑃𝑏𝑎𝑐𝑘  over 𝑃𝑓𝑜𝑟𝑒  using equation (7) 

Step 10 Choose 𝑡 samples at random 𝑅𝑓𝑜𝑟𝑒
′̃  from 𝑅𝑓𝑜𝑟𝑒 from equation (7) 

Step 11 𝑅𝑓𝑜𝑟𝑒  is repeated 𝑜 times and combined with 𝑅𝑓𝑜𝑟𝑒
′̃  to result in 𝑅𝑓𝑜𝑟𝑒  ̃  

End if 

Step 13 Attain the index position Ζ1 for the background in 𝐻𝑢
𝑓𝑜𝑟𝑒

 from equation (8) 

Step 14 Occupy the positions that are in the background in 𝐻𝑢
𝑓𝑜𝑟𝑒

 with 𝑅𝑓𝑜𝑟𝑒  ̃  relating to 

Ζ1  
Output Reshaped foreground 𝐻𝑢

𝑓𝑜𝑟𝑒
 feature 

 

The foreground attributes 𝐻𝑢
𝑓𝑜𝑟𝑒

(𝐻𝑢
𝑏𝑎𝑐𝑘)  along with the zero numbered back(fore) ground area is occupied 

with samples of fore(back) ground attribute points 𝑅𝑓𝑜𝑟𝑒  ̃ (𝑅𝑏𝑎𝑐𝑘  ̃ ). This process assures that the points of the feature 

for the foreground 𝐻𝑢
𝑓𝑜𝑟𝑒

 are relative to the foreground, while the entire attribute points for the background 𝐻𝑢
𝑏𝑎𝑐𝑘  is 

related to the background. This procedure is expressed as given below in equation (8) and (9). 

 

Ζ0 = 𝒱[𝐻𝑢
𝑏𝑎𝑐𝑘 = 0] 

Ζ1 = 𝒱[𝐻𝑢
𝑓𝑜𝑟𝑒

= 0] 

 

(8) 

 

𝐻𝑢
𝑏𝑎𝑐𝑘[Ζ0] = 𝑅𝑏𝑎𝑐𝑘

𝑠𝑝
 

𝐻𝑢
𝑓𝑜𝑟𝑒[Ζ1] = 𝑅𝑓𝑜𝑟𝑒

𝑠𝑝
 

 

(9) 

 

Considering the equations given above, the index of spatial location for the back, as well as foreground, is 

denoted as Ζ0 and Ζ1, respectively. The logic function is given as 𝒱[∙] and is used for the determination if the particular 

condition inside the bracket is true or not.  

3.6 Dual Network for optimal features in each class 

For generating various descriptors that fully capture the feature data for each class, the features of the occupied 

foreground and background are passed through two lightweight multi-layer perceptrons (MLPs) which are denoted as 
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𝕄 that have a straightforward structure. In this way, the representation descriptors for the foreground and background 

classes are created. These are viewed as types of various prototypes, as detailed below in equation (10). 

 

𝑓𝑓𝑜𝑟𝑒 = 𝕄(𝐻𝑢
𝑓𝑜𝑟𝑒

; 𝜃1) 

 

𝑓𝑏𝑎𝑐𝑘 = 𝕄(𝐻𝑢
𝑏𝑎𝑐𝑘; 𝜃0) 

 

(10) 

 

Here, 𝑓𝑓𝑜𝑟𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃𝑒
𝑓𝑜𝑟𝑒

×𝑒  and 𝑓𝑏𝑎𝑐𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃𝑒
𝑏𝑎𝑐𝑘×𝑒 expresses 𝑃𝑓

𝑓𝑜𝑟𝑒 
generated descriptors for 

foreground and 𝑃𝑓
𝑏𝑎𝑐𝑘 generated descriptors for background. The occupied attributes for the foreground as well as 

background are given as 𝐻𝑢
𝑓𝑜𝑟𝑒

 and 𝐻𝑢
𝑏𝑎𝑐𝑘which are shaped again according to the size of 𝐽𝑌 × 𝑒 and the 𝕄 (∙ ;  𝜃∗) 

which is a function for the multi-layer perceptron that has attributes 𝜃∗. We observe, the multi-layer perceptron has a 

structure that consists of a completed linked layer, an activation layer (ReLU) as well as another completely linked 

layer, that maps a constant count of attribute points for various represented descriptors. In conclusion, the combination 

of the normally represented descriptors for the foreground along with its supporting prototype 𝑟𝑢
𝑓𝑜𝑟𝑒

 as well as the 

prototype for the inner boundaries  𝑟𝑢
𝑖𝑛𝑛𝑒𝑟  from the equation (3) and equation (4) that results in 𝐹𝑓𝑜𝑟𝑒 . In the same 

manner, we combine the normally represented descriptors for background along with its supporting prototype 𝑟𝑢
𝑏𝑎𝑐𝑘 

as well as the prototype for the outer boundaries  𝑟𝑢
𝑜𝑢𝑡𝑒𝑟  from the equation (3) and equation (4) that results in 𝐹𝑏𝑎𝑐𝑘 . 

This procedure is explained using the equations that are given below: 

 

𝐹𝑓𝑜𝑟𝑒 = 𝑓𝑓𝑜𝑟𝑒 ⊕ 𝑟𝑢
𝑓𝑜𝑟𝑒

⊕ 𝑟𝑢
𝑖𝑛𝑛𝑒𝑟  

 

𝐹𝑏𝑎𝑐𝑘 = 𝑓𝑏𝑎𝑐𝑘 ⊕ 𝑟𝑢
𝑏𝑎𝑐𝑘 ⊕ 𝑟𝑢

𝑜𝑢𝑡𝑒𝑟  

 

(11) 

 

In this case, 𝐹𝑓𝑜𝑟𝑒  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋(𝑃𝑒
𝑓𝑜𝑟𝑒

+2)×𝑒  and 𝐹𝑏𝑎𝑐𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋(𝑃𝑒
𝑏𝑎𝑐𝑘+2)×𝑒 that will be utilized for the path 

predictions in the fore as well as background maps related to query pictures.  

3.7  Multiple Feature Relations Maps 

A two-path architecture as well as combines the Feature Relations maps produced by various descriptors for 

the prediction queries of back as well as foreground maps. Therefore, this efficiently decreases the miscategorization 

of the model. Firstly, the affinities are evaluated individually for the various generated fore as well as background 

descriptors as given below in equation (12). 

 

𝐶𝑓𝑜𝑟𝑒(𝑗, 𝑦) = (𝐹𝑓𝑜𝑟𝑒
𝑉   .  𝐻𝑠(𝑗, 𝑦))(‖𝐹𝑓𝑜𝑟𝑒‖  .  ‖𝐻𝑠(𝑗, 𝑦)‖)

−1
 

 

 

𝐶𝑏𝑎𝑐𝑘(𝑗, 𝑦) = (𝐹𝑏𝑎𝑐𝑘
𝑉   .  𝐻𝑠(𝑗, 𝑦))(‖𝐹𝑏𝑎𝑐𝑘‖  .  ‖𝐻𝑠(𝑗, 𝑦)‖)−1 

 

(12) 

In this case, 𝐶𝑓𝑜𝑟𝑒  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜  𝕋(𝑃𝑒
𝑓𝑜𝑟𝑒

+2)×𝐽×𝑌 and 𝐶𝑏𝑎𝑐𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜  𝕋(𝑃𝑒
𝑏𝑎𝑐𝑘+2)×𝐽×𝑌 are used to denote 

Feature Relations maps of the foreground as well as the background, respectively. Further, a decoder is developed for 

the concatenation of the maps 𝐶𝑓𝑜𝑟𝑒 and 𝐶𝑏𝑎𝑐𝑘 . The concluding map of the foreground 𝒪𝑓𝑜𝑟𝑒̂  is generated using this 

decoder and the map of the background 𝒪𝑏𝑎𝑐𝑘̂  is generated using the following equation (13). 

 

𝒪𝑓𝑜𝑟𝑒̂ = 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔 (𝐶𝑓𝑜𝑟𝑒; 𝜌1) 

 

𝒪𝑏𝑎𝑐𝑘̂ = 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔 (𝐶𝑏𝑎𝑐𝑘; 𝜌0) 

 

 

(13) 
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Here, 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔 ( ∙ ; 𝜌∗) is used to express the function for a convolutional neural network having a 

lightweight along with the attribute 𝜌∗, and the result is an individual map for prediction 𝒪∗  ̂ 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝐽×𝑌. In 

conclusion, we concatenate the maps that are predicted finally using the operation of concatenation as well as the 

function of softmax such as given below in equation (14). 

 

𝒪̂ = 𝛼(𝒪𝑏𝑎𝑐𝑘̂ ⊕ 𝒪𝑓𝑜𝑟𝑒̂) 

 

(14) 

For the equation (14) given above, 𝛼(∙) is used to denote the softmax that is used, and the final map that is 

predicted is given as 𝒪̂. 

3.8 Adaptive Gradient Dice Loss (AGDL)  

Our proposed methodology introduces a novel approach to enhance the segmentation accuracy of medical 

images through the implementation of Adaptive Gradient Dice Loss and Deformable Convolution-based Feature 

Alignment (DCFA). These advancements address key challenges in conventional segmentation methods, particularly 

in handling gradient vanishing issues and improving feature alignment across different image scales. 

Adaptive Gradient Dice Loss is designed the GODL function is a pivotal innovation designed to mitigate the 

instability associated with the Dice loss during the model training phase. The Dice loss is formulated as given in 

equation (15). 

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 −
2𝑋|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

(15) 

Where 𝐴  and 𝐵 represent the predicted and ground truth segmentation masks, respectively. To address the 

gradient vanishing problem inherent in the Dice loss, we introduce the GODL, which modifies the loss function based 

on the gradient's magnitude during backpropagation. This ensures a consistent and robust optimization path. The 

AGDL is mathematically represented as given in equation (16). 

𝐴𝐺𝐷𝐿 = (𝐷𝑖𝑐𝑒_𝐿𝑜𝑠𝑠 )𝑋(1 + 𝜂 (𝛻𝑂)) (16) 

Where 𝛻 is a tuning parameter that controls the degree of gradient optimization, and 𝛻𝑂 signifies the 

magnitude of the gradient of the loss function, facilitating enhanced learning dynamics. 

3.8.1 Deformable Convolution-based Feature Alignment (DCFA) 

Incorporates deformable convolution layers to enable adaptive feature alignment across different scales. This 

module effectively captures and aligns disparate features, crucial for accurately segmenting intricate details in medical 

images. The alignment process is governed by the deformable convolution operation, which adjusts the kernel's spatial 

sampling locations according to the learned offsets, thereby optimizing the feature fusion across layers for improved 

segmentation performance. 

4 PERFORMANCE EVALUATION 

The methodology for brain tumor detection through MRI scans employs PyTorch for model development and 

training, utilizing the computational power of an Nvidia GeForce RTX 3090 graphics card. This setup provides a 

robust platform for handling the complexities of neural network training and image processing tasks. The methodology 

encompasses both training and testing phases, meticulously designed to optimize performance: 

A. Training Stage: 

• Batch Size: Set to 2, this small batch size allows for efficient memory usage and more frequent updates of 

the model weights, which can be beneficial for learning fine-grained details in the MRI images. 

• Optimizer: The Adam optimizer is chosen for its effectiveness in handling sparse gradients and adapting the 

learning rate for different parameters, with an initial learning rate of 1e-5. This choice is aimed at achieving 

a balanced optimization process that is both robust and sensitive to the nuances of the training data. 

• Epochs and Learning Rate Decay: The model is trained over 200 epochs to ensure sufficient exposure to 

the training data. The learning rate is designed to decay by a factor of 0.5 every 10 epochs, which helps in 

fine-tuning the model's parameters as the training progresses, ensuring steady convergence. 
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• Early Stopping: To mitigate the risk of overfitting, an early stopping mechanism is employed. Training is 

halted if the validation loss does not improve for 50 consecutive epochs, ensuring that the model retains its 

generalization ability without memorizing the training data. 

 

B. Testing Stage: 

The efficiency of the model is highlighted by its quick inference time, where testing a single sample takes 

approximately 0.4 seconds. This rapid testing capability indicates the model's practical applicability in real-world 

settings, where timely diagnosis can significantly impact treatment outcomes. 

C. Dataset Details 

The evaluation of the proposed model for brain tumor detection utilizes data from the Brain Tumor Segmentation 

Challenge (BRATS) 2019 and 2020. These datasets are pivotal for benchmarking the performance of segmentation 

models due to their comprehensive collection of MRI sequences and annotated cases. 

• BRATS2019 Dataset [28]: Contains 335 cases, providing a substantial volume of data for training and 

validation. The dataset includes four types of 240 × 240 × 155 MRI sequences: FLAIR, T1, T2, and T1ce. 

The annotations available cover various tumor regions: necrotic and non-enhancing tumor (NET), enhancing 

tumor (ET), peritumoral edema (ED), and the non-tumor background (BG). 

• BRATS2020 Dataset [29]: Comprises 369 cases, each featuring the same four MRI sequence types as the 

2019 dataset, further enriching the diversity and volume of data available for model evaluation. Similar to 

the 2019 dataset, annotations are provided for distinct tumor subregions, facilitating detailed analysis and 

segmentation performance assessment. 

The model's performance is meticulously assessed across three critical tumor subregions: the whole tumor (WT), 

the tumor core (TC), and the enhancing tumor (ET). This approach ensures a comprehensive evaluation of the model's 

ability to detect and segment various components of brain tumors, reflecting its practical utility in clinical settings. A 

five-fold cross-validation method is employed across the two datasets to ensure the robustness and reliability of the 

evaluation results. For the BRATS2019 dataset, 268 cases are designated for training, with the remaining 67 cases 

allocated for testing. Similarly, for the BRATS2020 dataset, 295 cases are used for training, and 74 cases are set aside 

for testing. This division allows for a balanced distribution of data across training and testing sets, ensuring that the 

model is exposed to a wide variety of cases during training and evaluated on a representative sample of the dataset. 

4.1 Evaluation Metrics 

To evaluate the proposed brain tumor segmentation model, four key metrics are utilized: 

• Dice Similarity Coefficient (DSC): Measures the overlap between the model's predictions and the ground 

truth. Higher values indicate better accuracy. 

• Sensitivity: Assesses the model's ability to correctly identify tumor regions, with higher values indicating 

fewer missed tumor areas. 

• Specificity: Evaluates the accuracy in identifying non-tumor regions, with higher values showing precise 

exclusion of non-tumor areas. 

• Hausdorff Distance (HD95): Quantifies the accuracy of the tumor boundary predictions, with lower values 

indicating more precise boundary segmentation. 

These metrics provide a comprehensive assessment of the model's performance in segmenting brain tumors, 

comparing its accuracy and precision against existing models. 

4.2 Experiment Results 

The verification of the Proposed Multi-Attribute Aggregation (MAA) and an Adaptive Gradient Dice Loss 

(AGDL) (MAA+AGDL) involves a comprehensive comparison with leading segmentation methods on the 

BRATS2020 dataset. The models compared included U-Net [30], SwinBTS [31], nnU-Net [32], SA-Net [33], H2NF-

Net [34], TransBTS [35], BiTr-Unet [36], SegTransVAE [37], mmFormer [38], UNETR [39], Attention U-Net [40], 

SA-LuT-Net [41], the studies by Wang et al. [42], Li et al. [43], and both CorrDiff and the enhanced CorrDiff+ [44]. 

This evaluation showcased the MAA+AGDL 's performance against a wide array of state-of-the-art segmentation 

technologies, highlighting its efficacy and innovation in brain tumor segmentation on a well-recognized dataset. 
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The visual comparison provided in Table 1 from BRATS 2019 displays various brain tumor segmentation 

models alongside the ground truth. The segmentation accuracy of each model can be assessed by the proximity of its 

highlighted tumor regions to the ground truth. The MAA+AGDL appears to closely match the ground truth, indicating 

a high degree of accuracy in tumor detection and delineation. It demonstrates precise segmentation of the tumor's core 

and periphery, aligning well with the ground truth and showing clear improvements over other methods like 

Segmentation U-Net, TransBTS, mmFormer, BiTr-Unet, and CorrDiff+. The MAA+AGDL's segmentation is notably 

more consistent and contiguous, suggesting superior performance in identifying and outlining the tumor area. 

Table 1 Brats 2019 

Image Ground 

Truth 

Segmentati

on U-Net 

TransBTS mmFormer BiTr-Unet COrrDiff+ Proposed(

MAA+AG

DL) 

        

        
 

Table 2 displays segmentation results on the BRATS 2020 dataset across multiple models in comparison to 

the ground truth. Observations indicate that the proposed model achieves highly accurate segmentation, with tumor 

boundaries that closely resemble those in the ground truth. The consistency and continuity in the tumor regions 

segmented by the proposed model suggest that it effectively captures both the core and peripheral tumor areas. Other 

models, such as the Segmentation U-Net, TransBTS, mmFormer, BiTr-Unet, and CorrDiff+, show varying degrees of 

congruence with the ground truth. However, the proposed model seems to provide the best match, offering fewer false 

positives and negatives, which implies improved sensitivity and specificity. The precision in boundary delineation 

also appears to be superior in the proposed model, likely resulting in higher Dice scores and lower Hausdorff distances, 

although these would need to be confirmed with quantitative metrics. Overall, the proposed model demonstrates a 

strong ability to segment brain tumors accurately, which is essential for effective diagnosis and treatment planning. 
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Table 2 Brats 2020 dataset 

Image Ground 

Truth 

Segmentati

on U-Net 

TransBTS mmFormer BiTr-Unet COrrDiff+ Proposed(

MAA+AG

DL) 

        

        

 

Table 3 shows the comparison of Dice Similarity Coefficient (DSC) scores across various segmentation 

models on the BRATS 2019 dataset and highlights the superior performance of the proposed model, especially in 

segmenting enhancing tumor (ET), whole tumor (WT), and tumor core (TC) regions. With DSC scores of 93.64 for 

ET, 96.54 for WT, and 93.54 for TC, the proposed model significantly outperforms other state-of-the-art methods. 

Notably, BiTr-Unet and CorrDiff also show commendable results, but the proposed model's scores are markedly 

higher, demonstrating its enhanced capability in accurately segmenting brain tumors. This superiority is particularly 

evident in its comprehensive detection across all tumor subregions, indicating a significant advancement in brain 

tumor segmentation technology; a graphical comparison is presented in Figure 3. 

Table 3 BRATS 2019 DSC comparison 

Methods ET (DSC) WT (DSC) TC (DSC) 

U-Net  73.34 88.26 75.98 

CANet  75.9 88.5 85.1 

Attention U-Net  75.96 88.81 77.2 

SA-LuT-Net  78.21 90.79 84.82 

Wang et al.  73.7 89.4 80.7 
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Li et al.  77.1 88.6 81.3 

TransBTS  78.9 90.01 81.9 

BiTr-Unet  81.09 89.46 81.98 

SegTransVAE  80.85 90.15 85.25 

mmFormer  77.62 89.43 83.56 

UNETR  80.28 90.23 84.91 

CorrDiff 81.23 90.47 85.87 

Proposed(MAA+AGDL) 93.64 96.54 93.54 

 

 

Figure 3 DSC comparison on BRATS 2019 

Table 4 presents BRATS 2019 dataset's Hausdorff Distance (HD95) comparison and underscores the 

proposed model's exceptional precision in delineating tumor boundaries across enhancing tumor (ET), whole tumor 

(WT), and tumor core (TC) regions. Achieving HD95 scores of 3.25 for ET, 2.64 for WT, and 3.8 for TC, the proposed 

model demonstrates unparalleled accuracy in capturing the intricate details of tumor margins when compared to other 

leading methods. This is notably superior to the next best performances, such as those from SA-LuT-Net and 

SegTransVAE, indicating a significant advancement in ensuring precise tumor segmentation. The proposed model's 

ability to minimize the maximum distance of the segmented boundary from the ground truth, even in complex tumor 

structures, sets a new benchmark in the field. A graphical comparison is given in Figure 4. 
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Table 4 BRATS 2019 HD95 comparison 

Methods ET (HD95) WT (HD95) TC (HD95) 

U-Net  6.21 6.17 8.68 

CANet  4.81 7.09 8.41 

Attention U-Net  5.2 7.76 8.26 

SA-LuT-Net  3.69 4.46 5.26 

Wang et al.  5.99 5.68 7.36 

Li et al.  6.03 6.23 7.41 

TransBTS  4.73 5.64 6.04 

BiTr-Unet  5.76 4.62 7.82 

SegTransVAE  5.14 4.47 5.67 

UNETR  5.23 4.53 6.87 

CorrDiff 5.49 4.18 6.52 

Proposed(MAA+AGDL) 3.25 2.64 3.8 

 

 

 

Figure 4 BRATS 2019 HD95 comparison 

Table 5 outlines the Dice Similarity Coefficient (DSC) values for various deep learning models applied to 

brain tumor segmentation on Brats 2020, evaluated across three metrics: Enhancing Tumor (ET), Whole Tumor (WT), 

and Tumor Core (TC). The DSC value, a statistical measure ranging from 0 to 1, quantifies the similarity between the 
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predicted segmentation and the ground truth, with 1 indicating perfect agreement. The U-Net model, a foundational 

architecture in medical image segmentation, shows consistent performance with DSC values of 76.36 for ET, 83.27 

for WT, and 81.78 for TC. However, it is outperformed by more advanced models such as nnU-Net and SA-Net, 

indicating the evolution and improvement in segmentation accuracy. Notably, the CorrDiff+ model demonstrates 

significant improvement with scores of 82.17 for ET, 92.28 for WT, and 86.21 for TC, suggesting the effectiveness 

of incorporating correlation and difference strategies in segmentation tasks. The proposed model significantly 

outshines all others, with DSC values of 92.45 for ET, 97.82 for WT, and 94.28 for TC, indicating a substantial leap 

in segmentation accuracy. This model's performance underscores the potential of advanced deep learning techniques 

in accurately delineating tumor boundaries, which is crucial for effective diagnosis and treatment planning. 

Furthermore, the graphical comparison is given in Figure 5. 

Table 5  BRATS 2020 DSC comparison 

Methods ET WT TC 

U-Net 76.36 83.27 81.78 

SwinBTS 77.36 89.06 80.3 

nnU-Net 79.45 91.19 85.24 

SA-Net 79.27 91.08 85.29 

H2NF-Net 78.75 91.29 85.46 

TransBTS 78.73 90.09 81.73 

BiTr-Unet 82.05 90.16 82.89 

SegTransVAE 81.32 90.18 85.57 

mmFormer 77.57 89.59 85.69 

UNETR 79.81 90.19 83.97 

CorrDiff 80.92 91.13 85.06 

CorrDiff+ 82.17 92.28 86.21 

Proposed(MAA+AGDL) 92.45 97.82 94.28 

 

 

Figure 5 BRATS DSC comparison 
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Table 6 presents the sensitivity performance of various deep learning models for brain tumor segmentation, 

focusing on three key areas: Enhancing Tumor (ET), Whole Tumor (WT), and Tumor Core (TC). Sensitivity, a crucial 

metric in medical imaging, measures the true positive rate, indicating the model's ability to correctly identify tumor 

regions. The U-Net architecture shows solid baseline performance with sensitivity scores of 76.65 for ET, 88.34 for 

WT, and 78.65 for TC, demonstrating its reliability in tumor detection. Advanced models such as nnU-Net and SA-

Net offer improvements, with nnU-Net achieving higher sensitivity across all categories, particularly 80.97 for ET, 

91.17 for WT, and 84.38 for TC, underscoring its efficiency in capturing tumor features. The CorrDiff+ model, with 

sensitivity values of 83.32 for ET, 92.73 for WT, and 85.14 for TC, represents a significant advancement, suggesting 

that incorporating correlation and difference strategies can enhance tumor detection accuracy. Remarkably, the 

Proposed_Model sets a new standard with exceptional sensitivity scores of 94.35 for ET, 96.12 for WT, and 93.84 for 

TC. This performance highlights the model's superior ability to accurately identify tumor regions, making it a potential 

game-changer in the field of medical image segmentation. A graphical comparison is presented in Figure 6. 

Table 6 BRATS Sensitivity 

Methods ET (Sensitivity) WT (Sensitivity) TC (Sensitivity) 

U-Net  76.65 88.34 78.65 

nnU-Net  80.97 91.17 84.38 

SA-Net  77.81 91.08 83.86 

H2NF-Net  79.16 91.75 84.27 

BiTr-Unet  78.12 90.89 83.48 

SegTransVAE  80.27 91.32 83.89 

UNETR  78.73 91.21 84.02 

CorrDiff 81.78 91.36 84.09 

CorrDiff+  83.32 92.73 85.14 

Proposed(MAA+AGDL) 94.35 96.12 93.84 
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Figure 6 Sensitivity comparison on Brats 2020 dataset 

Table 7 presents Hausdorff Distance (HD95) scores for brain tumor segmentation models on the BRATS 

2020 dataset and showcases the superior performance of the proposed model across all tumor regions: Enhancing 

Tumor (ET), Whole Tumor (WT), and Tumor Core (TC). With HD95 scores of 12.89 for ET, 2.65 for WT, and 3.57 

for TC, the proposed model demonstrates the highest accuracy in outlining tumor boundaries, significantly 

outperforming other advanced models including CorrDiff+, BiTr-Unet, and SA-Net. This indicates the effectiveness 

of the proposed model's novel architectural features and methodologies in capturing the intricate details of tumor 

margins, thereby offering a significant advancement in the precision of medical image segmentation for brain tumors. 

Graphical representation is given in Figure 7. 

Table 7 HD95 comparison on Brats 2020 dataset 

Methods ET WT TC 

U-Net  30.21 8.37 16.78 

SwinBTS  26.84 8.56 15.78 

nnU-Net  29.23 3.79 7.77 

SA-Net  18.19 4.09 5.88 

H2NF-Net  26.57 4.18 4.97 

TransBTS  17.95 4.96 9.76 

BiTr-Unet  15.76 4.58 13.78 

SegTransVAE  16.97 4.57 5.73 

UNETR  17.99 4.75 9.37 

CorrDiff 17.89 4.67 8.49 

CorrDiff+ 15.64 3.68 6.93 

Proposed(MAA+AGDL) 12.89 2.65 3.57 
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Figure 7 HD95 comarison on BRATs 2020 dataset 

4.3 Comparative Analysis 

The analysis of the performance improvement in Table 8 reveals significant enhancements by the proposed model 

over CorrDiff+ across various metrics and datasets. For BRATS 2019 and 2020: 

• DSC Improvements are notable, especially for Enhancing Tumor (ET) regions, indicating a more accurate 

tumor segmentation. 

• HD95 Reductions suggest the model's increased precision in outlining tumor boundaries. 

• Increased Sensitivity in the 2020 dataset underscores the model's efficiency in detecting true tumor areas. 

Overall, these results highlight the model's potential to improve brain tumor diagnosis and treatment planning 

through superior segmentation accuracy and precision. 

Table 8 Performance improvisation of proposed (MAA+AGDL) 

Metric / Dataset ET Improvement WT Improvement TC Improvement 

DSC (BRATS 2019) 12.41% 4.26% 7.67% 

HD95 (BRATS 

2019) 

-1.94 (Improvement in 

distance) 

-1.54 (Improvement in 

distance) 

-2.07 (Improvement in 

distance) 

DSC (BRATS 2020) 10.28% 5.54% 8.07% 

Sensitivity (BRATS 

2020) 

11.03% 3.39% 8.70% 
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CONCLUSION 

This study introduces a novel deep learning framework for brain tumor segmentation, leveraging Multi-Attribute 

Aggregation (MAA) and Adaptive Gradient Dice Loss (AGDL) mechanisms. The proposed dual-path architecture, 

incorporating advanced feature extraction and mapping prediction modules, addresses critical challenges in the 

segmentation process, such as the differentiation of tumor regions from healthy brain tissue and the accurate 

delineation of tumor boundaries. The implementation of Adaptive Gradient Dice Loss and Deformable Convolution-

based Feature Alignment within this framework significantly improves segmentation accuracy. These innovations 

offer a robust solution to the gradient vanishing problem and enhance the alignment of features across different image 

scales, respectively. As a result, the proposed model achieves superior performance on the BRATS 2019 and 2020 

datasets, as evidenced by enhanced Dice Similarity Coefficient scores, sensitivity, and reduced Hausdorff Distance. 

These improvements not only underscore the technical advancements of the proposed model but also highlight its 

potential to significantly impact clinical diagnostics and treatment planning. Future research directions include 

exploring the integration of additional imaging modalities to enhance segmentation accuracy 
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