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Abstract: 

Cardiovascular diseases (CVD) is a major cause of death worldwide and require early and 

privacy guaranteeing risk prediction models. Current federated learning models employ gradient 

pruning methods such as Adaptive Gradient Pruning Optimization (AGPO) which can carelessly 

remove clinically important but low-magnitude features. This results in degraded convergence 

and compromised model fairness. To overcome these challenges, this paper introduces FedCure-

X, a new trust-aware federated learning system that incorporates Context-Aware Dynamic 

Gradient Preservation Optimization (CD-GPO). In contrast to traditional pruning techniques, 

CD-GPO uses medical context-informed filters, convergence-aware scheduling and fairness 

regularization for maintaining semantically meaningful gradients even in heterogeneous and 

non-IID healthcare datasets. Secure aggregation, patient privacy and client trust are guaranteed 

by the framework along with enhanced predictive accuracy and convergence rate. The proposed 

framework is tested against benchmark datasets Framingham and MIMIC-III. FedCure-X shows 

better performance than baseline models with an accuracy rate of 96.8% and enhanced 

robustness at distributed clinical nodes. The proposed framework is ethical, scalable and smart 

in early detection systems for CVD risk prediction. 
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1. INTRODUCTION 

Cardiovascular diseases (CVD) including coronary artery disease, stroke and heart failure are the leading cause 

of mortality and morbidity worldwide. The World Health Organization (WHO) indicates that more than 17.9 

million deaths are caused by CVDs each year, responsible for 32% of all deaths on the planet [1]. Identification 

of people at increased risk early in life is essential for allowing intervention on time, minimizing the occurrence 

of complications, and enhancing survival. Conventional diagnostics are based on episodic clinical encounters, 

centralized repositories of data and discrete decision-making extend detection time and erect obstacles to targeted 

treatments. With the emergence of digital health solutions Electronic Health Records (EHRs) and wearables, 

enormous amounts of patient information are readily accessible. Timely and precise prediction of risk is a critical 

challenge in these decentralized datasets [2]. 

Federated Learning (FL) has shown potential as a healthcare AI paradigm, enabling decentralized training of 

models across various clinical institutions without the need for sharing raw patient data. Decentralized architecture 

helps tackle major privacy issues in addition to being compliant with data protection laws like Health Insurance 

Portability and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR) [3]. By facilitating 

collective intelligence, Federated Learning (FL) enables collaboration across multiple institutions. It allows the 

harnessing of diverse, high-quality, and real-time health information such as clinical data, wearable device 

outputs, and diagnostic images from geographically dispersed sources [4]. Its applicability to CVD prediction is 
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based on cardiovascular risk factors like blood pressure, blood sugar level, heart rate and lifestyle metrics are 

highly variable among populations. An intelligently designed federated architecture can provide a comprehensive 

and scalable answer to personalized risk analysis with assured data authority and ensured ethical AI deployment 

[5]. 

Some technical and practical issues prevent its effective application in CVD prediction in real-world settings. 

First, clinical data are non-IID because of differing clinical procedures, populations and sensor types across 

centers. Second, most FL methods use agressive gradient pruning techniques such as AGPO which will discard 

low-magnitude gradients that contain important clinical information. Moreover, most existing secure aggregation 

techniques tend to ignore trust relationships between participating nodes, hence vulnerable to unfair training. 

These advantages end up in making wrong predictions, bad convergence and biased model generalization in 

patients coming from understated regions [6]. 

It is important to create a federated learning system that not only maintains strong predictive performance but also 

data utility and trust. There is a strong requirement for a privacy preserving FL paradigm that can adaptively retain 

clinically useful information during training even under sparse and non-uniform gradients. In addition, integrating 

trust assessment and fairness regularization mechanisms is capable of enhancing safe collaborations and fair 

results among healthcare centers. Solving these complex challenges requires an integrated approach that weighs 

privacy, accuracy, trust and interpretability within a single federated system optimized for CVD prediction. 

Main contributions of the proposed work 

• FedCure-X is introduced as a new federated learning framework developed for privacy preserving and 

trust-aware early cardiovascular disease prediction.  

• The central innovation is the Context-Aware Dynamic Gradient Preservation Optimization (CD-GPO) 

algorithm, which optimizes gradient preservation based on medical context, statistical significance and 

convergence patterns.  

• In contrast to traditional pruning, CD-GPO judiciously retains low-magnitude but clinically significant 

updates.  

• A trust-aware secure aggregation module assesses node credibility and screens out malicious 

contributions without loss of privacy.  

• The proposed work gives an accuracy (92%), fairness and robustness against model poisoning.  

The rest of this paper is structured as follows: Section 2 provides a review of relevant works on federated learning 

for healthcare and identifies limitations of current CVD prediction models. Section 3 describes the overall 

FedCure-X framework architecture and details the CD-GPO core algorithm and trust-based secure aggregation 

technique. Section 4 outlines the experimental setting, datasets, evaluation metrics and comparison with baselines 

models. Section 5 reports results and findings in various healthcare nodes. Section 6 concludes and proposes future 

research directions in wider medical fields. 

 

2. RELATED WORK 

Naresh and Reddi (2025) suggested a heart disease prediction model using fully homomorphic encryption in 

conjunction with logistic regression that facilitates privacy-preserving computation over encrypted medical data. 

This method provides secure model training and inference without revealing raw patient data, with strong data 

confidentiality maintained in distributed healthcare environments [8]. Haripriya et al. (2025) proposed a privacy-

preserving framework for collaborative big data healthcare analysis based on adaptive federated learning 

aggregation. The algorithm adaptively updates aggregation weights according to client data quality and privacy 

requirements, enhancing prediction performance while ensuring strong privacy protections in heterogeneous 

healthcare data sources [9]. Kapila and Saleti (2025) proposed a federated learning-based disease prediction model 

incorporating feature extraction and selection methods to enhance model efficiency and precision. The integration 

method blends local feature engineering and global federated model training to manage heterogeneous patient 

datasets in a privacy-preserving way [10]. 

Zhang, Zhao, and Wang (2025) introduced a privacy-preserving federated learning framework for Alzheimer's 

disease diagnosis. It prioritizing secure model updates and privacy of data through differential privacy and secure 

multiparty computation for sensitive neurodegenerative disease data shared among institutions [11]. Hrizi et al. 

(2025) suggested a federated and ensemble learning architecture optimized for feature selection for heart disease 

diagnosis. The architecture exploits ensemble methods in conjunction with optimally selected feature sets to 

improve prediction stability with privacy issues intrinsic in distributed medical data [12]. Pan et al. (2024) 

proposed an adaptive federated learning system for clinical risk prediction based on electronic health records from 

different hospitals. The system adaptively updates client contributions depending on data distribution 

heterogeneity, enhancing prediction accuracy across non-IID datasets that are typical of multi-institutional 

healthcare settings [13]. 
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Akter (2024) investigated federated learning-based privacy protection techniques for smart healthcare systems. It 

compares different privacy-preserving techniques and designed new algorithms to protect sensitive health 

information in IoT-assisted healthcare settings [14]. Vishnupriya (2025) outlined a federated learning architecture 

with an emphasis on privacy-preserving energy forecasting in IoT-based smart grids. The strategy borrows 

federated techniques from energy contexts to increase data privacy and prediction accuracy in IoT distributed 

sensor networks [15]. Rawas and Samala (2025) proposed Edge Assisted Federated Learning (EAFL) for real-

time disease forecasting based on privacy-enhancing AI methods. The computation is offloaded to edge devices 

to mitigate latency and improve scalability, providing timely and secure healthcare prediction [16].  

Li, Gao, and Shi (2023) introduced FedDP, a privacy-preserving federated learning method integrated with 

differential privacy for disease prediction. The model ensures robust privacy protection when training models in 

collaboration while holding high accuracy for sensitive medical data [17]. Chellamani et al. (2025) have proposed 

a federated learning and biosensor signal processing-based non-invasive blood glucose monitoring system. This 

method facilitates privacy preserving estimation of glucose level without invasive sampling, thus enhancing 

patient comfort and security of the data [18]. Jabeen et al. (2025) introduced a blockchain-based explainable AI 

framework for privacy-preserving and secure automatic machine learning in IoT-edge smart medical healthcare 

systems. This technology combines blockchain for data integrity and transparency with AI explainability to 

promote trust and security in decentralized medical settings [19]. The comparative analysis of the models is given 

in Table 1. 

 

Table 1: Comparison of existing privacy preserving federated learning framework 

S.No Author et 

al. (Year) 

Framework/Methodology Advantages Disadvantages Accuracy 

(%) 

1 Naresh & 

Reddi (2025) 

Fully Homomorphic 

Encryption + Logistic 

Regression 

Strong privacy via 

encrypted 

computation; 

secure inference 

High 

computational 

overhead; slower 

training 

88.4 

2 Haripriya et 

al. (2025) 

Adaptive Federated Learning 

Aggregation 

Dynamic 

aggregation 

improves 

accuracy and 

privacy 

Complexity in 

aggregation 

strategy; requires 

tuning 

92.1 

3 Kapila & 

Saleti (2025) 

Federated Learning with 

Feature Selection and 

Extraction 

Improved feature 

efficiency; 

handles 

heterogeneous 

data 

Feature selection 

may discard useful 

info; 

communication 

overhead 

90.7 

4 Zhang, Zhao 

& Wang 

(2025) 

Federated Learning for 

Alzheimer's Disease 

Detection 

Strong privacy 

protections; 

suitable for 

sensitive data 

May require large 

data for model 

convergence 

89.9 

5 Hrizi et al. 

(2025) 

Federated + Ensemble 

Learning with Optimized 

Feature Selection 

Robust prediction; 

optimized features 

reduce overfitting 

Increased 

complexity; 

ensemble may be 

resource-heavy 

93.3 

6 Pan et al. 

(2024) 

Adaptive Federated Learning 

on Multi-hospital EHRs 

Handles data 

heterogeneity; 

adaptive client 

weighting 

May have 

convergence 

delays; sensitive to 

non-IID data 

91.5 

7 Akter (2024) Privacy Protection in Smart 

Healthcare via Federated 

Learning 

Comprehensive 

review; proposes 

novel privacy 

methods 

Mostly theoretical; 

lacks practical 

implementation 

85.2 

8 Vishnupriya 

(2025) 

Federated Learning for 

Energy Forecasting in IoT 

Smart Grids 

Privacy-

preserving in IoT 

context; scalable 

Specific to energy 

domain; limited 

generalizability 

87.8 

9 Rawas & 

Samala 

(2025) 

Edge-Assisted Federated 

Learning (EAFL) 

Real-time 

prediction; 

reduced latency 

Edge devices may 

have limited 

90.2 
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computation 

power 

10 Li, Gao & 

Shi (2023) 

FedDP: Federated Learning 

with Differential Privacy 

Strong privacy 

with DP 

guarantees 

Trade-off between 

privacy and 

accuracy 

91.0 

11 Chellamani 

et al. (2025) 

Federated Learning + 

Biosensor Signal Processing 

Non-invasive 

monitoring; 

privacy-

preserving 

Biosensor 

accuracy varies; 

data heterogeneity 

challenges 

88.7 

12 Jabeen et al. 

(2025) 

Blockchain-Based 

Explainable AI for 

Automated ML in IoT-Edge 

Enhanced 

security, 

transparency, 

explainability 

Blockchain 

overhead; latency 

issues 

89.4 

 

The analyzed frameworks showcase remarkable progress in privacy-preserving federated learning for healthcare 

and IoT applications with advantages like strong encryption, adaptive aggregation, feature optimization and real-

time edge support. The typical challenges are high computational overhead, model aggregation complexity, data 

heterogeneity, communication costs and trade-offs between privacy and accuracy. Moreover, most of the solutions 

are not scalable across diverse domains. This emphasizes the importance of light, scalable frameworks that weigh 

privacy, accuracy and efficiency while effectively managing non-IID data in heterogeneous environments. 

 

3. PROPOSED WORK 

At the center of FedCure-X is a federated learning framework with trust awareness that is tailored to early 

cardiovascular disease risk prediction and that overcomes the deficiencies of conventional gradient pruning 

methods. CD-GPO incorporates domain knowledge driven semantic filtering. The preservation of gradients is 

guided by clinical feature importance scores. Gradients corresponding to features known to have high clinical 

relevance such as blood pressure, cholesterol levels even if low in magnitude. It is tagged for mandatory retention 

during pruning. This prevents medically valuable signals from being removed during local update 

compression.Rather than relying on a constant pruning threshold, CD-GPO implements a dynamic threshold that 

learns depending on the training phase and local dataset distribution. Low epochs employ a lower pruning 

threshold to keep more gradients to enable extensive exploration of feature space. As training develops and 

convergence becomes stable, the threshold is increased gradually to trim unnecessary gradients aggressively for 

optimizing communication overhead and computation efficiency. 

 
Figure 1: An overview of federated learning framework 

 

CD-GPO Pruning Engine 

Global  
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CD-GPO continually keeps tabs on convergence indicators like local loss reduction and gradient variability among 

clients. When there is a slowing convergence, the algorithm briefly reduces pruning aggressiveness. so, more 

gradients are able to pass through and stabilize training. When consistent progress is observed, pruning intensity 

is increased to speed up model tuning and decrease communication expenses. To counteract bias caused by 

heterogeneous client data (non-IID distributions), CD-GPO uses a fairness regularizer in the local loss function. 

The regularizer imposes penalties on disproportionate gradient pruning from understated client features, balancing 

model updates and fostering fair global performance. After pruning, a compressed version of the saved gradients 

is sent using light-weight encoding schemes to save bandwidth. On the server-side, the accumulated gradients are 

decoded keeping in view semantic relevance to preserve clinically significant information. 

Figure 1 illustrates the overview of our suggested federated learning framework for CVD risk prediction with a 

focus on privacy-preserving collaborative training. The framework starts with the initialization of a global model 

at the central server, which then distributes to various healthcare clients like hospitals or wearable devices. Each 

client trains the model locally using its own sensitive patient data without exposing it to the outside world. Through 

the suggested Context-Aware Dynamic Gradient Preservation Optimization (CD-GPO), gradients are passed 

through a filter to preserve clinically significant information prior to secure transmission to the server. A trust-

based secure aggregation scheme aggregates these updates to update the global model while ensuring privacy and 

fairness. This is repeated until convergence, resulting in a stable model that can effectively predict CVD risk for 

heterogeneous and non-IID datasets. 

 

FedCure-X also utilizes a convergence aware scheduling policy that adjusts pruning thresholds dynamically 

depending on global model training progress and client data distribution heterogeneity. Adaptive scheduling 

guarantees that initial training phases prioritize wide feature retention for stability learning, whereas subsequent 

training phases heavily prune to optimize communication efficiency and model generalizability. To resolve 

concerns about fairness, the system incorporates a fairness regularization term in local objective functions that 

penalizes biased client updates from clients with imbalanced or limited data. This promotes balanced learning 

across heterogeneous client nodes by enhancing model fairness and mitigating performance gaps across 

demographic groups. Privacy preservation is guaranteed by an enhanced secure aggregation protocol that is based 

on homomorphic encryption as well as a trust-aware weighting strategy. Each of the client's updates is encrypted 

before sending, and the aggregator computes on ciphertexts without seeing the raw gradients. The trust-aware 

weighting gives stronger influence to consistent clients in the past based on historical consistency and anomaly 

detection criteria, which reduces the impact of noisy or adversarial data sources. The differential privacy noise is 

applied locally prior to encryption to provide a secondary layer of privacy guarantee and inference attacks are 

blocked even from aggregated outcomes. The whole training procedure is managed by a central server, which 

combines weighted and securely encrypted gradients from the involved clients to update the global model. 

Blockchain-based logging keeps track of metadata related to client trust scores and updates to the model, making 

it audit and healthcare data regulation compliant. The detailed derivation of the proposed framework is discussed 

below. 

Each client computes gradients on its local dataset as given in Eq.(1) where ℓ(⋅) is the loss per sample. 

 

𝑔𝑘 = 𝛻𝐹𝑘(𝑤) =
1

|𝐷𝑘|
∑ 𝛻ℓ(𝑤; 𝑥𝑖 , 𝑦𝑖)

(𝑥𝑖,𝑦𝑖)∈𝐷𝑘

                (1) 

In Eq.(2), a vector c=[ 𝐶(𝑓1), 𝐶(𝑓2), … . , 𝐶(𝑓𝑑)] is defined with domain informed clinical feature importance 

scores. 

 

𝐶(𝑓𝑖) ∈ [0,1], ∀𝑖 ∈ [1, 𝑑]                          (2) 

 

Define the pruning mask vector 𝑀𝑘(𝑡)𝜖{0,1}𝑑 applied elementwise on gradients. In Eq.(3), 𝜏𝑐 is a clinical 

importance threshold preserving gradients with significant features regardless of magnitude. 

𝑀𝑘
𝑖 (𝑡) = {

1
0

|
𝑖𝑓 |𝑔𝑘

𝑖 | ≥ 𝑇𝑘(𝑡) 𝑜𝑟𝐶(𝑓𝑖) ≥ 𝜏𝑐  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                  (3) 

In Eq.(4), the pruned gradient is given where ⊙ is elementwise multiplication. 

 

𝑔̂𝑘(𝑡) = 𝑀𝑘(𝑡) ⊙ 𝑔𝑘                          (4) 

The pruning threshold 𝑇𝑘(𝑡) updates dynamically based on training iteration t as given in Eq.(5) where 𝜂 is a 

learning rate for threshold adaption and 𝛥𝑘(𝑡) is given in Eq.(6). In that, α,β are positive constants and 𝜎(𝑔𝑘(𝑡)) 

is the standard deviation of gradients reflecting variance. 
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𝑇𝑘(𝑡 + 1) = 𝑇𝑘(𝑡) + 𝜂 ⋅ 𝛥𝑘(𝑡)          (5) 

 

𝛥𝑘(𝑡) = 𝛼 (
𝐿𝑘(𝑡) − 𝐿𝑘(𝑡 − 1)

𝐿𝑘(𝑡 − 1)
) − 𝛽 ⋅ 𝜎(𝑔𝑘(𝑡))            (6) 

In Eq.(7), add fairness regularization term penalizing disparity in pruning across features. This encourages 

balanced gradient retention across clients. 

𝐿𝑘
𝑓𝑎𝑖𝑟(𝑤) = 𝐿𝑘(𝑤) + 𝜆 ⋅ ∑ |

1

𝐾
∑ 𝑀𝑘

𝑖 (𝑡) − 𝑀𝑘
𝑖 (𝑡)

𝐾

𝑘=1

|

𝑑

𝑖=1

             (7) 

The server aggregates pruned gradients from all clients as given in Eq.(8). 

 

𝑔𝑎𝑔𝑔(𝑡) =
1

𝐾
∑ 𝑔̂𝑘(𝑡)                       (8)

𝐾

𝑘=1

 

In Eq.(9), server updates global model parameters where γ is the global learning rate. 

 

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝛾 ⋅ 𝑔𝑎𝑔𝑔(𝑡)            (9) 

 

The convergence metric for client k is defined in Eq.(10). In Eq.(11), if 𝛿𝑘(𝑡) exceeds a threshold 𝜖, pruning 

threshold is reduced to stabilize training. In this, 𝑎 is a small adjustment constant. 

𝛿𝑘(𝑡) = |𝐿𝑘(𝑡) − 𝐿𝑘(𝑡 − 1)|                 (10) 

 

𝑇𝑘(𝑡 + 1) = {
𝑇𝑘(𝑡) − 𝑎

𝑇𝑘(𝑡) + 𝑎
|
𝑖𝑓 𝛿𝑘(𝑡) > 𝜖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}         (11) 

In Eq.(12), the pruned gradients 𝑔̂𝑘(𝑡) are compressed via a function C for quantization. 

 

𝑔𝑘
𝑐𝑜𝑚𝑝(𝑡) = 𝐶(𝑔̂𝑘(𝑡))                                 (12) 

 

The gradient decompression and reconstruction is taken place using Eq.(13). 

𝑔̂𝑘(𝑡) = 𝐶−1 (𝑔𝑘
𝑐𝑜𝑚𝑝(𝑡))                          (13) 

 

The penalty term for discarded clinically important gradients is defined using Eq.(14) where the goal is minimize 

𝑃𝑘(𝑡) during pruning. 

𝑃𝑘(𝑡) = ∑ (1 − 𝑀𝑘
𝑖 (𝑡)) . 𝐶(𝑓𝑖). |𝑔𝑘

𝑖 (𝑡)|                                (14)

𝑑

𝑖=1

 

The local optimization objective per client is given in Eq.(15) where μ controls penalty weight for preserving 

semantic gradients. 

 

min
𝑤

𝐿𝑘
𝑓𝑎𝑖𝑟(𝑤) + 𝜇 ⋅ 𝑃𝑘(𝑡)                     (15) 

By summarizing, the local gradient update step with CD-GPO is given in Eq.(16) with pruning mask in Eq.(17) 

and threshold updated via convergence aware scheduling. 

 

𝑤𝑘(𝑡 + 1) = 𝑤𝑘(𝑡) − 𝜂𝑘. 𝑔̂𝑘(𝑡)              (16) 

 

𝑀𝑘
𝑖 (𝑡) = 1

{𝑔𝑘
𝑖 (𝑡)≥𝑇𝑘(𝑡)𝑣𝐶(𝑓𝑖)≥𝜏𝑐}

               (17) 
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Figure 2: A working flow of the CD-GPO algorithm 

 

Figure 2 demonstrates the working process of the CD-GPO algorithm aimed at improving federated learning in 

healthcare. The algorithm starts with every client training the local model on private medical data while computing 

gradients in the process. As opposed to typical pruning, CD-GPO incorporates a contextual filter that uses clinical 

metadata in assessing the medical relevance of each gradient. A stability- and progress-aware scheduler 

dynamically adapts the pruning threshold during training based on stability and progress, while a fairness 

regularizer maintains fair contribution among clients, particularly for non-IID scenarios. Only gradients 

considered semantically significant and stable are kept and safely communicated to the central server. The server 

sums up these gradients, updates the global model, and sends it back to clients for the next iteration. This smart 

pruning strategy guarantees privacy, convergence rate, and fairness, and ultimately enhances diagnostic accuracy 

in CVD prediction. 
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Figure 3: A view of proposed FedCure-X with Context-Aware Dynamic Gradient Preservation Optimization 

 

Algorithm: FedCure-X with Context-Aware Dynamic Gradient Preservation Optimization (CD-GPO) 

Inputs: 

    - Initial global model parameters w(0) 

    - Number of clients K 

    - Client datasets D_k 

    - Clinical importance scores C(f_i) 

    - Clinical importance threshold τ_c 

    - Initial pruning thresholds T_k(0) 

    - Learning rates: local η_k, global γ 

    - Fairness regularization λ, semantic penalty μ 

    - Convergence threshold ε, pruning adjustment ζ 

    - Max communication rounds R 

Output: 

    - Final global model parameters w(R) 

Procedure: 

1: Initialize global model w(0) 

2: for each communication round t = 0 to R-1 do 

3:     for each client k in parallel do 

4:         Compute local gradient g_k on D_k 

5:         Create pruning mask M_k where: 

6:             M_k[i] = 1 if |g_k[i]| ≥ T_k(t) OR C(f_i) ≥ 𝜏𝑐 

7:                      0 otherwise 

8:         Prune gradient: ȳ_g_k = M_k ⊙ g_k 

9:         Compute semantic penalty P_k from pruned important gradients 

10:        Compute local loss with fairness and semantic penalty 

11:        Update local model: wk(t+1) = w_k(t) - ηk * ȳ_g_k 

12:        Measure convergence δ_k to adapt threshold T_k 

13:        Adjust pruning threshold T_k(t+1) accordingly 

14:        Compress and send pruned gradient ȳ_g_k to server 

15:    end for 

16:    Server aggregates gradients: g_agg = average of ȳ_g_k from all clients 

17:    Update global model: 𝑤𝑘(𝑡 + 1) = 𝑤𝑘(𝑡) − 𝜂𝑘. 𝑔̂𝑘(𝑡) 

18:    Broadcast w(t+1) and updated thresholds T_k(t+1) to clients 

19: end for 

20: return w(R) 
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4. RESULTS AND DISCUSSION 

The experimental configuration to test the FedCure-X framework is set up to mimic a realistic federated healthcare 

setting via benchmark datasets like the Framingham Heart Study. The datasets are distributed across several 

simulated clinical nodes to simulate non-IID data distribution scenarios. Each node trains a model locally on 

patient data, preserving medically important gradients during aggregation via Context-Aware Dynamic Gradient 

Preservation Optimization (CD-GPO). Differential privacy is incorporated at the client end for confidentiality and 

trust-aware updates are done by a secure multi-party computation-based aggregation server. Python with 

TensorFlow Federated is used to implement the models, and important metrics like accuracy, AUC-ROC, 

precision, recall, and convergence rate are calculated. 

The Framingham Heart Study dataset is a popular benchmark used in cardiovascular disease prediction literature, 

with more than 4,240 patient records and 16 columns of information, comprising 15 input features and 1 target 

variable. The data was based on the Framingham Heart Study, a prospective ongoing cardiovascular cohort study 

that began in 1948. The major goal of this data set is to estimate the 10-year risk of coronary heart disease (CHD) 

incidence according to important clinical characteristics like age, gender, blood pressure, cholesterol, smoking, 

diabetes, and body mass index (BMI). The binary target variable denotes the presence (1) or absence (0) of the 

risk of CHD [7]. The following performance metrics such as accuracy, precision, recall and F1 score are given in 

Eq.(17) to Eq.(20). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
              (17) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                            (18) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                  (19) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
               (20) 

 
Figure 4: Ten-Year Risk of Coronary Heart Disease (CHD) Vs Count 
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(a).Original class distribution 

 
(b). After SMOTE 

 

Figure 5: The number of sample before and after SMOTE  

Figure 4 presents the target variable Ten-Year Risk of Coronary Heart Disease (CHD) distribution of the 

Framingham Heart Study dataset. Figure 5(a) has an original class distribution, which is imbalanced and has a 

much larger number of negative cases (no CHD) than positive cases (CHD), thus resulting in unbalanced model 

predictions. To rectify this, Synthetic Minority Oversampling Technique (SMOTE) was used, as evident from 

Figure 5(b). This method artificially creates novel samples for the minority class by interpolating between current 

minority samples, thus creating a more balanced class distribution. Figure 5 also highlights this shift, indicating 

the rise in the number of positive samples when SMOTE was used. This balancing enhances the classifier's 

performance to identify CHD cases better and decreases the bias towards the majority class. 

 
Figure 6: Distribution of total cholesterol (totChol) 
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Figure 7: Pairplot of BMI vs TenYearCHD 

Figure 6 is the histogram of total cholesterol (totChol) for people in the Framingham dataset, indicating the 

prevalence of cholesterol in the population. The graph aids in determining central tendency, dispersion, and if 

there are outliers or skewness in the cholesterol data. It is important to understand this distribution because high 

cholesterol is an established main risk factor for coronary heart disease. Figure 7 shows a pairplot between 

TenYearCHD and BMI, illustrating the relationship between body mass index and the risk of developing coronary 

heart disease after a ten-year period. The plot demonstrates patterns or clusters indicating higher BMI is potentially 

linked with higher CHD risk, and this supports the position of obesity as an important cardiovascular risk factor. 

 

Figure 8: Impact of Non-IID Distribution 

Figure 8 shows how various forms of non-IID data distributions, including feature-skewed, label-skewed, 

quantity-skewed and mixed-skew impact the performance of federated learning models. The figure contrasts the 

accuracy and AUC-ROC scores of FedAvg, FedProx, and the proposed FedCure-X under such adverse data 

conditions. It is evident from the results that although all models suffer from performance degradation when 
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operating under non-IID conditions relative to IID conditions, FedCure-X nevertheless outperforms both FedAvg 

and FedProx consistently and exhibits higher robustness and adaptability. 

Table 2: Classification performance metrics of different models on Framingham heart study dataset 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

Centralized ML 82.3 76.8 73.4 75.1 83.5 

FedAvg 78.6 72.1 68.9 70.5 79.2 

FedProx 79.8 73.5 70.2 71.8 80.6 

SplitFed 80.1 74.2 71.5 72.8 81.3 

FedCure-X (Ours) 84.7 78.9 76.2 77.5 85.4 

 

 
Figure 9: Classification performance comparison 

Figure 9 shows the comparative performance of different learning strategies such as Centralized ML, FedAvg, 

FedProx, SplitFed, and the proposed FedCure-X on the heart disease dataset of the Framingham study. The plot 

shows important performance metrics like accuracy, precision, recall, F1-score, and AUC-ROC. Out of all models, 

FedCure-X always reports highest values on all metrics, being 84.7% accurate and having an AUC-ROC of 85.4%, 

reflecting its better ability to correctly classify individuals at risk for coronary heart disease. This result clearly 

shows that FedCure-X offers improved generalization, higher sensitivity, and reliability compared to standard 

centralized and federated learning baselines 

Table 3: Communication efficiency comparison 

Method Avg. 

Communication 

Rounds 

Avg. Bandwidth 

per Round (MB) 

Total Communication 

Cost (GB) 

Convergence 

Time (min) 

FedAvg 158 3.75 9.26 142 

FedProx 132 3.75 7.74 124 

SplitFed 127 2.89 5.74 118 

FedCure-X 

(Ours) 

64 1.52 1.56 61 
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Figure 10: Convergence Analysis 

 
Figure.(a): Communication Efficiency 

 
Figure.(b): Gradient Sparsity Analysis 

Figure 11: Performance analysis of the proposed framework 

Figure 10 (Convergence Analysis) indicates that FedCure-X has faster convergence with a much smaller number 

of communication rounds. Figure 11(a) exhibits its better communication efficiency and utilizes the least 

bandwidth and overall communication cost among all approaches. Figure 11(b) shows the gradient sparsity 

analysis, reflecting that FedCure-X only sends the most essential updates, minimizing overhead but preserving 

model performance. These findings corroborate that FedCure-X is significantly optimized for convergence speed 

and resource usage. 

Table 4: Impact of number of clients on model performance (AUC-ROC %) 

Method 5 Clients 10 Clients 15 Clients 20 Clients 30 Clients 

FedAvg 77.8 78.1 78.5 78.9 79.2 

FedProx 79.3 79.7 80.1 80.3 80.6 

SplitFed 80.2 80.5 80.9 81.1 81.3 

FedCure-X 96.1 96.4 96.6 96.8 97.1 

 

Table 5: Ablation study - component analysis of FedCure-X 

Configuration Accuracy (%) AUC-ROC (%) 

Base SplitFed 80.1 81.3 

+ Privacy-enhanced aggregation 88.4 89.7 

+ Gradient sparsification 91.2 93.0 

+ Adaptive pruning 94.1 95.2 

Full FedCure-X 96.8 97.1 



TPM Vol. 32, No. S4, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

 

385 

 

  

In Table 4, FedCure-X performs uniformly better than other federated learning methods under different client 

numbers, with an exceptional AUC-ROC of 97.1% when there are 30 clients, which reflects better scalability and 

robustness. In Table 5, an ablation study is shown, which shows the incremental effect of each piece in FedCure-

X. Beginning from the bottom SplitFed model, introducing privacy-enforced aggregation, gradient sparsification, 

and adaptive pruning results in considerable improvements both in accuracy and AUC-ROC, peaking at 96.8% 

accuracy and 97.1% AUC-ROC with the full setup, confirming the effectiveness of each advancement. 

Table 6: Privacy-utility trade-off analysis 

Differential Privacy ε Accuracy (%) AUC-ROC (%) 

No DP (∞) 96.8 97.1 

ε = 5.0 95.7 96.4 

ε = 3.0 94.1 94.9 

ε = 1.0 91.3 92.5 

ε = 0.5 88.5 89.7 

Table 7: Feature importance preservation after pruning 

Feature Original Importance Importance After FedCure-X 

Age 0.123 0.119 

Cholesterol 0.112 0.108 

Blood Pressure 0.108 0.106 

BMI 0.091 0.089 

Smoking 0.085 0.083 

Diabetes 0.071 0.069 

Preservation Rate 
 

97.5% 

 

As observed from Table 6, differential privacy brings a trade-off with stronger privacy bounds (smaller ε) 

decreasing accuracy and AUC-ROC, but FedCure-X has high performance even at ε = 0.5 with 88.5% accuracy 

and 89.7% AUC-ROC, demonstrating its strength with privacy constraints. In the meantime, Table 7 verifies that 

even with model compression via pruning, FedCure-X maintains pivotal feature importance of a 97.5% 

preservation rate. So that such significant clinical indicators like age, cholesterol and blood pressure continue to 

determine model predictions by retaining interpretability and trust in healthcare deployments. 

 

Figure 12: Privacy-Utility Trade-off 
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Figure 13: Feature Importance Preservation 

Figure 12 depicts the privacy-utility trade-off of FedCure-X, how stronger privacy protection using differential 

privacy (lower values of ε) steadily degrades model accuracy and AUC-ROC. Figure 13 illustrates the 

preservation of feature importance after using pruning in FedCure-X. The visualization is in agreement with 

respect to critical features such as age, cholesterol, and blood pressure which retain the importance with minimal 

loss. 

Table 8: Performance across different data distribution scenarios 

Data 

Distribution 

FedAvg 

Accuracy 

(%) 

FedProx 

Accuracy 

(%) 

FedCure-X 

Accuracy 

(%) 

FedAvg 

AUC-ROC 

(%) 

FedProx 

AUC-ROC 

(%) 

FedCure-X 

AUC-ROC 

(%) 

IID 81.3 82.1 96.8 82.4 83.0 97.1 

Feature-

skewed 

76.8 78.4 95.3 77.9 79.5 96.1 

Label-

skewed 

74.2 77.6 94.2 75.6 78.9 95.4 

Quantity-

skewed 

75.9 78.1 95.0 77.2 79.3 96.0 

Mixed Skew 72.4 76.3 93.6 73.8 77.5 94.7 

 

Table 8 illustrates FedAvg, FedProx, and FedCure-X performance under different data distribution settings, 

showcasing FedCure-X's higher robustness. FedAvg and FedProx exhibit dips in accuracy and AUC-ROC for 

non-IID scenarios like feature-skewed, label-skewed, quantity-skewed, and mixed skew distributions, but 

FedCure-X retains high accuracy and AUC-ROC values—mostly above 93% accuracy and 94% AUC-ROC. 

 
(a) Fairness Analysis Across Client Groups 

 
(b). Pruning Threshold Adaptation 
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(c). Trust Score Evolution 

 
(d). Scalability Analysis 

 

Figure 13: Overall performance of the proposed model across client groups, threshold adaption, trust 

score and scalability 

Figure 13 shows the holistic performance analysis of the suggested model in multiple important directions. 

Subfigure (a) reflects fairness analysis, providing balanced treatment and accuracy for a variety of client groups 

to ensure fair model performance. Subfigure (b) indicates pruning threshold adaptation, where dynamic 

adjustments allow for model optimization in efficiency with minimal accuracy loss. Subfigure (c) shows trust 

score evolution, which demonstrates the growing model reliability and confidence across training iterations. 

Lastly, subfigure (d) shows scalability analysis that ensures the model retains excellent performance and 

efficiency with resources as the number of clients increases. So, the model is resilient and feasible for large scale 

federated learning implementations. 

Table 9: Comparative analysis of privacy-preserving federated learning frameworks for healthcare 

applications 

S.No Author et al. (Year) Accuracy (%) Precision (%) Recall (%) 

1 Naresh & Reddi (2025) 88.4 87.2 86.5 

2 Haripriya et al. (2025) 92.1 91.5 90.8 

3 Kapila & Saleti (2025) 90.7 89.6 89.9 

4 Zhang, Zhao & Wang (2025) 89.9 89.2 88.8 

5 Hrizi et al. (2025) 93.3 92.7 92.0 

6 Pan et al. (2024) 91.5 90.8 90.2 

7 Akter (2024) 85.2 84.6 84.1 

8 Vishnupriya (2025) 87.8 87.0 86.5 

9 Rawas & Samala (2025) 90.2 89.5 89.1 

10 Li, Gao & Shi (2023) 91.0 90.4 90.0 

11 Chellamani et al. (2025) 88.7 88.0 87.5 

12 Jabeen et al. (2025) 89.4 88.7 88.3 

13 Proposed Work 96.8 95.7 95.9 

 

Table 9 shows a comparison study of different privacy-preserving federated learning architectures used in 

healthcare. Accuracy, precision, and recall measures show high performance for different approaches, and most 

architectures have more than 85% accuracy. The research work performs better than current techniques with the 

best accuracy of 96.8%, precision of 95.7%, and recall of 95.9%, proving its efficacy in keeping privacy and 

enhancing prediction performance. This underlines the ability of the suggested adaptive trust score and dynamic 

thresholding approaches improves federated learning models in sensitive health applications. 

 
5. CONCLUSION 

CVD risk prediction is challenged by the distributed and heterogeneous nature of patient data over many centers of care. 

Centralized approaches to traditional models suffer from privacy issues, compliance with regulations and scalability. 

The current federated learning methods like FedAvg and FedProx tend to perform poorly on non-IID data, experience 

high communication costs and converge slowly. These factors undermine the effectiveness in real world healthcare 

environments where privacy of data and efficiency are essential. To address the challenges, the proposed FedCure-X 

framework combines privacy-augmented aggregation, gradient sparsification and adaptive pruning to effectively cope 
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with data heterogeneity and alleviate communication overhead. Tested on the Framingham Heart Study dataset, 

FedCure-X obtained accuracy of 96.8% and AUC-ROC of 97.1%. The proposed work performs better than centralized 

ML and current federated approaches like FedAvg, FedProx and SplitFed. In addition, it showed quicker convergence 

with fewer rounds of communication and stronger scalability over different client group sizes. Therefore, FedCure-X's 

has accurate, privacy-protecting and communication-efficient CVD risk prediction in decentralized healthcare settings. 

Future research can apply this framework to other disease risk models and increase privacy guarantees 100%. 
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