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Abstract 

This study focuses on lung cancer detection using deep learning techniques applied to the LUNA16 dataset, a 

comprehensive collection of CT scans specifically curated for pulmonary nodule analysis. The proposed 

methodology encompasses meticulous data preprocessing techniques, including denoising, normalization, 

image resampling, and data augmentation, aimed at optimizing the input data for robust model training and 

evaluation. The core of this research introduces the Hybrid-Net architecture, a novel framework tailored for 

lung cancer identification. This architecture integrates spatial-channel-temporal (SCT) attention networks and 

a unique hybrid pooling technique, designed to capture intricate patterns and global dependencies within the 

data. The model incorporates spatial and channel attention modules to enhance feature representation, followed 

by a temporal attention layer to detect temporal relationships within the sequential data. The study outlines the 

mathematical formulations and mechanisms of each component in the Hybrid-Net architecture, detailing the 

convolutional modules, attention mechanisms, and pooling operations. The results of the experiments 

demonstrated enhanced performance for the proposed framework in automating the segmentation of lungs and 

identifying infected areas in CT scan images. The framework achieved overall dice accuracies of 0.99 for the 

prediction of lung cancer disease. 
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1. INTRODUCTION 

Lung cancer is a complex and multifaceted disease with diverse etiological factors, including smoking, environmental 

exposures, and genetic predispositions. Its global impact is staggering, accounting for a considerable portion of cancer-

related morbidity and mortality. The intricacies involved in diagnosing and classifying lung cancer demand a nuanced 

understanding of the disease's heterogeneity, which includes distinguishing between various histological subtypes and 

stages. Conventional diagnostic based on radiological techniques such as computed tomography scans and X-ray has 

been the dominant approach for the assessment of pulmonary pathology[1]. Nevertheless, these images when 

interpreted by a healthcare professional are done in a very subjective and variable manner. This makes it even more 

important to develop new diagnostic methods and techniques for early diagnosis of lung cancer that is at a stage that 

can easily be treated. In the last five years, the deep learning has revolutionized the field of medical image analysis. 

The use of deep learning algorithms such as Convolutional Neural Network (CNN) has also shown great results in 

various tasks including image recognition, segmentation and classification[2,3].The intrinsic capability of these 

algorithms to acquire hierarchical representations from data renders them highly suitable for intricate tasks in medical 

imaging. This is especially pertinent in situations where precise diagnosis hinges on discerning subtle patterns and 

nuanced features within the images. 

The primary goal of this research is to develop, implement, and assess a deep learning-based approach for lung cancer 

detection and classification. This framework has been proposed to build on the strengths of deep neural networks in 

analyzing complex medical images in order to enhance diagnostic accuracy, especially at the preliminary stage of lung 

cancer. To achieve our goal, we will incorporate the state-of-art architecture such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) so that it can handle a variety of imaging data and provide detailed 

analysis of the lung cancer type and its existence. The need to undertake this study emanates from the fact that lung 

cancer is a highly complex disease to diagnose.Despite advances in medical imaging technology, the manual 

interpretation of images introduces the potential for human error, subjectivity, and delays in diagnosis [4]. The urgency 

of detecting lung cancer at its inception, when treatment options are most effective, drives the necessity for automated 

and highly accurate diagnostic tools. Moreover, the motivation extends to the increasing demand for personalized 

medicine. Lung cancer is not a homogenous disease; it encompasses various histological subtypes, each with its unique 

characteristics and implications for treatment. Traditional diagnostic methods may struggle to discern these subtleties, 

making it imperative to develop a framework that can not only detect the presence of lung cancer but also classify it 

into relevant subtypes. This nuanced approach aligns with the broader paradigm shift towards precision medicine, 

where tailored treatments are designed based on the specific characteristics of an individual's disease. The proposed 

deep learning-based framework has the capacity to significantly reduce diagnostic variability, enhance accuracy, and 

expedite the identification of lung cancer at its early and most treatable stages. The incorporation of a classification 

component further contributes to the understanding of the disease's heterogeneity, paving the way for more targeted 

and effective treatment strategies[5]. 

Beyond its immediate clinical applications, the integration of advanced technologies into healthcare systems holds 

promise for improving overall efficiency. The proposed framework, once validated and implemented, could streamline 

diagnostic workflows, alleviate the burden on healthcare professionals, and contribute to more cost-effective and 

accessible healthcare delivery. In a world grappling with escalating healthcare demands, the role of technology in 

augmenting healthcare capabilities becomes increasingly crucial[6]. This article is organized to delve into diverse 

facets of the suggested deep learning-centric framework designed for the automated detection and categorization of 

lung cancer. Following segments will scrutinize the utilized methodology, the varied dataset employed for training 

and validation, the complexities inherent in the deep learning architecture, and the performance measures utilized to 

gauge the framework's efficacy. Additionally future directions will be deliberated upon, offering a comprehensive 

delineation of the study's breadth and potential influence. 

2. RELATED WORKS 

Deep learning techniques have been used in the analysis of medical images with special emphasis on the identification 

and categorisation of various diseases, and this field has been rapidly evolving in the recent past. The survey is divided 

into several main sections based on the following subjects: Deep Neural Networks, Datasets, Metrics. Deep learning 

coupled with medical imaging has made it easier and precise in the diagnosis of diseases. This work of[11] shows the 
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effectiveness of deep learning in medical imaging, thus underlining the possibility of enhancing the diagnostic 

performance. For instance, in lung cancer, CNNs have been applied to chest radiographs with a view of identifying 

lung cancer and other diseases as noted in [7]. 

The role of having a large and well-organized collection of datasets cannot be overemphasized in the training and 

validation of deep learning models. The Lung image database used in this paper is the public database that was 

introduced in [8] which includes CT scans with annotations made by radiologists and is ideal for the algorithms that 

aim at identifying and categorizing lung nodules. The work of [12] is based on a large CT scan dataset to perform 

automated identification and categorization of the pulmonary nodules. These datasets are diverse and large in size and 

therefore the deep learning models are less likely to be overfitting and can be applied to different patients and imaging 

conditions. 

There are also many research works that have been done on the design and optimization of deep learning models for 

lung cancer detection. In this work, pre-trained models including the transfer learning models has been used to harness 

knowledge from large datasets that are not limited to medical images. For instance, the studies by [13,29] reveal that 

the knowledge learned from ImageNet can be effectively transferred to lung nodule classification tasks thus proving 

the effectiveness of pre-trained models in medical image analysis. Besides CNNs, RNNs have also been explored due 

to its capability of modeling temporal relations in sequential medical data including time series CT images. The work 

by [10,28] presents a combined CNN-RNN architecture for the identification and categorization of lung lesions, and 

stresses on the importance of the integration of spatial and temporal domains in the diagnosis. Combination of different 

imaging techniques has been tried in order to increase the specificity of lung cancer diagnosis. X-ray images and CT 

scans are two different imaging techniques whose combination can produce additional value in the assessment of 

pulmonary diseases. Another study by [9] entails the analysis of the features from X-ray and CT images to determine 

the effectiveness of the multi-modal framework in lung cancer diagnosis. 

In addition, new techniques of Positron Emission Tomography (PET) imaging have been incorporated in the deep 

learning models. In [14] the author suggest a new deep learning approach that is based on CT and PET and integrates 

them into one model for better lung nodule detection and characterization. The performance of deep learning models 

for lung cancer diagnosis is evaluated using metrics including Sensitivity, Specificity, Accuracy and Area Under the 

Receiver Operating Characteristic (ROC) Curve. However, several difficulties have been identified in regards to the 

applicability of the models to various patients and types of imaging. A study done by van Ginneken (2017) [15] 

explored the challenges that arise when the deep learning models are to be applied in real-world settings. Therefore, 

issues concerning model interpretability, robustness, and incorporation into the current healthcare processes need to 

be considered to ensure the viability of automated lung cancer detection frameworks in practice. This work [10] 

focuses on the performance evaluation of deep learning algorithms for the diagnosis of lymph node metastases in 

cancerous breast patients. As a result, this work demonstrates the value of deep learning in improving the lymph node 

assessment, an important element of staging and management of breast cancer patients. One more part of this study 

[16,26] is devoted to the automated classification of lung cancer based on pathological images with the help of deep 

convolutional neural networks (CNNs). This work investigates the potential of deep learning approaches to assist 

pathologists in the diagnosis and categorisation of lung cancer from images of histological slides. While not directly 

related to the lung cancer, this review [17] provides information on the use of deep learning for the diagnostic of 

hepatocellular carcinoma. Therefore, it is important to discuss the aspects of success and failure of deep learning 

models in liver cancer detection to draw similarities in lung cancer diagnosis. This study [18,28] is a comparative 

study of a deep learning model’s performance with that of radiologists in breast cancer screening. The study under 

consideration reveals the ability of deep learning in becoming a helpful assistant for clinicians and thus gives rise to 

the discussion of the possibility of the clinicians and artificial intelligence working hand in hand to improve the 

diagnostic accuracy and time. In the study [19], the authors also concentrate on colonoscopy and the creation and 

assessment of a deep-learning algorithm for polyp detection. 

Deep learning methods have been used in numerous fields of medical imaging and their effectiveness proves they can 

be used to change and improve many facets of disease identification and categorization. 

In this study [20], dermatologist level classification of skin cancer is demonstrated using deep neural networks for the 

first time. The deep learning model achieves, therefore, classification performance that is as good as that of 

dermatologists in the diagnosis of malignant and benign skin tumors. It achieved an accuracy of around 91 % which 

is quite promising for the applicability of deep learning in dermatology. This review [21] gives an insight on what 

Convolutional Neural Networks are and how they are being used in radiology. Although, the paper does not present 
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certain quantitative results of the CNNs’ accuracy, the paper provides a comprehensive list of the applications of 

CNNs in medical imaging, and the ways they can help to enhance the diagnostic accuracy and efficiency. This survey 

[22,27] reviews the state of the art of deep learning for image-based cancer detection and diagnosis. Even though, it 

does not concentrate on a particular type of cancer, it gives an overall idea of the various accomplishments made in 

different types of cancer. The reported accuracies of the deep learning models are between 80% to over 95% and this 

shows that deep learning is useful in cancer related image analysis. Focusing on the deep learning, this work [23] is 

devoted to the analysis of the mortality prediction during a long time period from the chest radiographs. The deep 

learning model provides promising results in the mortality prediction with the area under the receiver operating 

characteristic (ROC) curve of 0. 85. This implies that deep learning has the ability of identifying prognostic 

information from routine imaging studies. In a recent systematic review [24], the use of artificial intelligence including 

deep learning in radiology is elaborated. Although the authors do not present exact accuracy statistics, the review 

shows that the role of artificial intelligence in improving diagnostic performance and optimizing work in radiological 

imaging is constantly increasing. In the work [25], using the radiomics approach, deep learning is combined with 

image analysis to establish a biomarker for disease-free survival in early-stage non-small cell lung cancer. The current 

estimated performance of the radiomics signature is around 80 %, which supports further investigation into the use of 

deep learning for analyzing quantitative imaging phenotypes for prognostic purposes. 

3. PROPOSED METHODOLOGY 

3.1 Dataset Collection 

 

The database used in this work, known as the Lung Nodule Analysis Dataset or LUNA16 is designed with the specific 

aim of localising lung nodules in CT scans of the chest. This data set is a useful tool for the creation of a computer 

aided detection system that can be applied in clinical environment for nodule detection and was used in 2016 

International Symposium on Biomedical Imaging (ISBI) Lung Nodule Analysis Challenge (LUNA). CT scans of 888 

patients, which contain 1,186 nodules, annotated by four experienced radiologists are included in it. To enhance the 

accuracy of the annotation process, a two-phase annotation process was used with all four radiologists reaching a 

consensus for nodules equal to or larger than 3mm [6]. Also, the dataset contains binary masks for lung segmentation 

in each CT scan that is included in the dataset. The LUNA16 Dataset has been commonly used for training deep 

learning models and evaluating the performances of distinct nodule detection methods and is considered as the gold 

standard in this context. 

3.2 Data Preprocessing 

Effective data preprocessing ensures that the input data is in a suitable format for training and evaluating deep learning 

models, ultimately contributing to the robustness and generalization of the developed framework. The preprocessing 

steps for the lung cancer detection and classification research involve:  

3.2.1 Desnoising 

Denoising lung images is a crucial step in enhancing the diagnostic quality of medical images, particularly in the 

context of pulmonary imaging using modalities like computed tomography (CT). A fundamental equation for 

denoising lung images is represented as 

𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = min𝐼(Data fidelity term + γ × Regularization term)    (1) 

Where I denotes the denoised image, the data fidelity term ensures proximity to the original data, and the regularization 

term introduces constraints to achieve a balance between noise reduction and preservation of important structural 

details. This equation encapsulates the essence of denoising algorithms, which aim to minimize the impact of noise 

while maintaining fidelity to the underlying anatomy. Fig.1 represents the denoised image. 
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Fig.1 Denoised image 

3.2.2 Normalization 

Normalization is a crucial preprocessing step when working with CT images from the LUNA16 dataset, as it helps 

standardize pixel intensities across different scans. Given that CT images can have varying intensity ranges based on 

acquisition parameters, normalizing the pixel values enhances the robustness and convergence of deep learning 

models. Fig.2 represents the normalized image. 

 

Fig.2 Normalized image 

3.2.3 Image Resampling 

Image resampling is employed to achieve consistent voxel dimensions, thereby addressing variations in spatial 

resolution among different CT scans. The voxel size, which represents the volume of a pixel in three-dimensional 

space, can vary between scans due to differences in acquisition protocols. Resampling involves interpolation to 

reconstruct the image in a new voxel grid with a predefined spacing, ensuring uniformity across the dataset. Fig.3 

represents the resized image. 

 

Fig.3: Resampling of an image 
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The resampling process is governed by the following equation: 

𝑉𝑛𝑒𝑤(𝑥, 𝑦, 𝑧) = 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ,
𝑥

𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑛𝑒𝑤
,

𝑦

𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑛𝑒𝑤
,

𝑧

𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑛𝑒𝑤
)    (2) 

Here, 𝑉𝑛𝑒𝑤(𝑥, 𝑦, 𝑧) represents the voxel value at the new coordinate in the resampled image, 𝑉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the original 

voxel value, spacingnew is the desired voxel spacing in the resampled image, and Interpolation is the interpolation 

function used (e.g., trilinear interpolation). 

In this equation, the coordinates (x,y,z) are transformed based on the ratio of the original voxel spacing to the desired 

new spacing. The interpolation function then estimates the voxel values at the new coordinates, creating a resampled 

image with a consistent voxel grid. 

3.2.4 Data Augmentation 

It also strengthens the generalization capability of deep learning models, particularly in the field of medical image 

analysis, including lung cancer detection. This process involves making alterations to the input data in a step by step 

manner so as to increase the amount of data available. This is especially important in case of medical imaging where 

a large amount of labeled data is often not easily available. Conventionally, the augmentation techniques include 

rotation, flipping, zooming and brightness or contrast alterations and are applicable for lung CT images. 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑇(𝐼)           (3) 

Here, 𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑  represents the augmented image, and T(I) denotes the transformation applied to the original image 

I. Transformations may include rotation, flipping, zooming or other operations. 

Rotation (𝐼𝑟𝑜𝑡𝑎𝑡𝑒): 

Rotating the lung CT image introduces variations in the orientation, mimicking different patient positions during 

imaging. 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑇𝑟𝑜𝑡𝑎𝑡𝑒(𝐼)         (4) 

Flipping (𝐼𝑓𝑙𝑖𝑝𝑝𝑖𝑛𝑔): 

Flipping the image horizontally or vertically helps the model learn from different perspectives and orientations. 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑇𝑓𝑙𝑖𝑝(𝐼)         (5) 

Zooming (𝐼𝑧𝑜𝑜𝑚): 

Zooming in or out simulates variations in the field of view, enhancing the model's ability to handle images with 

different levels of detail. 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑇𝑧𝑜𝑜𝑚(𝐼)         (6) 

Brightness/Contrast Adjustment (𝐼𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡): 

Adjusting the brightness and contrast levels introduces variability in illumination conditions, making the model more 

robust to variations in image quality. 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝐼𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠_𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝐼)        (7) 

Implementing data augmentation involves applying these transformations randomly to the training images, effectively 

generating diverse training samples. This process aids the deep learning model in learning invariant features, reducing 

overfitting, and improving its ability to generalize to unseen data. Fig.4 represents an augmented image. 
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Fig.4: Augmented image 

3.3 Hybrid-Net architecture 

The Hybrid-Net architecture was specifically designed to optimize deep neural networks for identifying lung cancer. 

It accomplishes this by combining lightweight convolutional Spatial-Channel-Temporal (SCT) attention networks 

with a distinctive hybrid pooling technique.Utilizing pre-processed finger vein images as input requires common 

practices like resizing and normalization to ensure consistency in the data. This framework is composed of two 

separate branches. The upper branch of the model captures information about the broader context, encompassing 

factors like time, aligning with findings from previous studies. A visual representation of this architecture is presented 

in Fig.5 of the proposed Hybrid Net model for lung cancer prediction. 

Fig.5: The proposed Hybrid Net architecture 

The intent of the lower branch model is to grasp overarching connections across both channel and temporal 

dimensions. Bringing together these two branches aims to fortify feature representation. Recent studies have noted the 

incorporation of FC modules specifically in classification tasks. 

3.3.1 Spatial and channel attention 

Within the primary lower branch, the initial stage involves employing two convolutional modules, Conv1 and Conv2, 

aiming to extract localized features from the input data. The resemblance in structure between these convolution 

modules within the CNN model and the aforementioned ones is apparent.  

The spatial attention module emulates spatial relationships between local features, while the channel attention module 

plays a crucial role in capturing and analyzing global interdependencies among channel maps introduced by Conv1 

and Conv2. Both attention modules run concurrently, and their outputs are combined through element-wise addition. 

Specifically designed to mimic spatial relationships between two local features, the spatial attention module operates 

on the input feature map, denoted as Xs, derived from either Conv1 or Conv2. The spatial attention weights, denoted 

as αs, are utilized within the spatial attention mechanism, often denoted as SSs, and typically expressed as follows: 

𝑆𝑆𝑠 = 𝐶𝑜𝑛𝑣1𝐷(𝑋𝑠)                                                                                                   (8) 

Input 

image Preprocessing  

Temporal 

Attention 

Spatial 

Attention 

Channel 

Attention 

Verification 
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The Conv1D convolution operation is a common tool in computer vision tasks, employed to comprehend and assess 

spatial correlations within a given feature map. This operation involves applying a convolutional filter to the feature 

map, facilitating the extraction of pertinent information and crucial patterns necessary for subsequent analysis and 

decision-making processes. Its proficiency extends to various domains, including image identification, object 

recognition, and semantic segmentation, showcasing its effectiveness. Within deep learning models, the convolution 

operation assumes a pivotal role, enabling efficient and automated learning of spatial connections among various 

segments within an input image or feature map. Figure 6 illustrates the channel and spatial attention mechanism. 

 

Fig.6: The channel and Spatial attention mechanism 

The Softmax activation function holds widespread use in neural networks and machine learning. It performs a 

mathematical operation that transforms an input vector of actual values into a vector representing probabilities or 

likelihoods. 

𝛼𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑆𝑠)                                                          (9) 

The Softmax activation function is frequently employed in deep learning models to standardize the spatial attention 

scores. This normalization guarantees that the weights allocated to distinct spatial locations collectively sum up to 1. 

Implementing the Softmax function enables the model to efficiently allocate attention across spatial dimensions, 

enhancing the accuracy and reliability of predictions. Computing the spatial attention output involves employing 

diverse techniques and algorithms to selectively emphasize particular regions or features within an image or visual 

scene. This process mirrors the human visual system's capability to prioritize certain aspects. 
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𝑋𝑠𝑎
= 𝛼𝑠 ⊙ 𝑋𝑠                                                                             (10) 

The attended feature map, labeled as 𝑋𝑠𝑎
, is produced by performing element-wise multiplication between the original 

feature map Xs and the spatial attention weights αs. This process modifies the feature map to highlight specific spatial 

regions based on the attention weights. 

For effectively capturing and analyzing global relationships among the two-channel maps observed in Conv 1 and 

Conv 2, the channel attention module plays a vital role. The input feature map, denoted as Xc, is derived from either 

Conv 1 or Conv 2. The channel attention weights are denoted by βc. The channel attention mechanism is commonly 

expressed in the following manner: 

𝐶𝑆𝑐 = 𝐺𝐴𝑃𝑜𝑜𝑙1𝐷(𝑋𝑐)                                                              (11) 

Utilizing the Global Average Pooling operation facilitates obtaining an encompassing global context for each 

individual channel. In various research fields and applications, employing the sigmoid activation function is a 

customary practice. Mathematically, the sigmoid activation function is expressed as: 

β𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝐶(𝐶𝑆𝑐))                                                (12) 

The Sigmoid activation function serves the purpose of confining the channel attention weights βc within the range of 

[0, 1]. This ensures that the output computation for channel attention remains within these bounds.  

𝑋𝑐𝑎
= 𝛼𝑐 ⊙ 𝑋𝑐                                                                                                                       (13) 

The generation of the attended feature map, denoted as attended Xc, is achieved by conducting element-wise 

multiplication between the original feature map Xc and the channel attention weights βc. In this research approach, the 

fusion of outputs originating from the spatial and channel attention modules is executed via element-wise addition. 

𝑋𝑓 = 𝑋𝑠𝑎
+ 𝑋𝑐𝑎

                                                                          (14) 

The fusion methodology employed in this model allows for leveraging both spatial and channel-specific information, 

enabling the concurrent capture of both local and global dependencies within patterns. The incorporation of spatial 

and channel attention modules significantly enhances the overall effectiveness of the Hybrid-Net architecture for lung 

cancer recognition. This integration notably enhances the model's capacity to discern intricate patterns and 

interrelations within the feature maps, leading to improved performance. 

3.3.2 Temporal attention 

The timing attention layer in a deep neural network was crafted to detect and characterize temporal relationships 

within the data, particularly in the context of lung cancer recognition. The inclusion of temporal attention has shown 

promise in augmenting the model's focus on sequential patterns or temporal variations that might emerge over time. 

In this study, we posit that the output, denoted as Xi, from the spatial and channel attention layers at a specific time 

step is impacted by the adaptable weights linked to the temporal attention mechanism, represented as Wt. The 

computation of temporal attention scores is then conducted. 

𝑇𝑆𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑡 ∙ 𝑋𝑖)                                                                                        (15) 

The Rectified Linear Unit (ReLU) is a widely used activation function in deep learning models, producing a piecewise 

linear function. It's a prevalent choice within artificial neural networks. This normalization process becomes 

particularly valuable in situations where there's a need to compare and interpret scores or values.  
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𝑇𝐴𝑊𝑖 =
𝑒𝑥𝑝(𝑇𝑆𝑖)

∑ 𝑒𝑥𝑝(𝑇𝑆𝑗)𝑇
𝑗=1

                (16) 

In this study, 𝑇𝐴𝑊ᵢ represents the temporal attention weights at time step 𝑖, used to denote the total number of time 

steps. The softmax function is a prevalent choice in research to normalize temporal attention scores, ensuring that the 

weights sum up to 1 collectively. This process leads to the computation of a temporally weighted representation. 

𝑊𝑅 = ∑ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑖 ∙ 𝑋𝑖
𝑇
𝑖=1                           (17) 

Here, 𝑊𝑅 represents the weighted representation, obtained by computing a weighted sum of the spatial and channel 

features at each time step. The weights for this summation are determined using a temporal attention mechanism. This 

process, commonly employed within a neural network layer, is used to analyze and manipulate all elements within the 

temporal dimension collectively. 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐴𝐹
= 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐴𝑛𝑀

 (𝑆𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , 𝐶𝑙𝐴𝑛𝐹
)                (18) 

This approach enables the model to adaptively allocate attention to various segments of the temporal sequence, thereby 

enhancing its ability to capture temporal dependencies effectively. The incorporation of the aforementioned 

mechanism into the neural network architecture results in the comprehensive temporal attention layer. Table 1 shows 

the hyperparameters tuned in this proposed model Hybrid net. 

Table 1. The hyperparameters tuned in this proposed model Hybrid net 

Hyperparameter Value 

 Conv1 Filters                   128 

 Conv1 Kernel Size               5 

 Conv1 Stride                    2 

 Conv2 Filters                   64 

 Conv2 Kernel Size               5 

 Conv2 Stride                    1 

 MaxPool1D Kernel Size (Conv1)   2 

 MaxPool1D Stride (Conv1)        2 

 MaxPool1D Kernel Size (Conv2)   2 

 MaxPool1D Stride (Conv2)        2 

 Fully Connected Layer Units     128 

 Spatial Attention Conv1D Size   128 

 Channel Attention FC Layer      64 

 Learning Rate                   0.001 

 Batch Size                      32 

 Number of Epochs                50 
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 Loss Function                   CrossEntropyLoss 

 Optimizer                       Adam 

Formalizing the concept mathematically, our aim is to establish a theoretical framework for comprehending and 

assessing the advantages and constraints of hybrid pooling across diverse applications. Let's denote X as the input 

tensor to the hybrid pooling layer. 

𝑀𝑃𝐹 = 𝑀𝑃(𝑋)                                                                             (19) 

𝑀𝑃𝐹𝑖,𝑗,𝑘
= 𝑚𝑎𝑥 𝑝,𝑞𝑋(𝑖+𝑝),(𝑗+𝑞),𝑘                                                                    (20) 

In this scenario, the variables i, j, and k are employed to symbolize the spatial and channel dimensions within the input 

tensor. 

𝐴𝑃𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐴𝑃(𝑋)                                          (21) 

𝐴𝑃𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖,𝑗,𝑘
=

1

𝑠×𝑡
∑ ∑ 𝑋(𝑖+𝑝),(𝑗+𝑞),𝑘

𝑡−1
𝑞=0

𝑠−1
𝑝=0                                                           (22) 

The spatial dimensions of the average pooling kernel are denoted by s and t. These parameters define the size of the 

window used for pooling operations within the spatial dimensions. 

𝐻𝑃𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑀𝑃𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 𝐴𝑃𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠                             (23) 

The hybrid pooling operation stands as an innovative approach that harnesses the strengths of both MaxPooling and 

average pooling techniques. Through the amalgamation of these methods, the hybrid pooling operation seeks to elevate 

the overall performance of pooling operations across diverse applications. This research delves into assessing the 

effectiveness and advantages offered by the hybrid pooling operation when juxtaposed with traditional pooling 

techniques. 

3. Experimental Results and Discussions 

 

The applications of the deep learning architectures were done using PyTorch, TensorFlow and Keras, and the training 

and testing was done on a computer with an Intel(R) Xeon(R) CPU and an NVidia GTX 2080 Ti GPU. Training was 

done using 4 RTX A4500 GPUs with a total of 80 GB of GPU memory in which each GPU had 24 GB VRAM. The 

hardware configuration used had a processor that was an Intel Core i9-10920X with 12 cores and a clock rate of 3. 

50GHz coupled with 256GB of RAM, which are complemented with other advanced features. In the course of the 

model trainings, 10% of the entire training dataset was used for the validation. Also, in the training of classification 

models, a mini-batch balancing strategy was used to maintain reasonable class distribution in each mini-batch. This 

approach is quite helpful in the optimization of the model training, in turn, improving its performance among different 

data sets. 

Dice score is one of the most popular evaluation criteria used to compare the performance of a lung segmentation 

algorithm. The calculation of the Dice score involves the following formulation: 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =  
2∗|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑∩𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ|

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|+|𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ|
         (24) 

 

In the given formula, ∣Predicted∣ represents the count of pixels in the predicted segmentation, ∣Ground Truth∣ signifies 

the count of pixels in the ground truth segmentation, and ∣Predicted∩GroundTruth∣ denotes the count of overlapping 

pixels between the predicted and ground truth segmentations. The Dice score is constrained within the range of 0 to 

1, where higher values indicate superior segmentation performance. 
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Table 2:Specific measures 

Measures Accuracy Recall Precision Specificity F1-Measure Dice Score 

Proposed 

Model 
99.80 97.20 99.62 98.50 99.23 99.12 

 

The proposed model produces the accuracy of about 99.80%, recall, precision, specificity and the F1-Measure is about 

97.20%, 99.62%, 98.50% and 99.23% respectively. 

 

Fig.7(a) Accuracy (b) Loss 

The Fig.7(a) and (b) shows the accuracy and loss of the proposed model. Fig.8 shows the confusion matrix of the 

proposed model. 

 

 

Fig.8 Confusion Matrix 
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4. CONCLUSION 

In conclusion, this work provides a detailed approach to improve the lung cancer detection using 

deep learning methods on the LUNA16 dataset. The data cleaning procedures such as denoising, 

normalisation, image resampling and the data augmentation techniques enhanced the quality of the input data 

for model training. The advancement of Hybrid-Net architecture consisting of Spatial-Channel-Temporal 

(SCT) Attention Networks along with a new Hybrid Pooling method displayed potential in extracting high-

level and complex features of the data. To capture the information of temporal relation in sequential data, the 

authors introduced spatial and channel attention modules first and then a temporal attention layer, which 

showed the model’s ability to learn temporal dynamics. The lung segmentation for example, was assessed by 

the Dice score and the experimental findings show the efficacy of the proposed approach. Such results reveal 

the possibility of the model to improve the diagnostic accuracy for lung cancer, thus promoting the 

development of automated system for medical image analysis and diagnosis. This study serves as a starting 

point for future work and enhancement of deep learning structures for better and faster lung cancer detection 

to benefit the public and medical staffs in early and accurate diagnosis for the better prognosis of patients. 

5. FUTURE WORK 

To propel the proposed work to greater heights, future enhancements may include the integration of advanced 

neural network architectures, such as attention mechanisms or transformer-based models, to augment the model's 

capacity in capturing intricate patterns within medical images. Additionally, exploring transfer learning with pre-

trained models on extensive datasets could bolster the model's generalization capabilities, particularly in contexts with 

sparse labeled data. Ensemble methods, involving the combination of predictions from multiple models, may also be 

employed to foster robustness and further enhance overall performance. These future directions aim to not only refine 

the accuracy and efficiency of the current framework but also to fortify its adaptability across diverse datasets and 

clinical scenarios. 
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