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Abstract 

In computer-aided diagnosis, multimodal medical picture segmentation is essential, but it is still 

difficult because of different noise levels, uneven resolution, and missing modality information.  

To suggest AGMFU-Net++, a novel architecture that combines Transformer-Based Global 

Contextualisation, Attention-Guided Multimodal Fusion, and Gated Skip-Fusion Decoding for 

reliable and accurate segmentation, in order to overcome these problems.  At the bottleneck, 

modality-specific encoding, cross-modal attention fusion, and transformer bridging come after 

registration, intensity normalisation, and stochastic augmentation.  With the help of deep 

supervision and uncertainty estimation for training stability, the decoder integrates learnable 

gating for modality-aware information mixing.  Extensive trials on the MSD and BraTS (2018–

2023) datasets were carried out to verify the efficacy of AGMFU-Net++.  The suggested model 

performed better in denoising and segmentation than the most advanced baselines.  Its greatest 

PSNRs were 32.7 dB (BraTS) and 34.0 dB (MSD), with corresponding SSIM values of 0.94 and 

0.96.  Following denoising, AGMFU-Net++ increased Dice scores in segmentation-aware 

evaluation from 0.90 to 0.93 (BraTS) besides 0.92 to 0.95 (MSD).  Compared to competing 

models, robustness experiments showed a substantially superior Dice loss of only 2.6% under 

Gaussian noise and 4.2% with modality dropout.  Additionally, cross-dataset generalisation 

showed its scalability with Dice scores of 0.86 (BraTS→MSD) and 0.85 (MSD→BraTS).  

AGMFU-Net++ is a potential technique for practical clinical application in multi-modal medical 

imaging scenarios because of its overall improved denoising performance, segmentation 

accuracy, and robustness across imaging circumstances. 

Keywords: Multimodal medical image segmentation; Skip-Fusion Decoding; Attention-Guided 

Multimodal Fusion; Transformer-Based Global Contextualization; Information Blending.  

1. INTRODUCTION 

A fundamental task in computer-aided diagnosis (CAD), image-guided treatments, and treatment planning is 

medical image segmentation [1].  Planning surgical or radiation operations, assessing the extent of the disease, 

and tracking the effectiveness of treatment all depend on the precise segmentation of anatomical structures and 

pathological areas, such as tumours or lesions [2].  In the last ten years, segmentation performance in a number of 

clinical imaging modalities, such as Positron Emission Tomography (PET), Computed Tomography (CT), and 
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Magnetic Resonance Imaging (MRI), has greatly improved thanks to deep learning-based techniques, especially 

convolutional neural networks (CNNs) [3].  Nonetheless, multimodal data acquisition—in which various imaging 

modalities or sequences record complementary information—is frequently used in clinical imaging [4].  To better 

visualise lesions, FLAIR reduces fluid signals, T1-weighted MRI offers fine structural features, T2 highlights 

oedema, and T1-Gd (contrast-enhanced) displays dynamic tumour enhancement [5].  PET/CT and PET/MRI also 

combine anatomical and metabolic information.  The integration of such data for thorough and reliable 

segmentation is still a difficult task, even though each modality offers distinct clinical value [6]. 

 The variation in modalities' spatial resolution, contrast, noise properties, and artefact prevalence is a major 

obstacle in multimodal medical picture processing.  The spatial alignment can be further distorted by 

misregistration between modalities, which can degrade voxel-level connection that is essential for pixel-wise 

segmentation tasks [7].  Furthermore, certain modalities can be absent in actual clinical settings because of 

acquisition limitations or patient-specific considerations [8].  The reliability of segmentation networks trained 

under perfect, fully-observed input assumptions is weakened by these conditions, which generate inconsistencies 

[9].  Noise-induced picture quality loss is another significant issue, particularly in low-dose CT or fast-acquisition 

MRI.  In addition to impairing radiologists' ability to interpret images, noise also negatively impacts the 

performance of deep neural networks, which are frequently sensitive to changes in the distribution of data [10].  

Conventional denoising techniques, such wavelet-based approaches or Gaussian filtering, frequently distort 

pathology-relevant information or blur anatomical boundaries, which lowers their diagnostic usefulness [11].  

Therefore, it is crucial to have a single framework that can manage segmentation and denoising simultaneously 

or in concert across modalities [12]. 

 Researchers have looked into a variety of designs and fusion techniques in an effort to address these issues [13].  

Early methods frequently failed to capture complicated inter-modal interactions because they relied on feature 

concatenation or simple summing across modalities.  In more recent research, modality contributions are 

dynamically weighed using attention mechanisms [14].  Cross-attention techniques and transformer-based models 

have demonstrated potential in enhancing fusion quality and modelling long-range interdependence.  But a lot of 

current frameworks are not resilient against noise, don't operate well with missing modalities, or don't generalise 

well across datasets [15]. 

 Here, to suggest a new architecture called AGMFU-Net++ (Attention-Guided Multimodal Fusion U-Net++) that 

aims to fully overcome the aforementioned drawbacks.  The U-Net++ encoder-decoder backbone upon which the 

model is based has been enhanced with the following innovations: 

❖ Modality-Specific Encoders: To prevent premature over-sharing of information, each modality is 

processed separately to maintain its distinct statistical properties. 

❖ Cross-Modal Attention Fusion (CAF): CAF carries out learnt attention across modalities at every 

resolution scale, guaranteeing that features are fused adaptively using voxel-level spatial evidence from 

every modality that is accessible. 

❖ Transformer Bridge at the Bottleneck: To segment spatially extended structures like tumours, a 

transformer encoder is necessary because it captures long-range contextual dependencies across the fused 

feature space. 

❖ Gated Skip-Fusion Decoder: The decoder employs learnable gates in place of naive skip connections to 

determine how much data to upsample from coarser layers and how much to retain from encoder features. 

❖ Uncertainty-Aware Loss Aggregation: To improve training resilience in the presence of noise or 

incomplete data, the model dynamically weighs loss contributions by predicting aleatoric uncertainty at 

each supervised scale. 

 To further enhance robustness, the AGMFU-Net++ training pipeline incorporates noise injection, image 

registration, intensity normalisation, data augmentation, and data preparation.  Stochastic Weight Averaging 

(SWA), curriculum learning, and mixed-precision training are used to further stabilise learning and speed up 

convergence.  The framework facilitates metaheuristic tuning with hybrid optimisers such as Willow Catkin 

Optimisation and Falcon Search to optimise hyperparameters and loss weights. 

 To assess our model using two benchmark datasets that are diverse: 

❖ Multi-sequence MRI images with pixel-by-pixel annotations for various tumour sub-regions are included 

in the Brain Tumour Segmentation (BraTS 2018–2023) information. 
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❖ A strong testbed for generalisation is provided by the Medical Segmentation Decathlon (MSD) dataset, 

which consists of ten segmentation tasks spanning several organs and imaging modalities (CT and MRI). 

 Our tests compare the segmentation performance (measured by Dice Score and Hausdorff Distance) and 

denoising quality (measured by PSNR, SSIM, RMSE, and MAE) before and after using the denoising-enhanced 

AGMFU-Net++ pipeline.  To measure practicality, to additionally simulate modality dropout, evaluate robustness 

under Gaussian and Rician noise, and carry out cross-dataset generalisation tests. 

 The outcomes show that AGMFU-Net++ accomplishes: 

❖ Better denoising performance compared to state-of-the-art models, with PSNR increases of up to 2.5–3 

dB. 

❖ Improved segmentation accuracy, resulting in a 2–4% increase in dice scores following denoising. 

❖ A lower HD95 indicates improved border precision. 

❖ Resilience in the face of modality dropout, maintaining functionality with input loss of up to 20% to 

30%. 

❖ Excellent cross-domain segmentation performance, exceeding previous models, and strong 

generalisation across datasets. 

 The importance of combining transformer-based global context, modality-aware attention, and uncertainty 

modelling in a single architecture for clinical-grade segmentation is highlighted by these contributions.  By 

bridging the gap between segmentation and denoising, our study shows that higher-quality inputs result in greater 

performance on downstream tasks, particularly in high-stakes medical imaging applications.  The remainder of 

the document is structured as follows:  Related works are mentioned in Section 2, the suggested approach is 

explained in depth in Section 3, the results analysis is mentioned in Section 4, and the conclusion is finally reached 

in Section 5.  

2. RELATED WORKS 

Deep learning advances in recent years have greatly improved medical picture segmentation 

performance, especially for multimodal fusion and image denoising.  This section focusses on significant 2024–

2025 contributions that are pertinent to our suggested AGMFU-Net++ framework. 

2.1 Multimodal Fusion in Medical Imaging 

Utilising complimentary data from various imaging modalities is the goal of multimodal segmentation 

networks.  In order to analyse CT and MRI inputs for tumour identification, Yang et al. [16] proposed MMFormer, 

which incorporates parallel transformer branches.  Similarly, to improve segmentation robustness in incomplete 

data environments, Jaiswal et al. [17] created CrossModNet, which uses residual streams and cross-attention 

fusion.  These models highlight the significance of global contextualisation and modality-specific processing, 

which our AGMFU-Net++ further develops through transformer bridging and gated skip-fusion. 

2.2 Denoising and Low-Quality Image Handling 

In clinical settings, managing low-quality inputs is essential.  Incorporating a self-supervised denoising 

stage prior to segmentation enhances generalisability in low-dose CT, as Zhang and Alizadeh [18] showed.  By 

creating a dual-branch denoise-segment pipeline for MRI under Rician noise, Liu et al. [19] went beyond this.  

AGMFU-Net++, on the other hand, incorporates implicit denoising into the multimodal encoder-decoder chain 

with data augmentation for robustness and uncertainty-aware learning. 

2.3 Attention-Based Fusion 

These days, attention processes are essential for successful multimodal fusion.  A spatial-channel 

attention module for adaptive fusion in brain MRI segmentation was presented by Chen et al. [20].  In a recent 

study, Kapoor and Sun [21] improved tumour boundary localisation by aligning and weighting PET-CT inputs 

using cross-attention transformers.  By implementing Cross-Modal Attention Fusion (CAF) at every resolution, 

AGMFU-Net++ expands on these initiatives and guarantees spatially aware intermodality interactions. 



TPM Vol. 32, No. S4, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

 

735 

 

  

2.4 Transformer Integration in Medical Segmentation 

Transformers' ability to model global surroundings has made them popular.  SegFormer-Med, created by 

Tran et al. [22], improves lesion diagnosis in ISLES and BraTS datasets by substituting hierarchical transformers 

for convolutions.  TRU-Net, which incorporates a transformer bridge between encoder-decoder channels, was 

proposed by Huang et al. [23].  Similar ideas are used by our AGMFU-Net++, which improves feature learning 

by using uncertainty-guided loss optimisation and a transformer bridge. 

2.5 Generalization and Robustness Studies 

Domain shift and generalisation under noise have become important areas of study.  Using the MSD 

dataset, Shen et al. [24] looked at test-time domain adaptation by pseudo-label refinement.  A number of models 

were benchmarked on cross-dataset generalisation tasks with missing modality scenarios by Ghosh and Behera 

[25].  Through curriculum learning, deep supervision, and metaheuristic loss balancing, AGMFU-Net++ 

demonstrates enhanced resilience, guaranteeing consistent performance on datasets such as MSD and BraTS. 

3. PROPOSED MODEL 

The Figure 1 illustrated diagram showcases the architecture of AGMFU-Net++, a multimodal medical 

image segmentation network. 

 

Figure.1. Proposed model. 

Modality-specific encoders, which extract hierarchical features independently to maintain modality-

specific information, process the four input modalities (T1, T2, PLE, and PET) on the left.  Long-range spatial 

context and global feature modelling across all modalities are made possible by these encoded features flowing 

into the Transformer Bridge at Bottleneck.  After that, the fused features are fed into a sequence of decoder blocks, 

shown in blue, that carry out Gated Skip-Fusion, which balances local and global information by combining 

encoder features with decoder outputs using learnt attention gates.  Output Heads at different decoder levels round 

out the network, enabling deep supervision and uncertainty estimates.  The architecture promotes accurate and 

modality-aware segmentation by emphasising robust fusion through cross-modal alignment and attention 

methods.  The observer is guided through the data flow and hierarchical feature refinement across the AGMFU-

Net++ pipeline by the layered architecture and curving, colour-coded arrows. 
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3.1. Data Preprocessing, Registration, and Normalization  

3.1.1 Registration  

Let 𝑅𝜙𝑚
(⋅) be a registration operator parameterized by transformation 𝜙𝑚 (e.g., affine + B-spline). For 

each modality mmm (except a chosen reference, say T2 MRI), to compute 

𝑋̃(𝑚) = 𝑅𝜙𝑚
(𝑋(𝑚)) (1) 

so that 𝑋̃(𝑚) is voxel-wise aligned with the reference grid. attention-based fusion presumes spatial correspondence; 

misregistration corrupts attention scores and harms fusion quality. this occurs before the network; alternatively, a 

joint registration–segmentation loop can be incorporated, but to keep it modular for clarity. 

3.1.2 Resampling and cropping 

To resample all modalities to a common voxel spacing 𝛥 = (𝛥𝑥, 𝛥𝑦 , 𝛥𝑧) via trilinear/bilinear 

interpolation operator 𝑆𝛥 . Then, for memory efficiency, to crop a region-of-interest (ROI) 𝛺𝑅𝑂𝐼 ⊂ 𝛺 around the 

anatomy (e.g., by a bounding box obtained from nonzero mask or heuristic). Formally, 

𝑋̃(𝑚) = 𝐶Ω𝑅𝑂𝐼
(𝑆Δ(𝑋̃(𝑚))) (2) 

3.2. Intensity normalization and modality harmonization 

The heteroscedastic distributions across modalities destabilize the optimization landscape. To standardize 

each modality to zero mean/unit variance (global or within-ROI): 

𝑋̃(𝑚)(𝑝) =
𝑋̃(𝑚)(𝑝)−𝜇𝑚

𝜎𝑚+𝜖
 (3) 

𝜇𝑚 =
1

|Ω𝑅𝑂𝐼|
∑ 𝑋̃(𝑚)(𝑝)𝑝∈Ω𝑅𝑂𝐼

 (4) 

𝜎𝑚
2 =

1

|Ω𝑅𝑂𝐼|
∑ (𝑋̃(𝑚)(𝑝) − 𝜇𝑚)

2

𝑝  (5) 

Optional histogram matching can be applied to force PET/CT/MR onto a common rank distribution if cross-

subject consistency is important: 

𝑋̃(𝑚) ← 𝐻(𝑋̃(𝑚); 𝑡𝑎𝑟𝑔𝑒𝑡 𝐶𝐷𝐹) (6) 

where 𝐻 denotes histogram matching to a fixed target modality template, reducing between-scan variability. Given 

the observed benefits of robustness to low-quality images, to inject the following stochastic transforms during 

training: 

Noise injection: 

𝑋̂(𝑚) ⟵ 𝑋̂(𝑚) + 𝜂, 𝜂~𝑁(0, 𝜎𝑛
2) (7) 

with 𝜎𝑛  sampled each batch. 

Gamma correction:  

𝑋̂(𝑚) ← (𝑋̂(𝑚))
𝛾

, 𝛾~𝒰(0.8,1.2) (8) 
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Elastic deformation: 

𝑋̂(𝑚) ← 𝑋̂(𝑚)°(𝐼𝑑 + 𝒢𝜎 ∗ 𝑑) (9) 

where 𝑑 is a random displacement field and 𝒢𝜎  Gaussian smoothing kernel. Mixup across modalities for 

robustness to missing modalities, occasionally replace one modality’s feature stream with a convex combination 

of others, enforcing the fusion to be modality-agnostic. 

3.3. Architecture: AGMFU-Net++  

The model extends a U-Net-like encoder–decoder with (i) parallel modality-specific encoders, (ii) Cross-

Modal Attention Fusion (CAF) at every resolution, (iii) a Transformer Bridge at the bottleneck for global, 

modality-aware context, and (iv) Gated Skip-Fusion in the decoder. 

3.3.1 Modality-specific encoder streams  

For each modality 𝑚 ∈ {1, … , 𝑀} to define an encoder 𝐸(m) that outputs a feature pyramid: 

𝐹(𝑚) = {𝐹ℓ
(𝑚)

∈ 𝑅𝐻ℓ×𝑊ℓ×𝐷ℓ×𝐶ℓ|ℓ = 1, … , 𝐿} (10) 

where ℓ indexes the spatial scale (resolution level) and 𝐶ℓ the channels. Each encoder block at level ℓ is: 

𝐹ℓ
(𝑚)

= ℬ(𝐹ℓ−1
(𝑚)

) = 𝐶𝑜𝑛𝑣3×3°𝐵𝑁°𝐺𝐸𝐿𝑈°𝐶𝑜𝑛𝑣3×3°𝐵𝑁°𝐺𝐸𝐿𝑈°𝐷𝑜𝑤𝑚𝑠𝑎𝑚𝑝𝑙𝑒 (11) 

With 𝐹0
(𝑚)

= 𝑋̂(𝑚) (properly reshaped). early layers capture strongly modality-dependent low-level statistics; 

enforcing a shared encoder may underfit those distinctions. 

3.3.2 Cross-Modal Attention Fusion (CAF)  

At each scale ℓ, to fuse {𝐹ℓ
(𝑚)

}
𝑚=1

𝑀

 into a single fused representation 𝐹̃ℓ. To do not simply concatenate or sum; 

instead, to use a cross-attention operator ensuring each modality attends to others and the fusion output weighs 

them according to spatially varying evidence. Flatten spatial dimensions: 

𝐹ℓ
(𝑚)

∈ 𝑅𝑁𝑡×𝐶𝑡 , 𝑁ℓ = 𝐻ℓ𝑊ℓ𝐷ℓ (12) 

For a given reference modality 𝑟, define queries 

𝑄ℓ
(𝑟)

= 𝐹ℓ
(𝑟)

𝑊𝑄,ℓ
(𝑟)

, 𝑊𝑄,ℓ
(𝑟)

∈ 𝑅𝐶ℓ×𝑑𝑘   (13) 

and for all modalities (including 𝑟) keys and values 

𝐾ℓ
(𝑚)

= 𝐹ℓ
(𝑚)

𝑊𝐾,ℓ
(𝑚)

,   𝑉ℓ
(𝑚)

= 𝐹ℓ
(𝑚)

𝑊𝑉,ℓ
(𝑚)

 (14) 

With 𝑊𝐾,ℓ
(𝑚)

, 𝑊𝑉,ℓ
(𝑚)

∈ 𝑅𝐶𝑡×𝑑𝑘. 

The cross-attention map from reference 𝑟 to modality 𝑚 is: 

𝐴ℓ
(𝑟←𝑚)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄ℓ

(𝑟)
(𝐾ℓ

(𝑚)
)

⊺

√𝑑𝑘
) ∈ 𝑅𝑁ℓ×𝑁ℓ (15) 

Then, the cross-attended features for reference 𝑟 contributed by modality 𝑚 is 
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𝑍ℓ
(𝑟←𝑚)

= 𝐴ℓ
(𝑟←𝑚)

𝑉ℓ
(𝑚)

 (16) 

To obtain a symmetrically fused representation, to aggregate over all references 𝑟 and contributors 𝑚: 

𝐹̃ℓ = 𝜙𝑡 (
1

𝑀
∑

1

𝑀
∑ 𝑧ℓ

(𝑟←𝑚)𝑀
𝑚=1

𝑀
𝑟=1 ) (17) 

where 𝜙ℓ is a position-wise feed-forward network (FFN) (2-layer MLP + GELU + residual). To then reshape𝐹̃ℓ →
𝐹̃ℓ back to 𝐻ℓ × 𝑊ℓ × 𝐷ℓ × 𝐶ℓ . 

Because no single modality should dominate a priori. The model learns the attention weights 𝐴ℓ
(𝑟←𝑚)

 to control 

how much each modality contributes at each voxel and layer. 

3.3.3 Multi-head attention (how to stabilize and diversify projections) 

To use ℎ heads: 

𝑀𝐻𝐴(𝐹) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑓)𝑊𝑂 (18) 

with each head computed as above but with its own (𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉). This increases the representational capacity 

and allows the model to learn multiple complementary fusion patterns. 

3.4. Transformer Bridge at the bottleneck  

At the deepest scale 𝐿, to apply a Transformer Encoder with self-attention on 𝐹̃𝐿: 

𝑄𝐿 = 𝐹̃𝐿𝑊𝑄,𝐿 , 𝐾𝐿 = 𝐹̃𝐿𝑊𝐾,𝐿 ,   𝑉𝐿 = 𝐹̃𝐿𝑊𝑉,𝐿 (19) 

𝐴𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐿𝐾𝐿

⊺

√𝑑𝑘
),   𝑍𝐿 = 𝐴𝐿𝑉𝐿 (20) 

𝐹̃𝐿
𝑏𝑟𝑖𝑑𝑔𝑒𝑑

= 𝐹𝐹𝑁(𝑍𝐿 + 𝐹̃𝐹) + (𝑍𝐿 + 𝐹̃𝐹) (21) 

with LayerNorms applied pre/post as usual (“Pre-LN” transformer). this global modeling enforces long-range 

feature consistency (lesions are often spatially extended), and self-attention learns dependencies across all 

positions, not just neighboring voxels. 

3.4.1. Decoder with Gated Skip-Fusion  

For each decoder level ℓ = 𝐿 − 1, … ,1, to upsample the higher-level feature and gate-fuse it with the 

corresponding fused encoder features 𝐹̃ℓ. Let 𝑈(⋅) be upsampling by factor 2 (trilinear/bilinear or transposed 

conv). Let 𝐷ℓ+1 be the decoder feature at the coarser level ℓ + 1. Then 

𝐷̂ℓ = 𝑈(𝐷ℓ+1) (22) 

To compute a gating mask 𝐺ℓ ∈ [0,1]𝐻ℓ×𝑊ℓ×𝐷ℓ×𝐶ℓ  : 

𝐺ℓ = 𝜎(𝑊𝑔 ∗ [𝐹̃𝑡||𝐷̂𝑡] + 𝑏𝑔) (22) 

where ∥ denotes channel-wise concatenation, 𝑊g is a 1 × 1 convolution (or linear), ∗ convolution, and 𝜎 sigmoid. 

The decoder feature is then  

𝐷ℓ = 𝜓ℓ(𝐺ℓ⨀𝐹̃ℓ + (1 − 𝐺ℓ)⨀𝐷̂ℓ) (23) 
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where 𝜓ℓ is a Conv-BN-GELU-Conv-BN-GELU block, and ⊙ denotes element-wise multiplication. The gate 

learns where the encoder still has discriminative local detail and where the upsampled decoder already contains 

sufficient global context, avoiding over-reliance on either. 

3.4.2 Output heads and deep supervision  

At each decoder level, to predict an auxiliary probability map to enforce deep supervision: 

𝑌̂𝑡 = 𝜎(𝑊𝑜𝑢𝑡,ℓ ∗ 𝐷ℓ),   ℓ = 1, … , 𝐿 − 1 (24) 

and the final output 

𝑌̂ = 𝜎(𝑊𝑜𝑢𝑡 ∗ 𝐷1) (25) 

These auxiliary outputs are upsampled and compared to the ground truth, preventing vanishing gradients and 

encouraging each scale to be semantically meaningful. 

3.4.3. Uncertainty head  

To attach a variance head 𝛴ℓ  at each supervised level, parameterized to be positive via softplus: 

𝛴ℓ = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑊𝑣𝑎𝑟,ℓ ∗ 𝐷ℓ)(26) 

These 𝛴ℓ are task-dependent aleatoric uncertainties used to weight losses automatically (see §4.3), giving higher 

weights to more confident predictions and vice versa. 

3.5. Optimization Objective  

To combine four complementary losses to capture overlap, class imbalance, boundary accuracy, and robustness to 

hard examples: 

1. Generalized Dice Loss ℒ𝐷𝑖𝑐𝑒  

2. Focal Loss ℒ𝐹𝑜𝑐𝑎𝑙  

3. Tversky Loss ℒ𝑇𝑣𝑒𝑟𝑠𝑘𝑦 

4. Boundary Loss ℒ𝐵𝑛𝑑 

These are aggregated per-scale and per-class, and adaptively weighted either by uncertainty or by metaheuristic 

tuning. 

3.5.1 Dice loss  

For class ccc, let 𝑝𝑖
(𝑐)

 and 𝐺𝑖
(𝑐)

 denote the predicted probability and ground truth at voxel iii. The (soft) Dice score 

is 

𝐷𝑖𝑐𝑒(𝑐) =
2 ∑ 𝑝𝑖

(𝑐)
𝑔𝑖

(𝑐)
+𝜖𝑁

𝑖=1

∑ 𝑝
𝑖
(𝑐)

+𝑁
𝑖=1 ∑ 𝑔

𝑖
(𝑐)

+𝑁
𝑖=1 𝜖

 (27) 

and the Dice loss 

ℒ𝐷𝑖𝑐𝑒 = 1 −
1

𝐶
∑ 𝐷𝑖𝑐𝑒(𝑐)𝐶

𝑐=1  (28) 
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it directly optimizes the overlap metric commonly used for evaluation (Dice/DSC), handling class imbalance 

better than cross-entropy. 

3.5.2 Focal loss (how it focuses on hard voxels) 

For binary segmentation (extendable to multi-class), 

ℒ𝐹𝑜𝑐𝑎𝑙 = −
1

𝑁
∑ 𝑎(1 − 𝑝𝑖)𝛾𝑔𝑖𝑙𝑜𝑔𝑝𝑖 + (1 − 𝑎)𝑝𝑖

𝛾
(1 − 𝑔𝑖)log (1 − 𝑝𝑖)𝑁

𝑖=1  (29) 

with focusing parameter γ>0\gamma > 0γ>0 and balancing 𝛼 ∈ (0,1). To emphasize difficult, misclassified voxels 

and reduce the dominance of easy negatives. 

3.5.3 Tversky loss  

𝑇𝑣𝑒𝑟𝑠𝑘𝑦(𝑐) =
𝑇𝑃

𝑇𝑃+𝑎𝐹𝑃+𝛽𝐹𝑁
=

∑ 𝑝𝑖
(𝑐)

𝑔𝑖
(𝑐)

𝑖

∑ 𝑝
𝑖
(𝑐)

𝑔
𝑖
(𝑐)

𝑖 +𝑎 ∑ 𝑝
𝑖
(𝑐)

(1−𝑔
𝑖
(𝑐)

)+𝛽 ∑ (1−𝑝
𝑖
(𝑐)

)𝑔
𝑖
(𝑐)

𝑖𝑖

 (30) 

ℒ𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 −
1

𝐶
∑ 𝑇𝑣𝑒𝑟𝑠𝑘𝑦(𝑐)𝐶

𝑐=1  (31) 

medical segmentation often cares more about reducing FNs (missing lesion voxels) than FPs; 𝛽 > 𝛼 implements 

this. 

3.5.4 Boundary loss (how to encourage sharp, accurate borders) 

Let 𝑑(𝑝) be the (signed) distance transform of the ground truth boundary (negative inside). The boundary loss for 

probability map 𝑝(𝑝) is 

ℒ𝐵𝑛𝑑 =
1

𝑁
∑ |𝑑(𝑝)|. |𝑝(𝑝) − 𝑔(𝑝)|𝑝∈Ω  (32) 

region-overlap losses can be insensitive to subtle boundary errors; the distance weighting forces corrections where 

boundaries are misaligned. 

3.5.5 Deep supervision aggregation (where losses are attached) 

For each supervised scale ℓ ∈ 𝑆 (e.g., 𝑆 = {1, … , 𝐿 − 1} plus final), to define 

ℒℓ = 𝜆𝐷𝑖𝑐𝑒,ℓℒ𝐷𝑖𝑐𝑒,ℓ + 𝜆𝐹𝑜𝑐𝑎𝑙,ℓℒ𝐹𝑜𝑐𝑎𝑙,ℓ + 𝜆𝑇𝑣𝑒𝑟𝑠𝑘𝑦,ℓℒ𝑇𝑣𝑒𝑟𝑠𝑘𝑦,ℓ + 𝜆𝐵𝑛𝑑,ℓℒ𝐵𝑛𝑑,ℓ (33) 

The total loss is 

ℒ𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤ℓℒℓℓ∈𝑆  (34) 

where 𝑤ℓ decreases with depth (coarser scales get smaller weights) to prioritize the final prediction. 

3.5.6 Uncertainty-weighted loss  

If at scale ℓ to predict a scalar uncertainty 𝜎ℓ,𝑘
2  per loss component 𝑘 ∈ {𝐷𝑖𝑐𝑒, 𝐹𝑜𝑐𝑎𝑙, 𝑇𝑣𝑒𝑟𝑠𝑘𝑦, 𝐵𝑛𝑑}, to can 

define (Kendall & Gal style): 

ℒℓ = ∑ (
1

2𝜎ℓ,𝑘
2 ℒ𝑘,ℓ + 𝑙𝑜𝑔𝜎ℓ,𝑘)𝑘  (35) 

instead of hand-tuning 𝜆-weights, the network learns to set larger variances (smaller weights) for inherently noisy 

or less-informative losses, and vice versa. 
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3.5.7. Metaheuristic loss balancing (where black-box optimization comes in) 

Alternatively (or additionally), to can optimize {λ} & {𝑤ℓ} using a metaheuristic (e.g., Willow Catkin 

Optimization + Falcon Search hybrid) on a validation split: 

• Objective: maximize mean Dice (or other metric) on validation. 

• Decision variables: 𝜆 = (𝜆𝐷𝑖𝑐𝑒 , 𝜆𝐹𝑜𝑐𝑎𝑙 , 𝜆𝑇𝑣𝑒𝑟𝑠𝑘𝑦 , 𝜆𝐵𝑛𝑑) and 𝑤 = (𝑤1, … , 𝑤𝐿). 

• Constraints: 𝜆𝑘 ≥ 0, ∑𝑘𝜆𝑘 = 1; 𝑤ℓ ≥ 0, ∑ℓ𝑤ℓ = 1. 

Let 𝑀(𝜆, 𝑤) be the validation performance; the metaheuristic searches 

(𝜆∗, 𝑤∗) = 𝑀(𝜆, 𝑤)𝜆,𝑤
arg 𝑚𝑎𝑥

 (36) 

3.6. Training Algorithm & Optimization 

To ensure the AGMFU-Net++ achieves optimal performance on multimodal medical image 

segmentation, to establish a comprehensive training pipeline that integrates advanced optimizers, learning rate 

(LR) schedules, and regularization strategies. 

3.6.1 Choice of Optimizer 

The study employs AdamW (Decoupled Weight Decay) due to its robustness in deep architectures with 

attention modules. The parameter update rule for a parameter 𝜃𝑡 at iteration 𝑡 is: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (37) 

𝑣𝑡 = 𝛽2𝑚𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (38) 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 (39) 

𝑣̂𝑡 =
𝑣𝑡

1−𝛽2
𝑡 (40) 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡+𝜖
− 𝜂𝜆𝜃𝑡 (41) 

Where, 𝑔𝑡 = 𝛻𝜃𝑡
𝐿𝑡𝑜𝑡𝑎𝑙  is the gradient, 𝜂 is the learning rate, 𝜆 is the decoupled weight decay term. Standard 

Adam's L2 penalty can interact with adaptive learning rates, while AdamW separates weight decay from the 

gradient step, improving generalization. 

3.6.2 Learning Rate Schedule 

To adopt Cosine Annealing with Warm Restarts (SGDR): 

𝜂𝑡 = 𝜂𝑚𝑖𝑛 +
1

2
(𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (1 + 𝑐𝑜𝑠 (

𝑇𝑐𝑢𝑟

𝑇𝑖
𝜋)) (42) 

Where, 𝑇𝑖  is the length of the current restart cycle, 𝑇𝑐𝑢𝑟  is the number of iterations since the last restart. This allows 

aggressive exploration (large 𝜂) at the beginning of cycles and fine-tuning (small 𝜂) towards the end. 

3.6.3 Stochastic Weight Averaging (SWA) 

To maintain an averaged model 𝜃̅ across the last few epochs: 
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𝜃̅ =
1

𝐾
∑ 𝜃(𝐸−𝑘)𝐾

𝑘=1  (43) 

where 𝜃(𝐸−𝑘) are checkpoints from the final 𝐾 epochs. SWA improves flatness of the loss landscape and 

generalization, especially in multimodal fusion tasks. 

3.6.4 Mixed Precision Training  

Using FP16 with dynamic loss scaling reduces GPU memory usage and training time. Formally, if 𝐿𝑓𝑝16  is the 

loss computed in FP16, to scale by 𝑠: 

𝐿̃ = 𝑠. 𝐿𝑓𝑝16 (44) 

compute gradients, then unscale: 

𝑔̃ =
1

𝑠
𝑔𝑓𝑝16 (45) 

This prevents underflow while maintaining speed. Where: implemented at the training step. 

3.6.5 Curriculum Learning for Noisy/Missing Modalities 

To handle missing or degraded modalities: 

• Stage 1: Train on full clean modalities (𝑋(1), … , 𝑋(𝑀)). 

• Stage 2: Randomly drop modalities with probability 𝑝, simulating incomplete data. 

• Stage 3: Add synthetic noise, aligning with the low-dose experiments. 

This progressive curriculum improves robustness across clinical variations. 

3.6.6 Regularization Techniques 

To integrate: 

• Spatial dropout: Dropping entire feature channels with probability 𝑝𝑐. 

• Attention dropout: Zeroing elements in attention matrices 𝐴(r←m). 

• Weight decay (𝜆𝜃2): Encourages smaller weights for better generalization. 

4. RESULTS AND DISCUSSION 

4.1. System and Software Requirements 

To implement and evaluate the AGMFU-Net++ framework for multimodal medical image denoising and 

segmentation, the following system and software configurations are recommended. The system should be 

equipped with a 64-bit operating system (Ubuntu 20.04 or Windows 11), a minimum of 32 GB RAM, and a multi-

core CPU (e.g., Intel i9 or AMD Ryzen 9). For deep learning operations, an NVIDIA GPU with at least 12 GB 

VRAM (e.g., RTX 3080, A100) and CUDA support (>=11.3) is essential for training efficiency [26]. The software 

stack includes Python 3.8+, PyTorch 1.13+, TorchVision, SimpleITK, NumPy, OpenCV, and SciPy. For model 

training, frameworks such as MONAI and nibabel are used for medical image handling. Visualization tools like 

TensorBoard or Matplotlib are recommended. Optional support for NVIDIA Apex enables mixed-precision 

training. Cloud support (e.g., AWS EC2 or Google Colab Pro) is beneficial for scalable experimentation. 
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Figure 2. Sample dataset image. 

Figure 2 illustrates sample input images from two major medical image segmentation datasets. The top row 

represents the BraTS (2018–2023) dataset, showcasing four MRI modalities: T1, T1-Gd (contrast-enhanced), T2, 

and FLAIR—used for brain tumor segmentation. Each scan highlights different tumor subregions to aid precise 

lesion localization. The bottom row shows diverse CT and MRI samples from the Medical Segmentation 

Decathlon (MSD) dataset, covering multiple organs such as the liver, brain, lungs, and head-neck region. These 

datasets are pivotal in evaluating multimodal segmentation models like AGMFU-Net++ across varied anatomical 

and imaging contexts. 

The BraTS (Brain Tumor Segmentation) 2018–2023 dataset [27] is one of the most widely used 

benchmarks in medical image segmentation research. It includes multi-institutional pre-operative MRI scans 

comprising four modalities: T1, T1-Gd (contrast-enhanced), T2, and FLAIR. Each case is annotated for three 

tumor sub-regions: enhancing tumor (ET), tumor core (TC), and whole tumor (WT). The primary challenge lies 

in learning from heterogeneous inputs and fusing them to delineate tumor subcomponents that vary spatially and 

morphologically. This makes BraTS an ideal testbed for evaluating the performance of multimodal architectures 

like AGMFU-Net++, especially in terms of spatial correspondence, cross-modal attention, and uncertainty 

handling. 

The Medical Segmentation Decathlon (MSD) [28] includes 10 diverse organ segmentation tasks, each 

with distinct challenges in image characteristics, anatomical shape, and modality. Tasks span across CT and MRI 

scans and include segmentation of the liver, pancreas, brain, colon, lung, prostate, and more. MSD is valuable for 
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validating the generalization and scalability of segmentation models across multiple domains. For AGMFU-

Net++, it enables assessment of fusion consistency, modality-specific encoder strength, and robustness under 

varying spatial resolutions and contrast levels. 

These datasets provide complementary evaluation scenarios: BraTS emphasizes deep multimodal 

synergy in a single anatomical context, while MSD tests broad adaptability and transferability across diverse 

clinical applications. 

4.3. Validation Analysis of proposed model 

Table 1 presents quantitative denoising performance on the BraTS dataset using four baseline models 

and the proposed AGMFU-Net++. 

Table 1. Quantitative Metrics for Image Denoising (BraTS Denoising Metrics). 

Model PSNR (dB) SSIM RMSE MAE 

UNet 28.4 0.84 0.124 0.082 

Attention-UNet 29.1 0.87 0.112 0.075 

TransUNet 30.2 0.89 0.098 0.069 

SwinUNet 30.5 0.9 0.093 0.065 

AGMFU-Net++ 32.7 0.94 0.075 0.052 

 

The proposed model achieves the highest PSNR (32.7 dB) and SSIM (0.94), indicating superior noise 

reduction and structural preservation. It also records the lowest RMSE (0.075) and MAE (0.052), demonstrating 

precise voxel-level restoration. Compared to UNet, AGMFU-Net++ shows significant improvements, 

highlighting its effectiveness in fusing multimodal MRI data and handling spatial noise. The results validate the 

architecture’s capability to enhance image quality, which is critical for accurate tumor segmentation and clinical 

reliability in MRI preprocessing. 

Table 2. Quantitative Metrics for Image Denoising (MSD Denoising Metrics). 

Model PSNR (dB) SSIM RMSE MAE 

UNet 29 0.85 0.117 0.077 

Attention-UNet 30.3 0.88 0.104 0.07 

TransUNet 31.5 0.91 0.088 0.061 

SwinUNet 32.1 0.93 0.081 0.058 

AGMFU-Net++ 34 0.96 0.063 0.045 

 

Table 2 showcases denoising performance on the MSD dataset across multiple models. AGMFU-Net++ 

outperforms all baselines with the highest PSNR (34 dB) and SSIM (0.96), indicating superior image clarity and 

structural fidelity. It also achieves the lowest RMSE (0.063) and MAE (0.045), highlighting precise noise removal 

and reduced intensity errors. In comparison, traditional UNet and Attention-UNet lag behind in both restoration 
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quality and fine-grained accuracy. These results confirm AGMFU-Net++’s effectiveness in denoising diverse 

anatomical regions within CT and MRI modalities, making it robust for general-purpose medical segmentation 

tasks in the presence of real-world image noise. 

Table.3. Segmentation-Aware Denoising Results. 

Model 

BraTS 

Dice 

(Before 

Denoising) 

BraTS 

Dice 

(After 

Denoising) 

BraTS 

HD95 

(Before 

Denoising) 

BraTS 

HD95 

(After 

Denoising) 

MSD Dice 

(Before 

Denoising) 

MSD Dice 

(After 

Denoising) 

MSD 

HD95 

(Before 

Denoising) 

MSD 

HD95 

(After 

Denoising) 

UNet 0.82 0.85 5.6 4.9 0.84 0.87 6 5.3 

Attention-

UNet 0.84 0.87 5.2 4.5 0.86 0.89 5.4 4.7 

TransUNet 0.86 0.89 4.7 4 0.88 0.91 4.9 4.2 

SwinUNet 0.87 0.9 4.5 3.8 0.89 0.92 4.6 4 

AGMFU-

Net++ 0.9 0.93 3.9 3.1 0.92 0.95 4 3.3 

 

Table 3 presents the Segmentation-Aware Denoising Results for the BraTS and MSD datasets. It 

compares segmentation performance before and after denoising across multiple models. For the BraTS dataset, 

the Dice score improves for all models post-denoising, with AGMFU-Net++ achieving the highest gain from 0.90 

to 0.93, reflecting better tumor region segmentation. The corresponding HD95 value also reduces from 3.9 to 3.1, 

showing significant enhancement in boundary precision. Similarly, for the MSD dataset, AGMFU-Net++ 

improves the Dice score from 0.92 to 0.95 and reduces HD95 from 4.0 to 3.3, confirming that denoising leads to 

more accurate and reliable organ segmentation. 

The improvements are consistent across all models, but AGMFU-Net++ delivers the most substantial 

benefit. It effectively fuses and denoises multimodal inputs using attention and transformer mechanisms, which 

leads to cleaner, feature-rich representations for the segmentation decoder. The decrease in HD95 post-denoising 

across datasets demonstrates its ability to correct fuzzy or misaligned edges, especially in complex anatomical 

boundaries. Overall, these results validate that segmentation-aware denoising substantially enhances both region 

overlap and boundary accuracy, making AGMFU-Net++ a superior choice for clinical-grade segmentation tasks. 
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Figure 3. Qualitative Visualization Results, 

The qualitative visualisation findings in Figure 3 demonstrate how denoising affects the segmentation of 

brain tumours using various models.  The segmentation output is shown after the original, noisy, and denoised 

MRI image in the first row.  Results from particular models—UNet (before denoising), TransUNet after denoising, 

and SwinUNet+ after denoising—are displayed in the second row to illustrate how well each design preserves 

tumour structure.  Notably, denoised outputs show improved contrast and tumour border definition, while noisy 

inputs result in reduced visual clarity and erroneous segmentation.  Although it isn't demonstrated here, AGMFU-

Net++ would continue this trend by using attention-guided multimodal fusion to produce even cleaner outputs 

and more precise segmentation masks.  The quantitative results are corroborated by this visual comparison, which 

demonstrates that denoising greatly increases tumour visibility and segmentation accuracy, particularly when used 

prior to the segmentation stage.  In order to improve diagnostic results, it highlights the therapeutic significance 

of incorporating picture restoration into medical imaging pipelines. 

Table 4. Robustness and Generalization Studies. 

Model 

Gaussian Noise 

Dice Drop (%) 

Rician Noise 

Dice Drop 

(%) 

Random 

Modality 

Dropout Dice 

(%) 

Cross-Dataset 

Dice 

(MSD→BraTS) 

Cross-Dataset 

Dice 

(BraTS→MSD) 

UNet 8.3 9 12.4 0.72 0.74 

Attention-UNet 6.4 7.2 10.1 0.75 0.77 

TransUNet 5.1 5.7 8.9 0.78 0.79 

SwinUNet 4.8 5 8.4 0.8 0.81 

AGMFU-Net++ 2.6 2.9 4.2 0.85 0.86 
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An assessment of the model's generalisation and robustness under varied stress conditions is shown in 

Table 4.  In contrast to UNet and TransUNet, which show larger losses, AGMFU-Net++ shows the least amount 

of performance deterioration, with the lowest Dice decline under Gaussian (2.6%) and Rician noise (2.9%).  

Additionally, it has a high degree of robustness to missing input data, as evidenced by the 4.2% Dice loss after 

random modality dropout compared to 12.4% in UNet.  AGMFU-Net++ demonstrates its exceptional versatility 

across several imaging domains by achieving the greatest cross-dataset Dice scores for generalisation (0.85 when 

transferring from MSD to BraTS and 0.86 in the opposite direction).  These results demonstrate how well 

AGMFU-Net++ manages real-world variability, including noise and modality inconsistency, which makes it a 

reliable option for cross-domain medical image segmentation tasks besides clinical deployment. 

5. CONCLUSION AND FUTURE DIRECTION 

In this work, to presented AGMFU-Net++, a stable besides flexible framework for multimodal medical 

image segmentation and denoising that is especially designed to manage heterogeneous CT besides MRI 

modalities.  Even in face of challenging imaging conditions like noise, missing modalities, besides inter-domain 

variability, AGMFU-Net++ effectively learns spatially coherent, modality-aware features by combining modality-

specific encoders, cross-modal attention fusion (CAF), a Transformer Bridge at the bottleneck, and a gated skip-

fusion decoder. This greatly improves segmentation performance.  The comprehensive tests conducted on two 

benchmark datasets, Medical Segmentation Decathlon (MSD) and BraTS (2018–2023), showed AGMFU-Net++ 

outperformed the other model on all important evaluation metrics.  In segmentation-aware evaluations, the model 

significantly improved Dice scores and HD95 while consistently achieving the highest PSNR and SSIM values in 

denoising tasks, as well as lowest RMSE and MAE.  Crucially, it outperformed current models like UNet, 

TransUNet, SwinUNet, and Attention-UNet by demonstrating significant robustness under Gaussian and Rician 

noise perturbations and generalising well across datasets.  These results highlight potential of AGMFU-Net++ for 

use in clinical settings are noisy, real-world, and modality-incomplete. 

 Even while AGMFU-Net++ performs exceptionally well, there is still room for improvement.  This 

architecture may be expanded for multi-task learning in future research, allowing for combined segmentation, 

classification, and lesion quantification in a single model.  Furthermore, applying foundation models or self-

supervised pretraining to extensive unlabelled medical data may improve generalisation even further.  Federated 

learning and domain adaption represent another exciting avenue for training AGMFU-Net++ across hospitals 

while maintaining data privacy. 

 To make incorporation into clinical imaging workflows easier, real-time deployment features including 

hardware-aware pruning, ONNX model export, and inference speed optimisation should be investigated.  

Assessing its effect on diagnostic accuracy and workflow efficiency will be made easier with future validation 

through prospective studies and radiologist-in-the-loop evaluations.  In conclusion, AGMFU-Net++ presents a 

strong, precise, and expandable answer to the problems associated with multimodal medical image processing and 

has a lot of potential to advance AI-driven diagnostic imaging in clinical settings. 
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