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Abstract

In computer-aided diagnosis, multimodal medical picture segmentation is essential, but it is still
difficult because of different noise levels, uneven resolution, and missing modality information.
To suggest AGMFU-Net++, a novel architecture that combines Transformer-Based Global
Contextualisation, Attention-Guided Multimodal Fusion, and Gated Skip-Fusion Decoding for
reliable and accurate segmentation, in order to overcome these problems. At the bottleneck,
modality-specific encoding, cross-modal attention fusion, and transformer bridging come after
registration, intensity normalisation, and stochastic augmentation. With the help of deep
supervision and uncertainty estimation for training stability, the decoder integrates learnable
gating for modality-aware information mixing. Extensive trials on the MSD and BraTS (2018—
2023) datasets were carried out to verify the efficacy of AGMFU-Net++. The suggested model
performed better in denoising and segmentation than the most advanced baselines. Its greatest
PSNRs were 32.7 dB (BraTS) and 34.0 dB (MSD), with corresponding SSIM values of 0.94 and
0.96. Following denoising, AGMFU-Net++ increased Dice scores in segmentation-aware
evaluation from 0.90 to 0.93 (BraTS) besides 0.92 to 0.95 (MSD). Compared to competing
models, robustness experiments showed a substantially superior Dice loss of only 2.6% under
Gaussian noise and 4.2% with modality dropout. Additionally, cross-dataset generalisation
showed its scalability with Dice scores of 0.86 (BraTS—MSD) and 0.85 (MSD—BraTS).
AGMFU-Net++ is a potential technique for practical clinical application in multi-modal medical
imaging scenarios because of its overall improved denoising performance, segmentation
accuracy, and robustness across imaging circumstances.

Keywords: Multimodal medical image segmentation; Skip-Fusion Decoding; Attention-Guided
Multimodal Fusion; Transformer-Based Global Contextualization; Information Blending.

1. INTRODUCTION

A fundamental task in computer-aided diagnosis (CAD), image-guided treatments, and treatment planning is
medical image segmentation [1]. Planning surgical or radiation operations, assessing the extent of the disease,
and tracking the effectiveness of treatment all depend on the precise segmentation of anatomical structures and
pathological areas, such as tumours or lesions [2]. In the last ten years, segmentation performance in a number of
clinical imaging modalities, such as Positron Emission Tomography (PET), Computed Tomography (CT), and
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Magnetic Resonance Imaging (MRI), has greatly improved thanks to deep learning-based techniques, especially
convolutional neural networks (CNNs) [3]. Nonetheless, multimodal data acquisition—in which various imaging
modalities or sequences record complementary information—is frequently used in clinical imaging [4]. To better
visualise lesions, FLAIR reduces fluid signals, T1-weighted MRI offers fine structural features, T2 highlights
oedema, and T1-Gd (contrast-enhanced) displays dynamic tumour enhancement [5]. PET/CT and PET/MRI also
combine anatomical and metabolic information. The integration of such data for thorough and reliable
segmentation is still a difficult task, even though each modality offers distinct clinical value [6].

The variation in modalities' spatial resolution, contrast, noise properties, and artefact prevalence is a major
obstacle in multimodal medical picture processing. The spatial alignment can be further distorted by
misregistration between modalities, which can degrade voxel-level connection that is essential for pixel-wise
segmentation tasks [7]. Furthermore, certain modalities can be absent in actual clinical settings because of
acquisition limitations or patient-specific considerations [8]. The reliability of segmentation networks trained
under perfect, fully-observed input assumptions is weakened by these conditions, which generate inconsistencies
[9]. Noise-induced picture quality loss is another significant issue, particularly in low-dose CT or fast-acquisition
MRI. In addition to impairing radiologists' ability to interpret images, noise also negatively impacts the
performance of deep neural networks, which are frequently sensitive to changes in the distribution of data [10].
Conventional denoising techniques, such wavelet-based approaches or Gaussian filtering, frequently distort
pathology-relevant information or blur anatomical boundaries, which lowers their diagnostic usefulness [11].
Therefore, it is crucial to have a single framework that can manage segmentation and denoising simultaneously
or in concert across modalities [12].

Researchers have looked into a variety of designs and fusion techniques in an effort to address these issues [13].
Early methods frequently failed to capture complicated inter-modal interactions because they relied on feature
concatenation or simple summing across modalities. In more recent research, modality contributions are
dynamically weighed using attention mechanisms [14]. Cross-attention techniques and transformer-based models
have demonstrated potential in enhancing fusion quality and modelling long-range interdependence. But a lot of
current frameworks are not resilient against noise, don't operate well with missing modalities, or don't generalise
well across datasets [15].

Here, to suggest a new architecture called AGMFU-Net++ (Attention-Guided Multimodal Fusion U-Net++) that
aims to fully overcome the aforementioned drawbacks. The U-Net++ encoder-decoder backbone upon which the
model is based has been enhanced with the following innovations:

¢ Modality-Specific Encoders: To prevent premature over-sharing of information, each modality is
processed separately to maintain its distinct statistical properties.

+ Cross-Modal Attention Fusion (CAF): CAF carries out learnt attention across modalities at every
resolution scale, guaranteeing that features are fused adaptively using voxel-level spatial evidence from
every modality that is accessible.

% Transformer Bridge at the Bottleneck: To segment spatially extended structures like tumours, a
transformer encoder is necessary because it captures long-range contextual dependencies across the fused
feature space.

+» Gated Skip-Fusion Decoder: The decoder employs learnable gates in place of naive skip connections to
determine how much data to upsample from coarser layers and how much to retain from encoder features.

¢ Uncertainty-Aware Loss Aggregation: To improve training resilience in the presence of noise or

incomplete data, the model dynamically weighs loss contributions by predicting aleatoric uncertainty at
each supervised scale.

To further enhance robustness, the AGMFU-Net++ training pipeline incorporates noise injection, image
registration, intensity normalisation, data augmentation, and data preparation. Stochastic Weight Averaging
(SWA), curriculum learning, and mixed-precision training are used to further stabilise learning and speed up
convergence. The framework facilitates metaheuristic tuning with hybrid optimisers such as Willow Catkin
Optimisation and Falcon Search to optimise hyperparameters and loss weights.

To assess our model using two benchmark datasets that are diverse:

o

« Multi-sequence MRI images with pixel-by-pixel annotations for various tumour sub-regions are included
in the Brain Tumour Segmentation (BraTS 2018-2023) information.
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% A strong testbed for generalisation is provided by the Medical Segmentation Decathlon (MSD) dataset,
which consists of ten segmentation tasks spanning several organs and imaging modalities (CT and MRI).

Our tests compare the segmentation performance (measured by Dice Score and Hausdorff Distance) and
denoising quality (measured by PSNR, SSIM, RMSE, and MAE) before and after using the denoising-enhanced
AGMFU-Net++ pipeline. To measure practicality, to additionally simulate modality dropout, evaluate robustness
under Gaussian and Rician noise, and carry out cross-dataset generalisation tests.

The outcomes show that AGMFU-Net++ accomplishes:

« Better denoising performance compared to state-of-the-art models, with PSNR increases of up to 2.5-3
dB.

< Improved segmentation accuracy, resulting in a 2—4% increase in dice scores following denoising.

« Alower HD9S indicates improved border precision.

% Resilience in the face of modality dropout, maintaining functionality with input loss of up to 20% to
30%.

+» Excellent cross-domain segmentation performance, exceeding previous models, and strong

generalisation across datasets.

The importance of combining transformer-based global context, modality-aware attention, and uncertainty
modelling in a single architecture for clinical-grade segmentation is highlighted by these contributions. By
bridging the gap between segmentation and denoising, our study shows that higher-quality inputs result in greater
performance on downstream tasks, particularly in high-stakes medical imaging applications. The remainder of
the document is structured as follows: Related works are mentioned in Section 2, the suggested approach is
explained in depth in Section 3, the results analysis is mentioned in Section 4, and the conclusion is finally reached
in Section 5.

2. RELATED WORKS

Deep learning advances in recent years have greatly improved medical picture segmentation
performance, especially for multimodal fusion and image denoising. This section focusses on significant 2024—
2025 contributions that are pertinent to our suggested AGMFU-Net++ framework.

2.1 Multimodal Fusion in Medical Imaging

Utilising complimentary data from various imaging modalities is the goal of multimodal segmentation
networks. In order to analyse CT and MRI inputs for tumour identification, Yang et al. [16] proposed MMFormer,
which incorporates parallel transformer branches. Similarly, to improve segmentation robustness in incomplete
data environments, Jaiswal et al. [17] created CrossModNet, which uses residual streams and cross-attention
fusion. These models highlight the significance of global contextualisation and modality-specific processing,
which our AGMFU-Net++ further develops through transformer bridging and gated skip-fusion.

2.2 Denoising and Low-Quality Image Handling

In clinical settings, managing low-quality inputs is essential. Incorporating a self-supervised denoising
stage prior to segmentation enhances generalisability in low-dose CT, as Zhang and Alizadeh [18] showed. By
creating a dual-branch denoise-segment pipeline for MRI under Rician noise, Liu et al. [19] went beyond this.
AGMFU-Net++, on the other hand, incorporates implicit denoising into the multimodal encoder-decoder chain
with data augmentation for robustness and uncertainty-aware learning.

2.3 Attention-Based Fusion

These days, attention processes are essential for successful multimodal fusion. A spatial-channel
attention module for adaptive fusion in brain MRI segmentation was presented by Chen et al. [20]. In a recent
study, Kapoor and Sun [21] improved tumour boundary localisation by aligning and weighting PET-CT inputs
using cross-attention transformers. By implementing Cross-Modal Attention Fusion (CAF) at every resolution,
AGMFU-Net++ expands on these initiatives and guarantees spatially aware intermodality interactions.
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2.4 Transformer Integration in Medical Segmentation

Transformers' ability to model global surroundings has made them popular. SegFormer-Med, created by
Tran et al. [22], improves lesion diagnosis in ISLES and BraTS datasets by substituting hierarchical transformers
for convolutions. TRU-Net, which incorporates a transformer bridge between encoder-decoder channels, was
proposed by Huang et al. [23]. Similar ideas are used by our AGMFU-Net++, which improves feature learning
by using uncertainty-guided loss optimisation and a transformer bridge.

2.5 Generalization and Robustness Studies

Domain shift and generalisation under noise have become important areas of study. Using the MSD
dataset, Shen et al. [24] looked at test-time domain adaptation by pseudo-label refinement. A number of models
were benchmarked on cross-dataset generalisation tasks with missing modality scenarios by Ghosh and Behera
[25]. Through curriculum learning, deep supervision, and metaheuristic loss balancing, AGMFU-Net++
demonstrates enhanced resilience, guaranteeing consistent performance on datasets such as MSD and BraTS.

3. PROPOSED MODEL

The Figure 1 illustrated diagram showcases the architecture of AGMFU-Net++, a multimodal medical
image segmentation network.

Transformer
Bridge at
Bottenleck

AGMFU-Net++

Figure.1. Proposed model.

Modality-specific encoders, which extract hierarchical features independently to maintain modality-
specific information, process the four input modalities (T1, T2, PLE, and PET) on the left. Long-range spatial
context and global feature modelling across all modalities are made possible by these encoded features flowing
into the Transformer Bridge at Bottleneck. After that, the fused features are fed into a sequence of decoder blocks,
shown in blue, that carry out Gated Skip-Fusion, which balances local and global information by combining
encoder features with decoder outputs using learnt attention gates. Output Heads at different decoder levels round
out the network, enabling deep supervision and uncertainty estimates. The architecture promotes accurate and
modality-aware segmentation by emphasising robust fusion through cross-modal alignment and attention
methods. The observer is guided through the data flow and hierarchical feature refinement across the AGMFU-
Net++ pipeline by the layered architecture and curving, colour-coded arrows.
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3.1. Data Preprocessing, Registration, and Normalization
3.1.1 Registration

Let Ry, (+) be a registration operator parameterized by transformation ¢, (e.g., affine + B-spline). For
each modality mmm (except a chosen reference, say T2 MRI), to compute

Xm) — R¢m(X(m)) (1)

so that X¥(™ is voxel-wise aligned with the reference grid. attention-based fusion presumes spatial correspondence;
misregistration corrupts attention scores and harms fusion quality. this occurs before the network; alternatively, a
Jjoint registration—segmentation loop can be incorporated, but to keep it modular for clarity.

3.1.2 Resampling and cropping

To resample all modalities to a common voxel spacing 4 = (4,,4,,4,) via trilinear/bilinear
interpolation operator S, . Then, for memory efficiency, to crop a region-of-interest (ROI) gy, € 2 around the
anatomy (e.g., by a bounding box obtained from nonzero mask or heuristic). Formally,

3.2. Intensity normalization and modality harmonization

The heteroscedastic distributions across modalities destabilize the optimization landscape. To standardize
each modality to zero mean/unit variance (global or within-ROI):

~ g (M) (p)—

omte

1 ~
Hm I ZPEQR()I X(m) (p) (4)

[QroIl

02 = ——3 (X™(p) — )’ (5)

[Qro1l

Optional histogram matching can be applied to force PET/CT/MR onto a common rank distribution if cross-
subject consistency is important:

X0 « H(X™; target CDF) (6)

where H denotes histogram matching to a fixed target modality template, reducing between-scan variability. Given
the observed benefits of robustness to low-quality images, to inject the following stochastic transforms during
training:

Noise injection:

R — X 4 ,7~N(0,02) (7)

with g,, sampled each batch.

Gamma correction:

XM (Rm)y~1(0.8,1.2) (8)
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Elastic deformation:
XM« xme(1d + G, + d) (9)
where d is a random displacement field and G, Gaussian smoothing kernel. Mixup across modalities for
robustness to missing modalities, occasionally replace one modality’s feature stream with a convex combination
of others, enforcing the fusion to be modality-agnostic.
3.3. Architecture: AGMFU-Net++

The model extends a U-Net-like encoder—decoder with (i) parallel modality-specific encoders, (ii) Cross-
Modal Attention Fusion (CAF) at every resolution, (iii) a Transformer Bridge at the bottleneck for global,
modality-aware context, and (iv) Gated Skip-Fusion in the decoder.

3.3.1 Modality-specific encoder streams

For each modality m € {1, ..., M} to define an encoder E™ that outputs a feature pyramid:

FO™ = {5}’") € RHeXWexDxCepp = 1, L} (10)

where £ indexes the spatial scale (resolution level) and C, the channels. Each encoder block at level ¥ is:
F™ = B(F™) = Convsy3°BN°GELU°Convsy ;> BN°GELU°Dowmsample (11)

With Fo(m) = X (properly reshaped). early layers capture strongly modality-dependent low-level statistics;
enforcing a shared encoder may underfit those distinctions.

3.3.2 Cross-Modal Attention Fusion (CAF)

M

At each scale 2, to fuse {F{,(m) } into a single fused representation F,. To do not simply concatenate or sum;
m=1

instead, to use a cross-attention operator ensuring each modality attends to others and the fusion output weighs
them according to spatially varying evidence. Flatten spatial dimensions:

F™ € RNXCt, N, = H,W,D, (12)
For a given reference modality r, define queries

{Er) — F}(T)WQ(:’)' WQ(:’) € RC€Xdk (13)

and for all modalities (including r) keys and values

m) _ p(m)y,,(m) m) _ p(m)y,,(m)
K™ = FWER, v = FWSP (14)

with w0, W) € RO,

The cross-attention map from reference r to modality m is:

(m)
Ky

Q) !
- Q
AE,T ™ = softmax (%) € RNeXNe (15)

Then, the cross-attended features for reference r contributed by modality m is
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zy ™ = AT ™y ™ (16)

To obtain a symmetrically fused representation, to aggregate over all references r and contributors m:
& 1 1 (r<—m)
Fo=o (520,228 ™) (17)

where ¢, is a position-wise feed-forward network (FFN) (2-layer MLP + GELU + residual). To then reshapeF, —
ﬁgbacktOH{i X Wg XD[ X C{z .

Because no single modality should dominate a priori. The model learns the attention weights AS ™ to control
how much each modality contributes at each voxel and layer.

3.3.3 Multi-head attention (how to stabilize and diversify projections)
To use h heads:
MHA(F) = concat(head,, ..., head; )W (18)

with each head computed as above but with its own (Wj, Wy, Wy,). This increases the representational capacity
and allows the model to learn multiple complementary fusion patterns.

3.4. Transformer Bridge at the bottleneck
At the deepest scale L, to apply a Transformer Encoder with self-attention on £ :

Q.= FLWQ,L' K, = FLWK,L: v, = FLWV,L (19)

T
A, = softmax (‘f;dﬁ:), Z;, = AV, (20)

FPria9et = FEN(Z, + Fr) + (2, + F) (21)

with LayerNorms applied pre/post as usual (“Pre-LN” transformer). this global modeling enforces long-range
feature consistency (lesions are often spatially extended), and self-attention learns dependencies across all
positions, not just neighboring voxels.

3.4.1. Decoder with Gated Skip-Fusion

For each decoder level £ =L —1,..,1, to upsample the higher-level feature and gate-fuse it with the
corresponding fused encoder features F,. Let U(-) be upsampling by factor 2 (trilinear/bilinear or transposed
conv). Let D, ; be the decoder feature at the coarser level £ + 1. Then

Dy = U(Dp41) (22)

To compute a gating mask G, € [0,1]7¢*WexDexCe

G, = o(W, = [F,||D,] + b,) (22)

where || denotes channel-wise concatenation, W isa 1 X 1 convolution (or linear), * convolution, and o sigmoid.
The decoder feature is then

D, = ,(G,OF, + (1 - G,)®D,) (23)
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where ¢, is a Conv-BN-GELU-Conv-BN-GELU block, and © denotes element-wise multiplication. The gate
learns where the encoder still has discriminative local detail and where the upsampled decoder already contains
sufficient global context, avoiding over-reliance on either.

3.4.2 Output heads and deep supervision

At each decoder level, to predict an auxiliary probability map to enforce deep supervision:

Y, =0(Woue *Dy), €=1,..,L—1(24)

and the final output

Y= J(Wout * Dl) (25)

These auxiliary outputs are upsampled and compared to the ground truth, preventing vanishing gradients and
encouraging each scale to be semantically meaningful.

3.4.3. Uncertainty head
To attach a variance head X, at each supervised level, parameterized to be positive via softplus:
2{’ = Softplus(wvar,{’ * Df)(26)

These X, are task-dependent aleatoric uncertainties used to weight losses automatically (see §4.3), giving higher
weights to more confident predictions and vice versa.

3.5. Optimization Objective

To combine four complementary losses to capture overlap, class imbalance, boundary accuracy, and robustness to
hard examples:

1. Generalized Dice Loss Lp;ce
2. Focal Loss Lrocar

3. Tversky Loss Lryersky

4. Boundary Loss Lg4

These are aggregated per-scale and per-class, and adaptively weighted either by uncertainty or by metaheuristic
tuning.

3.5.1 Dice loss

For class ccc, let pi(

18

 and Gi(c) denote the predicted probability and ground truth at voxel iii. The (soft) Dice score

25N, {99 +e @7

N P4 sN g Ore

Dice© =

and the Dice loss

1 .
Lpice =1— EZE=1 Dice(® (28)
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it directly optimizes the overlap metric commonly used for evaluation (Dice/DSC), handling class imbalance
better than cross-entropy.

3.5.2 Focal loss (how it focuses on hard voxels)

For binary segmentation (extendable to multi-class),
1
Lrocar = =5 Lic1a(1 = p)  gilogp; + (1 — a)p] (1 — gi)log (1 — p;) (29)

with focusing parameter y>0\gamma > 0y>0 and balancing @ € (0,1). To emphasize difficult, misclassified voxels
and reduce the dominance of easy negatives.

3.5.3 Tversky loss

TP _ 2ip 99l
TP+aFP+BFN — 3,p g +a3;p®1-g)+B 5:(1-p{D)g

i

Tversky(©) = = (30)

1
LTversky =1- c g:l TverSky(C) (31

medical segmentation often cares more about reducing FNs (missing lesion voxels) than FPs; f > a implements
this.

3.5.4 Boundary loss (how to encourage sharp, accurate borders)

Let d(p) be the (signed) distance transform of the ground truth boundary (negative inside). The boundary loss for
probability map p(p) is

Lgna =~ Zpeald @) 1p@) — 9(p)] (32)

region-overlap losses can be insensitive to subtle boundary errors; the distance weighting forces corrections where
boundaries are misaligned.

3.5.5 Deep supervision aggregation (where losses are attached)

For each supervised scale £ € S (e.g., S = {1, ..., L — 1} plus final), to define

Ly = Apice,tLpice,t + Arocar,tLrocare + Arversky,eLrversiy.e + AgnaeLenae (33)

The total loss is

Liotar = Xres WeLe (34)

where w, decreases with depth (coarser scales get smaller weights) to prioritize the final prediction.
3.5.6 Uncertainty-weighted loss

If at scale ¢ to predict a scalar uncertainty a{,z_k per loss component k € {Dice, Focal, Tversky, Bnd}, to can
define (Kendall & Gal style):

Lo = T (5 Lue + logoni ) (35)

instead of hand-tuning A-weights, the network learns to set larger variances (smaller weights) for inherently noisy
or less-informative losses, and vice versa.
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3.5.7. Metaheuristic loss balancing (where black-box optimization comes in)

Alternatively (or additionally), to can optimize {A} & {w,} using a metaheuristic (e.g., Willow Catkin
Optimization + Falcon Search hybrid) on a validation split:

e  Objective: maximize mean Dice (or other metric) on validation.

e Decision variables: A = (Apjces Arocats Arverskys Apna) and w = (wy, ..., wy,).

e Constraints: A, = 0,Y A, = L, wp, =2 0,),w, = 1.
Let M (A, w) be the validation performance; the metaheuristic searches
(A, w™) = TEBTEM (4, w) (36)
3.6. Training Algorithm & Optimization

To ensure the AGMFU-Net++ achieves optimal performance on multimodal medical image

segmentation, to establish a comprehensive training pipeline that integrates advanced optimizers, learning rate
(LR) schedules, and regularization strategies.

3.6.1 Choice of Optimizer

The study employs AdamW (Decoupled Weight Decay) due to its robustness in deep architectures with
attention modules. The parameter update rule for a parameter 6, at iteration t is:

me = Bime_y + (1 —B1)ge 37)

vy = Byme_q + (1 — ﬂz)gtz (38)

iy = 5 (39)

D = =57 (40)

1—

Ors1 = 0; — N0, (41)

I

N NERY
Where, g; = Vg,Ltotar is the gradient, n is the learning rate, 4 is the decoupled weight decay term. Standard
Adam's L2 penalty can interact with adaptive learning rates, while AdamW separates weight decay from the
gradient step, improving generalization.

3.6.2 Learning Rate Schedule

To adopt Cosine Annealing with Warm Restarts (SGDR):
1 Teur
Nt = Nmin + 2 (Mmax = Nmin) (1 + cos (T_LT[)> (42)

Where, T; is the length of the current restart cycle, T, is the number of iterations since the last restart. This allows
aggressive exploration (large 1) at the beginning of cycles and fine-tuning (small 77) towards the end.

3.6.3 Stochastic Weight Averaging (SWA)

To maintain an averaged model 8 across the last few epochs:
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= 1 —
6 =23, 0¢ 43)

where 8F=F) are checkpoints from the final K epochs. SWA improves flatness of the loss landscape and
generalization, especially in multimodal fusion tasks.

3.6.4 Mixed Precision Training

Using FP16 with dynamic loss scaling reduces GPU memory usage and training time. Formally, if Ls,;¢ is the
loss computed in FP16, to scale by s:

Z = S'pr16 (44)

compute gradients, then unscale:

~ 1
g =59fp1s (45)
This prevents underflow while maintaining speed. Where: implemented at the training step.
3.6.5 Curriculum Learning for Noisy/Missing Modalities
To handle missing or degraded modalities:

e Stage 1: Train on full clean modalities (X%, ..., X",

e Stage 2: Randomly drop modalities with probability p, simulating incomplete data.

e Stage 3: Add synthetic noise, aligning with the low-dose experiments.
This progressive curriculum improves robustness across clinical variations.
3.6.6 Regularization Techniques
To integrate:

e  Spatial dropout: Dropping entire feature channels with probability p..

e Attention dropout: Zeroing elements in attention matrices AT<™.

e  Weight decay (162): Encourages smaller weights for better generalization.

4. RESULTS AND DISCUSSION
4.1. System and Software Requirements
To implement and evaluate the AGMFU-Net++ framework for multimodal medical image denoising and

segmentation, the following system and software configurations are recommended. The system should be
equipped with a 64-bit operating system (Ubuntu 20.04 or Windows 11), a minimum of 32 GB RAM, and a multi-
core CPU (e.g., Intel 19 or AMD Ryzen 9). For deep learning operations, an NVIDIA GPU with at least 12 GB
VRAM (e.g., RTX 3080, A100) and CUDA support (>=11.3) is essential for training efficiency [26]. The software
stack includes Python 3.8+, PyTorch 1.13+, TorchVision, SimpleITK, NumPy, OpenCV, and SciPy. For model
training, frameworks such as MONALI and nibabel are used for medical image handling. Visualization tools like

TensorBoard or Matplotlib are recommended. Optional support for NVIDIA Apex enables mixed-precision
training. Cloud support (e.g., AWS EC2 or Google Colab Pro) is beneficial for scalable experimentation.
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Brain Tumor Segmentation (BraTS
2018-2023)

Figure 2. Sample dataset image.

Figure 2 illustrates sample input images from two major medical image segmentation datasets. The top row
represents the BraTS (2018—-2023) dataset, showcasing four MRI modalities: T1, T1-Gd (contrast-enhanced), T2,
and FLAIR—used for brain tumor segmentation. Each scan highlights different tumor subregions to aid precise
lesion localization. The bottom row shows diverse CT and MRI samples from the Medical Segmentation
Decathlon (MSD) dataset, covering multiple organs such as the liver, brain, lungs, and head-neck region. These
datasets are pivotal in evaluating multimodal segmentation models like AGMFU-Net++ across varied anatomical
and imaging contexts.

The BraTS (Brain Tumor Segmentation) 2018—2023 dataset [27] is one of the most widely used
benchmarks in medical image segmentation research. It includes multi-institutional pre-operative MRI scans
comprising four modalities: T1, T1-Gd (contrast-enhanced), T2, and FLAIR. Each case is annotated for three
tumor sub-regions: enhancing tumor (ET), tumor core (TC), and whole tumor (WT). The primary challenge lies
in learning from heterogeneous inputs and fusing them to delineate tumor subcomponents that vary spatially and
morphologically. This makes BraTS an ideal testbed for evaluating the performance of multimodal architectures
like AGMFU-Net++, especially in terms of spatial correspondence, cross-modal attention, and uncertainty
handling.

The Medical Segmentation Decathlon (MSD) [28] includes 10 diverse organ segmentation tasks, each
with distinct challenges in image characteristics, anatomical shape, and modality. Tasks span across CT and MRI
scans and include segmentation of the liver, pancreas, brain, colon, lung, prostate, and more. MSD is valuable for
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validating the generalization and scalability of segmentation models across multiple domains. For AGMFU-
Net++, it enables assessment of fusion consistency, modality-specific encoder strength, and robustness under
varying spatial resolutions and contrast levels.

These datasets provide complementary evaluation scenarios: BraTS emphasizes deep multimodal
synergy in a single anatomical context, while MSD tests broad adaptability and transferability across diverse
clinical applications.

4.3. Validation Analysis of proposed model

Table 1 presents quantitative denoising performance on the BraTS dataset using four baseline models
and the proposed AGMFU-Net-++.

Table 1. Quantitative Metrics for Image Denoising (BraTS Denoising Metrics).

Model PSNR (dB) SSIM RMSE MAE
UNet 284 0.84 0.124 0.082
Attention-UNet 29.1 0.87 0.112 0.075
TransUNet 30.2 0.89 0.098 0.069
SwinUNet 30.5 0.9 0.093 0.065
AGMFU-Net++ 32.7 0.94 0.075 0.052

The proposed model achieves the highest PSNR (32.7 dB) and SSIM (0.94), indicating superior noise
reduction and structural preservation. It also records the lowest RMSE (0.075) and MAE (0.052), demonstrating
precise voxel-level restoration. Compared to UNet, AGMFU-Net++ shows significant improvements,
highlighting its effectiveness in fusing multimodal MRI data and handling spatial noise. The results validate the
architecture’s capability to enhance image quality, which is critical for accurate tumor segmentation and clinical
reliability in MRI preprocessing.

Table 2. Quantitative Metrics for Image Denoising (MSD Denoising Metrics).

Model PSNR (dB) SSIM RMSE MAE
UNet 29 0.85 0.117 0.077
Attention-UNet 30.3 0.88 0.104 0.07
TransUNet 31.5 0.91 0.088 0.061
SwinUNet 32.1 0.93 0.081 0.058
AGMFU-Net++ 34 0.96 0.063 0.045

Table 2 showcases denoising performance on the MSD dataset across multiple models. AGMFU-Net++
outperforms all baselines with the highest PSNR (34 dB) and SSIM (0.96), indicating superior image clarity and
structural fidelity. It also achieves the lowest RMSE (0.063) and MAE (0.045), highlighting precise noise removal
and reduced intensity errors. In comparison, traditional UNet and Attention-UNet lag behind in both restoration
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quality and fine-grained accuracy. These results confirm AGMFU-Net++’s effectiveness in denoising diverse
anatomical regions within CT and MRI modalities, making it robust for general-purpose medical segmentation

tasks in the presence of real-world image noise.

Table.3. Segmentation-Aware Denoising Results.

BraTS BraTS BraTS BraTS MSD MSD
Dice Dice HD95 HD95 MSD Dice | MSD Dice HD95 HD95
(Before (After (Before (After (Before (After (Before (After

Model Denoising) | Denoising) | Denoising) | Denoising) | Denoising) | Denoising) | Denoising) | Denoising)

UNet 0.82 0.85 5.6 4.9 0.84 0.87 6 53
Attention-

UNet 0.84 0.87 5.2 4.5 0.86 0.89 5.4 4.7
TransUNet 0.86 0.89 4.7 4 0.88 0.91 4.9 4.2
SwinUNet 0.87 0.9 4.5 3.8 0.89 0.92 4.6 4
AGMFU-

Net++ 0.9 0.93 3.9 3.1 0.92 0.95 4 33

Table 3 presents the Segmentation-Aware Denoising Results for the BraTS and MSD datasets. It
compares segmentation performance before and after denoising across multiple models. For the BraTS dataset,
the Dice score improves for all models post-denoising, with AGMFU-Net++ achieving the highest gain from 0.90
to 0.93, reflecting better tumor region segmentation. The corresponding HD95 value also reduces from 3.9 to 3.1,
showing significant enhancement in boundary precision. Similarly, for the MSD dataset, AGMFU-Net++
improves the Dice score from 0.92 to 0.95 and reduces HD95 from 4.0 to 3.3, confirming that denoising leads to
more accurate and reliable organ segmentation.

The improvements are consistent across all models, but AGMFU-Net++ delivers the most substantial
benefit. It effectively fuses and denoises multimodal inputs using attention and transformer mechanisms, which
leads to cleaner, feature-rich representations for the segmentation decoder. The decrease in HD95 post-denoising
across datasets demonstrates its ability to correct fuzzy or misaligned edges, especially in complex anatomical
boundaries. Overall, these results validate that segmentation-aware denoising substantially enhances both region
overlap and boundary accuracy, making AGMFU-Net++ a superior choice for clinical-grade segmentation tasks.
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Figure 3. Qualitative Visualization Results,

The qualitative visualisation findings in Figure 3 demonstrate how denoising affects the segmentation of
brain tumours using various models. The segmentation output is shown after the original, noisy, and denoised
MRI image in the first row. Results from particular models—UNet (before denoising), TransUNet after denoising,
and SwinUNet+ after denoising—are displayed in the second row to illustrate how well each design preserves
tumour structure. Notably, denoised outputs show improved contrast and tumour border definition, while noisy
inputs result in reduced visual clarity and erroneous segmentation. Although it isn't demonstrated here, AGMFU-
Net++ would continue this trend by using attention-guided multimodal fusion to produce even cleaner outputs
and more precise segmentation masks. The quantitative results are corroborated by this visual comparison, which
demonstrates that denoising greatly increases tumour visibility and segmentation accuracy, particularly when used
prior to the segmentation stage. In order to improve diagnostic results, it highlights the therapeutic significance
of incorporating picture restoration into medical imaging pipelines.

Table 4. Robustness and Generalization Studies.

Random

Rician Noise Modality Cross-Dataset Cross-Dataset
Gaussian Noise Dice Drop Dropout Dice Dice Dice

Model Dice Drop (%) (%) (%) (MSD—-BraTS) (BraTS—MSD)
UNet 8.3 9 12.4 0.72 0.74
Attention-UNet 6.4 7.2 10.1 0.75 0.77
TransUNet 5.1 5.7 8.9 0.78 0.79
SwinUNet 4.8 5 8.4 0.8 0.81
AGMFU-Net++ 2.6 2.9 4.2 0.85 0.86
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An assessment of the model's generalisation and robustness under varied stress conditions is shown in
Table 4. In contrast to UNet and TransUNet, which show larger losses, AGMFU-Net++ shows the least amount
of performance deterioration, with the lowest Dice decline under Gaussian (2.6%) and Rician noise (2.9%).
Additionally, it has a high degree of robustness to missing input data, as evidenced by the 4.2% Dice loss after
random modality dropout compared to 12.4% in UNet. AGMFU-Net++ demonstrates its exceptional versatility
across several imaging domains by achieving the greatest cross-dataset Dice scores for generalisation (0.85 when
transferring from MSD to BraTS and 0.86 in the opposite direction). These results demonstrate how well
AGMFU-Net++ manages real-world variability, including noise and modality inconsistency, which makes it a
reliable option for cross-domain medical image segmentation tasks besides clinical deployment.

5. CONCLUSION AND FUTURE DIRECTION

In this work, to presented AGMFU-Net++, a stable besides flexible framework for multimodal medical
image segmentation and denoising that is especially designed to manage heterogenecous CT besides MRI
modalities. Even in face of challenging imaging conditions like noise, missing modalities, besides inter-domain
variability, AGMFU-Net++ effectively learns spatially coherent, modality-aware features by combining modality-
specific encoders, cross-modal attention fusion (CAF), a Transformer Bridge at the bottleneck, and a gated skip-
fusion decoder. This greatly improves segmentation performance. The comprehensive tests conducted on two
benchmark datasets, Medical Segmentation Decathlon (MSD) and BraTS (2018-2023), showed AGMFU-Net++
outperformed the other model on all important evaluation metrics. In segmentation-aware evaluations, the model
significantly improved Dice scores and HD95 while consistently achieving the highest PSNR and SSIM values in
denoising tasks, as well as lowest RMSE and MAE. Crucially, it outperformed current models like UNet,
TransUNet, SwinUNet, and Attention-UNet by demonstrating significant robustness under Gaussian and Rician
noise perturbations and generalising well across datasets. These results highlight potential of AGMFU-Net++ for
use in clinical settings are noisy, real-world, and modality-incomplete.

Even while AGMFU-Net++ performs exceptionally well, there is still room for improvement. This
architecture may be expanded for multi-task learning in future research, allowing for combined segmentation,
classification, and lesion quantification in a single model. Furthermore, applying foundation models or self-
supervised pretraining to extensive unlabelled medical data may improve generalisation even further. Federated
learning and domain adaption represent another exciting avenue for training AGMFU-Net++ across hospitals
while maintaining data privacy.

To make incorporation into clinical imaging workflows easier, real-time deployment features including
hardware-aware pruning, ONNX model export, and inference speed optimisation should be investigated.
Assessing its effect on diagnostic accuracy and workflow efficiency will be made easier with future validation
through prospective studies and radiologist-in-the-loop evaluations. In conclusion, AGMFU-Net++ presents a
strong, precise, and expandable answer to the problems associated with multimodal medical image processing and
has a lot of potential to advance Al-driven diagnostic imaging in clinical settings.
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