

IMPACT OF YOGIC AND PLYOMETRIC TRAINING ON SELECTEDPHYSICALVARIABLESAMONGCOLLEGE MEN CRICKET PLAYERS

MR.N.LOGANATHAN

RESEARCH SCHOLAR (PART-TIME), ALAGAPPA UNIVERSITY COLLEGE OF PHYSICAL EDUCATION, ALAGAPPA UNIVERSITY, KARAIKUDI.

EMAIL:loganathan871@gmail.com

DR.R.SENTHILKUMARAN

DIRECTOR OF PHYSICALEDUCATION(RETD), ALAGAPPAUNIVERSITY, KARAIKUDI. EMAIL: srsk27@gmail.com

DR.S. SAROJA

 $PROFESSOR, ALAGAPPAUNIVERSITY COLLEGEOFPHYSICALE DUCATION, ALAGAPPAUNIVERSITY, KARAIKUDI.\\ EMAIL: dr.s. saroja@gmail.com$

Abstract

Cricketisahighlypopularizedgamerequireslotsofstrength, endurance, speed, power and flexibility onthesametomeitishighlyitsneedofcoolandcalmphysiologicalattributestograbthe opportunity while it is coming on their way. The present research examines how yoga and plyometric exercise affectsafewphysicalcharacteristicsofmalecollegiatecricketplayers. Forty-five (45) individuals were divided into three groups at random: 15 for yogic class room instruction, 15 for plyometric exercise, and 15 for control. The training course ran for eight weeks. Before and after training, Physical parameters such as the Endurance, Flexibility and lactate tolerance were assessed. The yogic group and plyometrictraininggroup had shown significant improvement in Endurance, Flexibility and lactate threshold with the slight variation between the two where the plyometric training is little bitmore significant than vogic training group The specific vogic exercises and the plyometric training were implemented group wish and the enumerated quantitative dates collected in a systematic mannerwascommunizedcalculatedandanalyzedthoroughlywiththehelpofSheffe'stest'F'ratioand ANCOVA and compared with 0.05 levels of freedom as the initial level, and then suggested that both yogic and plyometric training can be affective in enhancing Physical fitness in college men cricket players.

KeyWords: Yogic, Plyometric Training, Endurance, Flexibility

1. INTRODUCTION

Aseer Rufus. A. (2016) [1] Cricket is an intensely physical activity that calls for a high level of muscular endurance andplyometrictraininghavebeenshowntoimprovephysicalfitnessinvariouspopulationsespeciallythecricketmen players. [2] Aseer Rufus. A. (2016) Yoga translates as "yoke,""unite,""bind,""link,""connect," or "merge." Yoga combinesmentaland physicalhealthin thesameway thatyokejoinstwo bulls. Yogaisa stateofonenesswith God and the union of the inner being with him. Only through mastery of the sense organs, constant practice, and disengagement is it achievable. Brown GA, Rax MW [3] In accordance to the ancient Sage Patanjali, yoga is the process of removing the sensory systems from their material possessions and exercising control over them.

In 1975, former Olympics printer Fred Wiltcoined the word "gymnastics." "Plyometrics" itself comes from the Greek terms "plio" and "metric," which translate to "extra" and "quantify," respectively. Up until now, the majority of coaches thought it hurt rather than benefited performance. This might be as a result of their inability to use it to learning. Because it significantly increases speed and combustibility, plyometric has been increasingly popular among

trainers over the years. Activities that assist close the gap between speed and power are referred to as plyometric.It describes human movement that is instantly and quickly followed by a concentric contraction of the muscles.

Shukla [4] Enhancing quickness through strength is the primary goal of plyometric exercise. Muscle contractions that are explosive are caused by the white fibre, also known as the fast twitch muscle. Over the past many years, plyometric training has experienced a significant transformation. The reader will be guided into the next phase of plyometric exercises by novel concepts and methods. Athletes can be trained innovel ways by an instructor or trainer who is aware of the possibilities and possibilities presented by plyometric. In the 1980s, coaches of weight lifting, volley ball, and other sports started incorporating plyometric exercises and routines into their exercise regimens. If there was a downside to this zeal, it was the inexperience of American coaches and athletes in plyometric administration and the mistaken notion that more must be stronger.

In essence, cricket is a game of bat and ball in which two teams of eleven players compete. It originated in England in the 16th century and is among the oldest sports in the world. Depending on the field, "training" can signify several

things. The term "training" is typically used in sportstore fer to engaging in physical activity. Training, in its strictest definition, is physical activity intended to enhance performance. Creating an exercise regimen to prepare an athlete for a certain event is known as training. Both the growing skill and energy capacity are taken into account.

Physicalfitnessandcricketperformance

Kapil Dev began practicing atan early ageandisadamantthat hissuccessin every facetof thegameofbowlinghas been largely attributed to his total physical health.

He argues that his off-season physical conditioning allowed him to bowl for extended periods of time without becoming tired or losing focus. Kapil only recently changed his retirement plan after starting his test career in 1978 [5]. An absolutely outstanding achievement!

Hewouldgetinforvigorousstretching,jogging,andjumpingexercisesevenasayoungster.Tobeabletosustaina high over count, bowlers need to have both powerful agility and power in addition to strong muscle endurance. Inadequatemusclestrengthandconditioningwillleadtoimprecisebowlingandincreasedinjuryrisk,particularlyfor high-speed bowlers. It also gives batsmen more time to settle down in the wicket and score more runs. Every participantwillbatandfieldduringthegameatsomepoint. These aregoals that should guide the creation of a cricket training program.

2. RELATEDWORKS

Theearliestself-developmentsciencethatisknowntoexistisyoga. Yogicactivitiesarelimitedtolowtemperatures and few movements. Additionally, by influencing the automatic nervous system, yoga activities guarantee better nourishment and food utilization in addition to appropriate relaxation because they are controlled voluntarily by the individual. The term "aerobic exercise" describes vigorousphysical activity requiring a lot of oxygen. It entails the body moving rhythmically over distance or against gravity, as in swimming, jogging, running, dancing, and some calisthenics [6]. Aerobic exercise has a direct impact on the body's physiological functions.

Football or "total football" refers to the application of skill development, tactical improvement, and enhancement of all physical aspects of the essential motor components that are intimately connected and contribute to the game's success[7]. Sportsscientists are attempting to increase football players' cognitive capacities in addition to enhancing their technique, physiology, and most efficient body. Patience, speed, agility, maximal leg strength, upper frame strength, leg energy, and muscular endurance are all demonstrated in the official football literature adaptability; Reaction timing and coordination are critical preconditions for successful overall soccer play.

The vertical leaptest is a crucial physiological element of crickets kills for different positions since it measures lower strength and explosive force. The static vertical jump and the countermovement vertical jump are two field-based techniques that are useful for assessing lower body strength and power [8]. The one-repetition maximum of a bench press was used to determine the positive correlation between superior batting performance and upper body strength. The fact that upperstrength by itself is not a reliable indicator of total batting successwas also recognized. There isn't much information on how speed and fitness relate to cricket performance. Using the 40-meter sprint test, speed was compared amongst bowlers and batsmen to ascertain who is the fastest.

nthemajorityofCommonwealthnations, cricketisapopular teamsport. It used to only be played at a certain season (winter in Asian countries, summer in Western ones). But during the past few decades, its popularity has grown significantly, and it is now performed all year round. The cricket players have more rigorous schedules that require them to practice and trainforly gerperiods of time [9]. One of the potential causes of the rising in jury rate could be

theincreasedworkload.Researchinthisareaisthereforenecessarytopreventsports-specificinjuries,improvecricket players' performance, fortify the training regimen, and identify game skill.

Given the vast array of human body types, it is now widely accepted that certain sports are better suited for people with particular body types than others. It is commonly known that certain physical traits or anthropometric profiles reveal whether a player would be fit to compete at the top level in a particular sport [10]. These morphological and anthropometric characteristics are themostaccurate markers of an athropometric characteristics and performance peak performance. There are studies on cricket players' anthropometric characteristics and performance evaluations. Regarding the female cricket players, there are not transperse to the same performance and Punjab as well as look for any relationships between performance tests and a few chosen anthropometric characteristics.

The way an athlete performs in team games is influenced by a variety of factors. The same is true for human body composition and physical fitness, which influence team sport performance at both the professional and elite levels. Furthermore, physiological and physical well-being factors [11]—which are necessary for sports excellence—are also involved in the success of team sports. In actuality, candidates for sports and team games are influenced by a combination of physical fitness factors linked to health and abilities. In contrast, a greater degree of collective and cooperative fitness or gasmis required for the majority of team games ports performanced emands. Other requirements include precise, correct, and fine motor abilities, tactical attributes, playing style, seasonal time, and individual and team morale, respectively.

3. METHODSANDMATERIALS

Thetestingproceduresforoutcomemeasures

The day before the test, all subjects were told not to engagein any strenuous exercise. Each of the performance tests listed below was run through three consecutive trials, and the final score was calculated by averaging the measured variables:

1. CoreMuscleStrengthAssessment:

The athletes positioned themselves in a pike posture, with their bodies in a straight line, their elbows beneath their shoulders, their arms with their shoulders apart on the ground, their toes on the ground, and their buttocks neutral. If the hips did not line up or if any portion of the body other than the elbow contacted the ground [12], the test was stopped. It took only a few seconds to measure.

2. MultistageFitnessAssessment:

Thetestrequiredtheindividualtorunacrosstwolinesthatwerespaced20metersapartand66feetapart.Inorderto calculatetheindividuals'aerobicfitnessbasedontheamountoflapstheycompleted,pre-recordedsirenswereplayed, and they had to accelerate with each beep.

3. Push-UpAssessment:

The subjects touched the floor with both hands and toes while performing the push-up. During the elongated phase, the subjects lowered themselves until their torso was 5 cm off the ground, and then raised themselves back up until theirelbowswerecompletelyextended. The entire amount of push-upsperformed correctly was tallied. If the subjects were unable to maintain a full range of motion or a neutral hip alignment, the test was terminated.

4. LateralConeJumpAssessment:

The individual stood on one side of two cones that had a wire or tape secured across them. In order to negotiate the barandlandingontheotherside, the subjects had to jump. The subject's footleaving the ground marked the beginning of the period, and the number of horizontal jumps completed in 30 seconds was tallied. The total amount of lateral jumps performed in 30 seconds was counted, and the test was halted whenever the subject's feet reached the tape boundary or slammed on the hurdle.

5. StationaryVerticalJumpAssessment:

The person was standing next to the tape measure, which was fixed to the wall. They were instructed to use their tattooedmiddlefingertiptotouchthehighestspotonthewall. This point was determined to be the subject 's standing height. After that, the participant used their legs and arms to help the mjump vertically as high as they could and used their tattooed middle fingertip to mark the wall. The final score was determined by subtracting the two points. Participants: Forty five (45) college men cricket players were between the age group of 18-25 yrs with the average height of 160-165cm and weight 65.5 kg -75kg had participated in this study.

Design: Participantswere randomized to one of three groups:control(15),plyometrictraining (15),oryoga training (15).

Exerciseprograms: **Charles A**Theyogictraining program consists of Asanas, Pranayama and Meditation. While the plyometric training program included exercise such as box jumps, sit and reach and jumps quats. This training program lasted 8 weeks with 4 sessions per week.

Measurement: Physical variables including Flexibility, Muscular Endurance.

Statisticalanalysis[13]:DateswereanalyzedusingSPSSSoftware.Descriptivestatisticsforeveryvariable,themean and standard deviations were computed. The group differences were compared using ANCOVA[14], and Shiffe's test employed for pairwise comparisons. The significance level was established at the 0.05 level of conviction [15].

Table-1 Covariance Analysis of the Yogic Group, Plyometric Training Group , and Control Group Means for the Pre, Post, and Adjusted Post Tests on Flexibility (Marks in Centimeters)

Table-2

Test	Yogic Group	Plyometric Training Group	Control Group	Sour e of Varianc e	Sum of Squares	Df	Means Squares	F ratio
PreTest	40.10	40.43	39.80	BG	2.94	2	1.47	0.15
Mean				WG	400.55	42	9.53	
PostTest	45.74	46.58	40.08	BG	375.76	2	187.88	17.15*
Mean				WG	460.03	42	10.95	
Adjusted	45.74 46.61			BG	379.30	2	189.65	
PostTest Mean		40.05	WG	456.32	41	11.13	17.04*	

The Scheffe's Test for the Difference between Paired Means on

Flexibility(ScoresinSeconds)

Means					
YOGICclass	PlyometricTraining class	Controlclass	Mean Difference	RequiredCI	
45.74	46.61		0.87		
45.74		40.05	5.69*	3.86	
	46.61	40.05	6.56*		

Figure-1 Bar Diagram Displaying the Yogic Group, Plyometric Exercise Group, and Control Group MeanValues for the Pre, Post, and Adjusted Post Tests on Flexibility

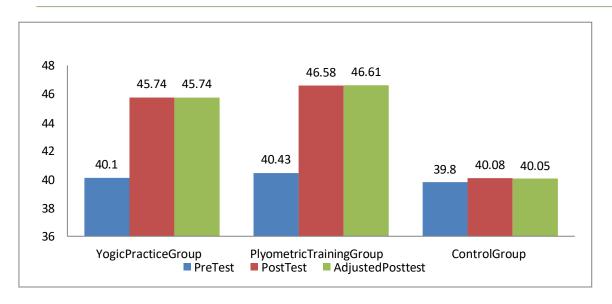
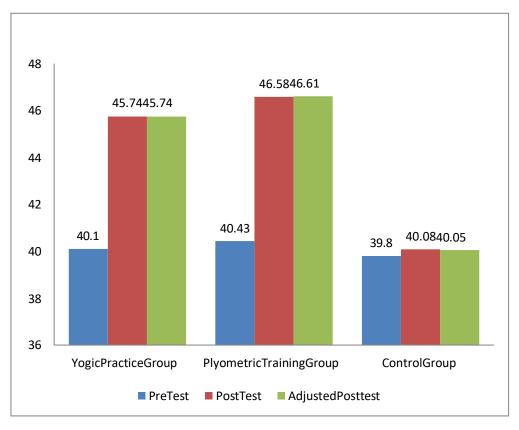


Table-3 Analysis of Covariance for the Pre, Post and Adjusted Post Test Means Values for YOGIC Group, Plyometric Training Group and Control Group on Muscular Endurance

(Scoresin Numbers)


Test	Yogic Practice Group	Plyometric Trainings Group	Control Group	Sour e of Varianc e	Sum of Squares	Df	Means Squares	F ratio
PreTest	31.06	.06 29.80	29.26	BG	25.64	2	12.82	1.24
Mean	31.00			WG	434.26	42	10.34	1.24
PostTest	40.73	42.06	30.40	BG	1223.33	2	611.66	119.23*
Mean				WG	215.46	42	5.13	119.23
Adjusted			30.45	BG	1177.85	2	588.92	
PostTest Mean	40.65	42.08		WG	212.97	41	5.19	113.37*

 $\label{lem:condition} Table-4 The Scheffe's Testforthe Difference between Paired Means on \\ Muscular Endurance (Scores in Numbers)$

Means					
YOGICGroup	PlyometricTraining Group	ControlGroup	Mean Difference	RequiredCI	
40.65	42.08		1.43		
40.65		30.45	10.23*	2.63	
	42.08	30.45	11.63*		

Figure-2BarDiagramShowingthePre,PostandAdjustedPostTestMeanValuesofYogicGroup,Plyometric Training Group and Control Group on Muscular Endurance

DISCUSSIONONFINDINGS

The findings of this study showed significant improvement in Muscular Endurance and Flexibility threshold for both yogic and plyometric training group. These findings imply that college men's cricket players can improve their Physical fitness with yoga and plyometric training.

CONCLUSION

The following findings were reached in light of the study's limit at ions and findings:

Collegecricketplayers'toughnessandflexibilitywerepositivelyimpactedbyplyometrictrainingandyoga.

College cricketplayers' suppleness and strength improved more in the experimental populations than in the control group.

REFERENCE

- [1] AseerRufus.A.(2016).EffectofIsolatedCombinedResistanceandPlyometricTrainingonExplosivePower of Volleyball Players. *International Journal of Recent Research and Applied Studies*, 3, 8(20), 88-91.
- [2] Aseer Rufus. A. (2016). Effect of Plyometric Training on Selected Power Related Variables among Volleyball Players. *International Journal of Recent Research and Applied Studies*, 8(18), 79-82.
- [3] BrownGA,RaxMW,AbbeyBM,ShawBS,ShawI."Oxygenconsumption,heartrate,andlactteresponses to an acute bout of plyometric depth jumps in college aged Men and Women", P. 106, Journals of Strength Conditioning Research. 2010;25(9):2475-82.
- [4] Shukla.Effect of plyometric exercises on physical fitness component speed in cricket players, International Journal of Physical Education, Sports and Health. 2019; 6(2):03-04.

- [5] CharlesABucher, AdministrationofSchoolHealthandphysicalEducationprogramme, (St, Louis: The C.V. Mosby Company, 2nd Ed., 1978), p.196. 18. Davis B. Training for physical fitness. In: Physical Education and the study of sport. Spain: Harcourt Publishers, 2000, p.121-122.
- [6] Mohankumar, K. Effects of Isolated and Combined Strength and Yogic Programme on Corporeal, Physiological and Skill Performance Variables among College Cricket Players.
- [7] Kumar, R. A., & Kumar, S. R. (2019). Impact of field training with and without yogic practice on selected physical and performance variables among cricket players.
- [8] Mohankumar, K., Venkatachalam, K., & Sankar, A. (2023). Investigating the Impactof Eccentric and Yoga Training on Physiological and Skill Performance Factors in College Cricket Players. Korean Journal of Physiology and Pharmacology, 27(4).
- [9] Noorbhai, H., & Khumalo, A. (2021). Anthropometric and physical fitness characteristics of male university cricket club players in accordance to player position and height categories. F1000Research, 10, 784.
- [10] Ali,K.,Gupta,S.,Hussain,M.E.,Alzhrani,M.,Manzar,M.D.,Khan,M.,&Alghadir,A.H.(2023).Effect of plyometric versus complex training on core strength, lower limb, and upper limb power in male cricketers: a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 15(1), 160.
- [11] Johnstone, J.A., & Ford, P.A. (2010). Physiologic profile of professional cricketers. The Journal of Strength & Conditioning Research, 24(11), 2900-2907.
- [12] Shukla, A., Dogra, D.K., Pant, M., & Chakraborty, G. (2020). Comparative study on selected physical fitness variables among different team games players. International Journal of Physical Education, Sports and Health, 7(1), 179-183.
- [13] Tahoor, A., & Koley, S. (2019). Anthropometric variables and physical fitness characteristics in female cricket players of Maharashtra and Punjab: a comparative study. Int J Health Sci, 9(3), 1-6.
- [14] Koley, S., & Yadav, M.K. (2009). An association of hand gripstrength with some anthropometric variables in Indian cricket players. Facta Universitatis: Series Physical Education & Sport, 7(2).
- [15] Koley, S. (2011). A study of anthropometric profile of Indian inter-university male cricketers. Journal of Human Sport and Exercise, 6(2), 427-435.