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Abstract: 

Modern research about mental health analyses Electroencephalography (EEG) data for detecting and 

categorizing anxiety and stress manifestations. The research presents an improved detection method 

which unites innovative features extraction methods with optimization approaches as well as 

advanced classification techniques to enhance accuracy. Our proposed method known as PCA-RFE 

Hybrid Feature Extraction implements Principal Component Analysis to reduce dimensions 

alongside Recursive Feature Elimination for selecting important EEG features thus achieving better 

model interpretability coupled with improved computational speed. The XGForest Classifier stands 

as our classification model because it unites XGBoost and Random Forest algorithms to maximize 

predictive accuracy at 93%. The best parameters are chosen from GridSearchCV to achieve 

maximum classification accuracy during hyperparameter optimization. The Hybrid Classifier 

obtains 1.00 accuracy along with precision 0.99, recall 0.99 and F1-score 0.97. The investigative 

findings indicate that the implemented method exhibits superior diagnostic performance regarding 

traditional machine learning algorithms because XGBoost reached 0.93 accuracy while Neural 

Network achieved a dismal 0.37 accuracy. Early detection of mental health problems becomes 

possible through the development of this study which works toward creating improved EEG-based 

diagnostic tools for monitoring purposes. 

Keywords: EEG Data, Anxiety Detection, Stress Detection, PCA-RFE Hybrid, XGForest Classifier, 

Hyperparameter Tuning. 
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I. INTRODUCTION 

 

Anxiety disorders are considered one of the most common mental health conditions because they affect 

millions of individuals across the world. Excessive fear together with worry and nervousness form these conditions 

that obstruct an individual's daily functioning. The Electroencephalogram (EEG) functions as an exterior brain 

monitoring tool for analyzing neural activities which helps doctors understand psychological conditions such as 

anxiety [1]. Bringing together brain wave tracks from test subjects displays both worried mental states together 

with normal mental states in the standard EEG anxiety disorder record. The examination of these data points shows 

abnormalities in brain electrical patterns specifically linked to anxiety cases for improved diagnosis and treatment. 

Researches have demonstrated that analyzing EEG signals enables the prediction of anxiety onset and its tracking 

pattern evolution in patients [2]. 

Standard techniques used for extracting features and classifying EEG signals to detect anxiety disorders 

face multiple operational limitations when applied for this purpose. EEG data possesses high dimensionality as an 

essential challenge since it combines extensive information about frequency bands (delta, theta, alpha, beta, and 

gamma waves) alongside data from multiple electrodes. [3]The manual features used by Wavelet and Fourier 

transforming techniques fail to detect the intricate non-linear patterns found in EEG signals. The classification 

process becomes more complex because of both redundant features and useless features leading to the need for 

advanced selection methods. The classification performance of Support Vector Machines (SVM) and Logistic 

Regression faces challenges due to the complexity of EEG data thereby potentially leading to overfitting or 

underfitting errors. The analysis methods demonstrate weak performance when identifying real-time brain activity 

patterns which are critical for mental health diagnosis because they do not consider temporal dependencies found 

in EEG signals [4,5]. 

Traditional EEG methods fail to address their main problems stemming from their limited ability to 

process extensive EEG data complexity as well as brain signal nonstationarity[6,7]. Expert-dependent 

transformations used in traditional feature extraction methods prove ineffective at extracting important features 

from raw EEG signals since their process requires extensive time along with the potential for missing significant 

data features. Traditional classification techniques provide suboptimal performance when handling both the 

excessive dimensionality problem and the overfitting challenge particularly in scenarios with small medical 

dataset sample sizes. These techniques fail to detect important spatial and temporal relationships within the EEG 

signals because they need these essential elements to create precise models of anxiety disorder neural patterns. 

The use of traditional algorithms proves insufficient for delivering precise real-time EEG-based predictions and 

personalized treatment opportunities[8]. 

Modern machine learning together with deep learning approaches should be integrated to establish 

advanced EEG analysis methods which extract features and perform classifications. This proposed work utilizes 

the hybrid PCA-RFE (Principal Component Analysis - Recursive Feature Elimination) method to extract valuable 

features from data while decreasing its dimensions and achieve better execution of anxiety disorder detection 

through XGBoost and Random Forest classification models. [9] This system has been designed to receive real-

time data for continuous assessment of patient neural states during operation. By adopting these advanced methods 

healthcare professionals achieve automated feature selection alongside improved model interpretability and 

enhanced accuracy which results in improved diagnosis along with enhanced treatment planning and 

individualized healthcare treatments for anxiety disorders[10]. 

The proposed research implements a systematic process to solve the weaknesses found in standard approaches 

used for detecting anxiety disorders using EEG signals. The data pre-processing step starts with handling missing 

values then normalizing values for consistent and scalable outcomes. This approach will utilize PCA and RFE as 

feature extraction methods to both decrease the dataset dimensions and pick the most significant characteristics 

for better performance alongside reduced overfitting. Model training will utilize both XGBoost and Random 

Forest to establish an ensemble learning system which enhances classification precision during the process. The 

test data performance will reach its peak because GridSearchCV optimizes model parameters. The model 

execution includes cross-validation alongside accuracy metric evaluations with confusion matrices as well as ROC 

curves which validate the prediction robustness. Real-time anxiety disorder detection based on EEG data can be 

achieved with the proposed approach which delivers accuracy along with interpretation scalability and accurate 

detection of mental health disorders. 

  Main contributions of the proposed work: 

1. The research presents a PCA-RFE combination technique which performs dimensional reduction for 

improved selection of significant features. 
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2. Combines XGBoost and Random Forest classifiers for improved classification accuracy and robustness. 

3. GridSearchCV enables the system to find its best parameters while simultaneously enhancing model 

performance and minimizing overfitting effects. 

This section examines past Machine Learning approaches which detect anxiety disorders through EEG signals 

alongside their performance traits and issues. The proposed system architecture with its workflow for anxiety 

disorder detection is detailed in Section III that explains how PCA-RFE hybrid feature extraction joins XGBoost 

with Random Forest classifiers to achieve better prediction performance. The fourth section presents findings from 

the proposed solution which includes an accuracy comparison against conventional models and additional 

advanced systems both in precision and operational efficiency. The research ends with a summary of the proposed 

work's anxiety disorder detection accomplishments and additional directions for future model development and 

research. 

 

I. LITERATURE SURVEY 

 

The literature review demonstrates how advanced machine learning techniques use different data sources 

including EEG signals clinical biomarkers electronic health records and social media data for more precise anxiety 

disorder detection and treatment methods. The research presents multiple studies which evaluate machine learning 

systems including deep learning along with support vector machines together with ensemble methods to identify 

anxiety disorder indicators. Diagnostic approaches based on these methods intend to solve traditional diagnostic 

shortcomings with precise modern solutions that scale and require no invasive techniques. Despite recent 

advancements machines models now have major restrictions when it comes to generalization of results along with 

interpretability as well as their ability to process imperfect and noisy data. Science calls for improved time-

sensitive analytical systems able to develop personalized care programs while accurately detecting anxiety 

symptoms through precise predictions. This research investigates the effectiveness of modern approaches inside 

this field.  

Al-Ezzi et al. (2021) developed a deep learning method to examine social anxiety disorder through brain 

effective connectivity measurements taken from EEG signals[12]. An analysis of brain activity through diverse 

deep learning architectures became the basis for anxiety severity prediction according to Sharma & Verbeke 

(2021).[13] The researchers employed multiple biomarkers for feature extraction to upgrade classification results. 

The main benefit emerged from uniting clinical information with machine learning methods to produce more 

precise prediction results.  

The research by Nemesure et al. (2021) applied[14] machine learning approaches to EHR for depression 

and anxiety prediction. The research team used classification methods on EHR-system structured data to conduct 

mental health condition predictions through risk-factor assessment. The analysis performed by Wanderley 

Espinola et al. (2022) examined how machine learning and vocal acoustic methods can identify major depressive 

disorder and bipolar disorder and schizophrenia and generalized anxiety disorder [15]. The conducted analysis 

used audio recordings to retrieve patterns which revealed mental health disorder specific speech characteristics. 

  

The researchers from Rezaei et al. (2023) employed machine learning technology to functional magnetic 

resonance imaging (fMRI) data for anxiety disorder analysis[16]. The research used fMRI records in combination 

with machine learning systems to detect specific brain functioning linked to anxiety. Advanced neuroimaging data 

strengthened their methods however the complexity coupled with expensive fMRI acquisition restricted access to 

the data. 

The authors Ahmed et al. (2020) developed machine learning through supervised learning models for 

depression and anxiety detection[17]. The authors utilized standard machine learning methods to detect anxiety 

and depression through psychological assessment results. This method presented an easy implementation of 

existing algorithms to psychological data while struggling to demonstrate predictive interpretation of complex 

human behavioral patterns. 

The research team of Jacobson et al. (2021) combined [18] deep learning with wearable passive sensing 

data to forecast long-term changes in anxiety disorder symptoms that lasted between 17-18 years. The use of 

wearable sensors allowed researchers to conduct their investigation without invasiveness while tracking symptoms 

in real time. The researchers of Zhao & So (2018) [19] conducted a study which employed machine learning for 

drug repositioning of treatments between schizophrenia and anxiety disorders through expression data analysis. 

The main benefit of this methodology was its ability to repurpose drugs by leveraging existing drug expression 

data but it encountered problems determining drug effects that extend beyond approved treatment indications 

because it needed high-quality expression data. 
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Qasrawi et al. (2022) applied machine learning methods to evaluate and forecast depression and anxiety 

risk elements in school children[20]. The study explored machine learning models for determining probabilities 

of anxiety and depression through analysis of behavioral along with environmental risk elements. The paper by 

Zheng & Ye (2022) introduces deep learning methods that aid in predicting Cognitive-Behavioral Therapy (CBT) 

results for treating adolescent social anxiety and other mental health issues [21]. The system used deep learning 

technology with structured medical records to forecast how well therapy would work.  

Bendebane et al. (2023) developed a multi-class deep learning method which diagnoses depressive as 

well as anxiety disorders through Twitter data analysis [22]. Through the examination of social media profiles they 

developed an automated tool able to perform mental health diagnoses in real-time depending on user behavioral 

patterns. The main advantage of this method was its ability to acquire extensive datasets automatically however 

its disadvantages included privacy risks and potential incorrect results stemming from uncaring data that did not 

come from clinical sources. 

The study by Alshanketi (2024) developed a deep learning network named MGADHF which utilized 

social media data to identify generalized anxiety disorder[23]. Researchers implemented deep learning processing 

technology on extensive social media datasets so the population could conduct widespread anxiety disorder 

screenings. Minimum invasive procedures were a benefit of this approach yet its effectiveness depended on social 

media data quality combined with a need for clinical validation to prevent misclassifications. 

Choudhary et al. (2022) described how their approach continuously collects anonymous smartphone data 

to detect generalized anxiety disorder through machine learning[24]. Anxiety symptoms analysis depended on 

real-time data that sensors from smartphones collected in this method. The real-time monitoring system gained 

clinical benefits because it monitored anxiety symptoms but user acceptance and continuous data harvesting posed 

limitations because of smartphone sensor precision. Their research methodology delivered an extensive evaluation 

of brain complexity patterns which linked to anxiety. The main advantage of this approach involved utilizing EEG 

signals directly since these signals exhibit strong mental state sensitivity.  

Zhao & So (2017) used drug expression profiles to explore machine learning applications for drug 

repositioning in schizophrenia and anxiety disorders. [26] This research demonstrated how expression data can be 

used for drug repurposing purposes while providing a cost-friendly solution for new treatment discovery. A major 

obstacle existed in determining therapeutic efficiency because performing clinical trials required great detail 

according to Norouzi & Machado (2024) [27]. The study demonstrated predictive models to check various 

elements associated with mental health risk assessments. Although the system worked well with different mental 

health issues it faced challenges because data input quality and accessibility affected the accuracy of its 

predictions. 

Machine learning models enable Kumar et al. (2020) to evaluate anxiety together with depression and stress 

through psychological assessment feature retrieval[28,29]. The simplicity and suitability of this approach to 

clinical data stood as its main benefit while its handling of subjective psychological evaluations presented major 

challenges because they display diverse individual assessment patterns. The authors of Sau & Bhakta (2019) 

studied depression and anxiety screening practices for seafarers through machine learning methods [30]. The 

researchers emphasized a particular profession to develop services which addressed mental health issues that 

seafarers encounter. The table 1 comparison outlines the existing methods' performance. 

Table 1: Comparison of the Existing Models 

S.No Author(s) 

et al. 

(Year) 

Dataset Methodology Accuracy 

(%) 

Challenges 

1 Jacobson et 

al. (2021) 

Wearable 

passive 

sensing data 

Deep learning 

paired with 

wearable 

sensors for 

anxiety 

prediction 

92 Long-term data 

collection, sensor 

reliability, and 

individual 

variability in 

symptoms. 

2 Alshanketi 

(2024) 

Social media 

data 

Deep learning 

with 

MGADHF 

architecture for 

generalized 

anxiety 

disorder 

detection 

91 Data privacy, non-

clinical data 

sources, and noisy 

social media 

content. 
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3 Rezaei et al. 

(2023) 

fMRI data Machine 

learning 

applied to 

fMRI to study 

anxiety 

disorder 

patterns 

90 High cost of fMRI 

acquisition, 

complex data 

preprocessing, and 

need for large 

sample sizes. 

4 Al-Ezzi et 

al. (2022) 

EEG data Fuzzy entropy 

and machine 

learning for 

social anxiety 

disorder 

detection 

89 Computational 

complexity, and 

the challenge of 

interpreting high-

dimensional EEG 

data. 

5 Wanderley 

Espinola et 

al. (2022) 

Vocal 

acoustic 

analysis data 

Machine 

learning for 

detecting 

anxiety using 

vocal features 

88 Variability in 

voice data quality 

and need for 

extensive labeling 

of speech samples. 

6 Sharma & 

Verbeke 

(2021) 

Clinical 

biomarkers 

from patient 

records 

Machine 

learning 

models for 

anxiety 

disorder 

diagnosis 

using clinical 

biomarkers 

87 Data availability, 

quality, and 

variability of 

clinical 

biomarkers. 

7 Al-Ezzi et 

al. (2021) 

EEG data Deep learning 

on brain 

effective 

connectivity to 

assess anxiety 

severity 

87 Data annotation 

difficulties and 

need for large 

EEG datasets. 

8 Kumar et al. 

(2020) 

Psychological 

assessments 

Machine 

learning 

models for 

detecting 

anxiety, 

depression, 

and stress 

86 Subjectivity in 

psychological 

assessments and 

challenges in 

feature extraction. 

9 Zhao & So 

(2018) 

Drug 

expression 

data 

Machine 

learning for 

drug 

repositioning 

for anxiety 

disorders 

85 Need for accurate 

expression data 

and challenges in 

predicting effects 

outside of 

intended drug 

indications. 

10 Zhao & So 

(2017) 

Drug 

expression 

profiles 

Machine 

learning for 

drug 

repositioning 

in anxiety and 

schizophrenia 

disorders 

85 Expression data 

variability and 

challenges in 

matching drugs to 

specific anxiety 

symptoms. 

 

Traditional methods for detecting anxiety disorders fail because they do not solve the high-dimensionality and 

complex nature of EEG data effectively which creates difficulties regarding feature redundancy and overfitting 

and a lack of capability to detect temporal dependencies. The methods face difficulties with both generalization 
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and scaling their capabilities when implementing them to process real-time data samples. The proposed solution 

solves these problems through PCA-RFE hybrid dimension reduction that maintains fundamental features together 

with XGBoost and Random Forest classifiers which produce enhanced accuracy and operational reliability. The 

implementation of GridSearchCV serves for hyperparameter optimization to enhance model efficiency which in 

turn improves generalization capabilities and boosts prediction accuracy for EEG-based anxiety disorder 

detection. The method delivers an efficient system to handle complex information along with real-time scalability 

and processing capabilities. 

 

II. PROPOSED WORK 

The workflow in Figure 1 represents how a machine learning pipeline optimizes model evaluation through 

different stages. Data Preprocessing stands as the first step that includes three procedures: Data Cleaning followed by 

Data Normalization and then Exploratory Data Analysis (EDA). The next step uses PCA (Principal Component 

Analysis) and RFE (Recursive Feature Elimination) for feature extraction while combining them for better 

performance. The Model Building phase utilizes XGBoost, Random Forest, SVM and Neural Networks among the 

multiple algorithms. The Model Optimization section utilizes GridSearchCV together with the Hybrid Model 

(XGBoost + Random Forest) to optimize hyperparameters. At the end of the process Model Evaluation measures 

system performance through Accuracy and the Confusion Matrix along with ROC Curve & AUC and Precision, 

Recall, F1-Score metrics. The method produces strong and effective models through its detailed implementation 

structure. 

 

Figure 1: Work Flow of the Proposed Model 

 

A. Data Preprocessing 

Data collection is a crucial first step in any machine learning project. An EEG (electroencephalogram) 

dataset requires obtaining data that shows brain activity patterns for the identification of anxiety disorder 

symptoms. The optimal dataset should include brain wave frequency data arranged in delta theta alpha beta and 

gamma categories. The different mental states or cognitive activities correspond to specific frequency ranges that 

occur in EEG signals through the delta theta alpha beta and gamma bands. Each of these bands corresponds to 
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specific frequency ranges in EEG signals, which are thought to represent different mental states or cognitive 

activities: 

• Delta (0.5-4 Hz): Associated with deep sleep or unconscious states. 

• Theta (4-8 Hz): Linked to light sleep, relaxation, and creativity. 

• Alpha (8-13 Hz): Commonly seen during relaxed alertness and calm states. 

• Beta (13-30 Hz): Associated with active thinking and focus. 

• Gamma (30-100 Hz): Linked to higher mental activity and problem solving. 

The evaluation should include demographic characteristics such as patient age together with sex because brain 

wave patterns demonstrate possible age and sex-related variations. The specific nature of anxiety disorders 

(generalized anxiety disorder, social anxiety disorder etc.) in clinical data helps researchers establish better 

connections between brain functions and mental well-being. The construction of an accurate and comprehensive 

dataset requires obtaining data from dependable sources such as medical clinics and research papers and hospitals. 

 
Figure 2: Brain Wave Distribution Across Different Mental Health Conditions 

This figure 2 shows topographic EEG maps of brain wave distributions across various mental health 

conditions and a healthy control group. Each group receives presentation of different brain wave frequencies 

(delta, theta, alpha, beta, gamma) through topographic representation maps. The labels on these maps use warmth 

for representing increased brain operational levels alongside cooler tones identifying decreased operational levels. 

The illustration presents visual assessments of brain wave activities under diverse mental health conditions 

including Depressive and Bipolar disorders and Social Anxiety and outside stress elements including Acute stress 

and Alcohol use. The analysis provides essential information to identify neural patterns linked to various 

psychological states together with mental disorders. The right image section contains color bars that serve to 

explain the wave intensity scale for each testing condition. 

 

1.  Data Cleaning 

After dataset collection it becomes essential to conduct data cleaning operations to maintain high-quality 

usable data values. The first action for data cleaning involves treating missing values. Several reasons such as 

sensor failure and human errors in recording produce missing data. Multiple strategies exist to deal with missing 

value occurrences: 

• Imputation: The statistical methods of mean and median and mode provide various ways to fill in missing values 

through imputation. When handling numerical missing data features the most suitable imputation method would 

be using column average values as replacements: 

𝑥′𝑖 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

                    (1) 

Where 𝑥′𝑖   is the imputed value, and 𝑥𝑖 are the available values for that feature. 

• Removal: The removal of rows or columns that contain extensive missing data should be considered when the 

data is non-randomly missing or when hundreds of values are absent from the overall data collection.  

Duplicate samples should be identified then eliminated for effective unbiased representation of the samples. The 

model performance could face alterations because duplicate rows exist within the dataset. The procedure to remove 

duplicates works within basic categories of data processing libraries which include pandas in Python. Detection 
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of outliers should also be followed by proper handling methods. A data point qualifies as an outlier when it stands 

out substantially from other observations in the dataset which can thus affect statistical calculations. The detection 

of outliers requires two common methods that use Z-scores and Interquartile Range (IQR). The identification of 

outliers occurs through application of the formula: 

𝑧 =
𝑥 − 𝜇

𝜎
                (2) 

The computation includes the data point x combined with two statistical values consisting of μ for mean and σ for 

standard deviation. The threshold value is typically set at 3 so when a Z-score reaches this point the data point 

becomes considered an outlier which enables appropriate handling options (removal or adjustment). 

 
Figure 3: Distribution of Continuous and Categorical Variables in the Dataset 

The figure 3, displays the distributions of both continuous and categorical variables in the dataset. The upper 

part of the figure contains distribution graphs for continuous measures no, age, education and IQ. The no values 

show regular distribution but age data gathers within the 20-30 age range and education data presents specific 

skewed values. Among the overall IQ scores there exist more frequencies of higher value points. The distribution 

of categorical variables exists in the bottom section. This bar chart expresses categorical data frequencies through 

distinct colored bars that represent individual groups from the given variables listing. The distribution along with 

potential unbalance patterns in categorical data becomes clear through this section. 

2. Data Normalization 

Data preprocessing through normalization represents a vital step which allows the analysis of features that possess 

different scaling dimensions. The difference in scale between EEG brain wave frequencies and demographic data 

(age, sex) creates difficulties for models when attempting to process the data. Through normalization processes 

the model receives equal contribution from its features. Standardization and Min-Max Scaling represent the two 

principal normalization techniques. 

• Standardization: Standardization transforms data by moving all features to mean zero and setting standard 

deviation to one. The process involves both mean subtraction from each feature and subsequent division by the 

calculated standard deviation. 

• Min-Max Scaling: A different data transformation technique called Min-Max Scaling produces data distribution 

within the range [0, 1]. The calculation follows this formula to perform the operation: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

            (3) 

The transformation applies to original feature value x and includes the minimum  𝑥𝑚𝑎𝑥  𝑎𝑛𝑑 𝑥𝑚𝑖𝑛  values of the 

feature range. Min-Max scaling provides effective normalization when dealing with features that have different 

units or require bounded ranges starting from neural networks based on sigmoid activation functions. 
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Figure 4: Distribution of EEG Data (Before Imputation and After Scaling) 

 

The figure 4 presents the distribution patterns of EEG feature AB.A.delta.a.FP1 before and after preprocessing. 

The pink plot on the left side of the figure represents the original unprocessed data distribution showing heavy 

concentration in the lower spectrum of values with an asymmetric shape. The data distribution along with the 

right-skewed shape demonstrates the existence of missing values or data imbalance. The right blue plot 

demonstrates the same feature after preprocessing through imputation and scaling that transforms the data to have 

standardized mean distribution of zero and standard deviation equal to one. The normalized distribution of scaled 

data generates data fitness that makes it suitable for analytical and modelling processes. The preprocessing steps 

establish model performance improvements while preventing features with large scales from receiving undue 

emphasis from the model. 

 

B. Exploratory Data Analysis (EDA) 

Exploratory Data Analysis stands as a vital stage for data scientists because it helps them see data structures 

alongside identifying problems like outlier issues and missing variables and unbalanced classes. Data exploration 

through EDA uses multiple statistical methods in conjunction with visual representations that serve as a basis for 

model-based and preprocessing decisions. 

• Descriptive Statistics 

Descriptive statistics provide a summary of data distribution by presenting its central values and distribution scope 

as well as its characteristic shapes. Three main measures of central tendency consist of the mean (μ) together with 

median and mode. The statistical measures enable researchers to understand standard feature values across the 

database. The mean is calculated as: 

𝜇 =
1

𝑛
∑ 𝑥𝑖                                 (4)

𝑛

𝑖=1

 

This equation uses μ for mean value while n represents total data points along with the feature values 𝑥𝑖  . A median 

value appears in the center position during the ordering process of data and the most common value within a 

dataset functions as the mode. 

The dispersion of data is evaluated through standard deviation (σ) and variance (σ2) statistical measurement 

methods: 

𝜎2 =
1

𝑛
∑(𝑥𝑖 − 𝜇)2                 (5)

𝑛

𝑖=1

 

The standard deviation is simply the square root of variance: 

𝜎 = √𝜎2                                        (6) 

Measurement of data distribution reveals the clustering patterns which indicate if data points cluster tightly near 

the mean or distribute more widely. Measures of skewness and kurtosis help reveal the shape characteristics of 

data distributions which show symmetry or skewed appearances and how much data extends beyond usual ranges. 
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Figure 5: Boxplots for Various Features in the EEG Dataset 

The figure 5 presents a boxplot grid with multiple features from the EEG dataset that contains demographic 

and EEG signal attributes. Each feature distribution and its central tendency together with variability spread 

becomes visible through boxplots while outliers can also become apparent. The no boxplot shows narrow data 

distribution and minimal outliers whereas the wide spread of values with visible outliers appears in 

AB.A.delta.a.FP1 and AB.A.delta.b.FP2. Each plot contains a central box showing the interquartile range (IQR) 

while extended whiskers extend to display data points that exceed IQR values. Observable dots represent extreme 

values that might need additional investigation and preprocessing steps. Before training the model it is crucial to 

perform this analysis for detecting anomalies and understanding the underlying data structure. 

This figure 6 displays pairplots for a subset of features from the EEG dataset. Pairplots enable users to view 

two-dimensional feature relationships when combining scatter plots with histograms. Each plot arrangement 

contains scatter plots that display two-feature relationships while the diagonal positions show single-feature 

distribution outcomes. The scatter plots indicate a possible common pattern in AB.A.delta.a.FP1 and 

AB.A.delta.b.FP2 characteristics that display positive correlation. Each histogram shows the distribution type with 

the data dispersion characteristics of separate features in the data set. Data visualization techniques help identify 

trends together with relationships and outlying points in data before beginning analysis or model construction 

plans. 
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Figure 6: Pairplots of Selected EEG Features 

 
Figure 7: Distribution of delta_theta Feature 

This figure 7 shows the distribution of the delta_theta feature in the dataset. The x-axis frequency distribution of 

the delta_theta feature shows right-skewed frequency data centered on lower value ranges between 0 to 50. A 

smooth probability distribution emerges through the addition of a Kernel Density Estimate curve that emphasizes 

the skews. The distribution features an extended tail section towards right values because extreme entries appear 
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only sporadically. Most data points stay within a particular range according to this distribution pattern but there 

exist a small number of outliers which fall on the higher end of the spectrum. 

 
Figure 8: Distribution of Target Variable in Training and Test Sets 

The presented figure 8 shows how the target variable distribution with False and True values appears across 

training and testing data. The training set data distribution reveals False as the dominant value alongside a minority 

of True cases according to the illustration in the left panel. Another pattern emerges from the right test set panel 

showing False values that strongly predominate True values. Significant class inequality between False and True 

in the collected datasets has serious implications for model training because such distributions make it easy for 

models to predict the majority class. The system needs correction since possible solutions include oversampling 

and undersampling along with class weight implementation in model training to prevent prediction biases. 

C. Feature Extraction 

The data preprocessing pipeline needs feature extraction as its crucial initial step for handling high-

dimensional datasets. The PCA-RFE Hybrid approach unites PCA and RFE to obtain vital features which enhance 

model performance in this setting. These methods perform dimension reduction on data while selecting only the 

key attributes making predictive results both more accurate and resource-efficient. 

 

• PCA (Principal Component Analysis) 

PCA operates through transforming original variables to principal components (PCs) that represent 

uncorrelated variables which demonstrate maximal variance in the dataset. PCA finds new axes (principal 

components) that optimize the data variance. The maximum data variance gets captured by the first principal 

component (PC1) while each successive component measures orthogonal variations. The mathematical expression 

for PCA uses: 

𝑋𝑛𝑒𝑤 = 𝑋𝑊                      (7) 

Where: 

• 𝑋𝑛𝑒𝑤    is the transformed dataset, 

• X is the original data matrix, 

• W is the matrix of eigenvectors or principal components. 

The eigenvectors are computed from the covariance matrix of the data: 

𝛴 =
1

𝑛 − 1
𝑋𝑇𝑋                   (8) 

Each principal component's variance amount is calculated through the eigenvalues that operate on the 

covariance matrix Σ. PCA lets users reduce data dimensions through a process that maintains the most critical 

features which drive the variance in data measurements. PCA works best on datasets with numerous features that 

show correlated behavior. 
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Figure 9: Explained Variance Ratio of PCA Components 

The Figure 9 demonstrates the ratio of explained variance of principal components derived through Principal 

Component Analysis (PCA). This figure 9 demonstrates the distribution between principal components extending 

from 0 to 100 along the x-axis and the proportion of variance each component explains along the y-axis. A 

substantial margin of total variance (approximately 30%) exists within the initial several components until the rest 

of the components display minimal explanatory power thus reaching near-zero values. A small number of 

components can effectively explain the data distribution according to this behavior and therefore PCA works as 

an efficient dimension reduction method. The plot demonstrates how most of the information in the dataset can be 

preserved through selecting fundamental principal components which simplifies the training procedure by 

maintaining relevant data points. 

• RFE (Recursive Feature Elimination) 

The feature selection method called Recursive Feature Elimination (RFE) performs a sequence of operations 

that remove features one by one and constructs models using the remaining features. The algorithm removes least 

important features while ranking them according to their significance until it reaches the target number of selected 

features. The process starts by creating a model with importance evaluation then it removes the least important 

feature within each step. RFE serves as a powerful tool which enables practitioners to select features most crucial 

for prediction while removing unneeded features. The RFE process requires several sequential steps including 

feature importance calculation and least important feature elimination. 

1. The selected model receives the dataset input during the fitting process followed by a computation 

of feature importance analysis. 

2. The ranking of features takes place using importance measures such as linear model coefficients or 

tree-based model importance to eliminate the least significant feature. 

3. The method should be run repeatedly with one feature elimination at a time until the chosen number 

of features becomes achievable. 

Mathematically, RFE can be represented as: 

𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑅𝐹𝐸(𝐹𝑎𝑙𝑙)                           (9) 

Where 𝐹𝑎𝑙𝑙   represents the full set of features, and 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑   is the set of features selected after applying RFE. 
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Figure 10: Selected Features by RFE (Recursive Feature Elimination) 

The figure 10 displays the results of Recursive Feature Elimination (RFE) as a dataset feature selection 

approach that determines the main characteristics. RFE selects the features through the horizontal bar chart by 

marking them with a value of 1 for selection and 0 for non-selection. The vertical axis of Figure 10 contains feature 

selection status data using binary values where 1 indicates feature selection and 0 indicates feature exclusion. RFE 

selects features numbered 92 and 90 along with others because these features demonstrate the most predictive 

strength for the target variable. RFE performs an iterative process to eliminate features that are least important 

before complete training on relevant features occurs. 

 

• Combining PCA and RFE 

PCA integration with RFE creates an efficient approach for feature extraction. The initial application of PCA 

performs dimensionality reduction by transforming the original features into principal components that 

maintain the maximal variability. RFE applies from the reduced dimensionality space of the transformed 

dataset. 

The process works as follows: 

1. The original data needs PCA application for obtaining a set of uncorrelated principal components. 

The procedure selects components because they explain most of the data variance cumulatively. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =
∑ 𝜆𝑖

𝑘
𝑖=1

∑ 𝜆𝑖
𝑘
𝑖=1

                      (10) 

Where: 

• 𝜆𝑖 are the eigenvalues corresponding to each principal component, 

• k is the number of selected components, 

• n is the total number of components in the dataset. 

The formula demonstrates the percentage of data variance which the initial k principal components explain 

for determining the desired number of components needed to preserve information in the dataset. 

2.  After conducting dimensionality reduction on the primary components you should apply RFE to 

identify crucial components that will be used in predictive modeling. The second procedure diminishes 

unnecessary components from the analysis because these aspects lack important predictive significance. 

    The combined approach leverages the strengths of both techniques: 

• Using PCA simplifies the dataset structure through identification of significant variance and simultaneous 

elimination of feature dependency. 

• The model interpretation and operational performance both improve through RFE's ability to pick only 

crucial components from the refined feature set. 
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Figure 11: Selected Features by RFE (PCA Transformed Data) 

The figure 11 demonstrates how Recursive Feature Elimination (RFE) worked on the Principal Component 

Analysis (PCA) transformed dataset. The RFE procedure shows the selected features through 1 marks while non-

selected features use 0 marks in this horizontal bar chart. The selection status appears on the x-axis where numbers 

1 signify that features got chosen while numbers 0 show features were left out. Analysis results reveal that principal 

components with higher indices (such as 91 and 90) were chosen for selection following PCA transformation 

indicating these components have significant amounts of variance that contributes most to prediction accuracy. 

RFE becomes more effective when combined with PCA because it reduces data dimensions and selects features 

that maintain crucial information for model building effectiveness. The method helps to boost model performance 

after transformation by identifying the most important features. 

 

D. Model Building 

Model building serves as an essential pipeline stage through which one selects proper algorithms to solve 

specific problems. A model selection depends on the type of data alongside the primary problem and final 

objectives. Several machine learning models exist asynchronously to process data and automate different tasks 

proficiently. This part discusses XGBoost, Random Forest, Support Vector Machine (SVM) and Neural Networks 

as popular classification algorithms. Different machine learning models bring unique benefits to different contexts 

while we will explain their main features together with their mathematical expressions for specific use cases. 

 

• XGBoost (Extreme Gradient Boosting) 

The ensemble learning algorithm XGBoost proves exceptional at processing complex datasets with its ability 

to effectively handle large datasets. The GBM ensemble learning method works by creating weak decision tree 

models which XGBoost develops iteratively based on the errors from past models. The loss function optimization 

in XGBoost utilizes mean squared error (MSE) for regression duties and log loss for classification tasks depending 

on the defined objective. The main gradient boosting mathematical formula is: 

𝐹(𝑥)(𝑡) = 𝐹(𝑥)(𝑡−1) + 𝜂. ℎ𝑡(𝑥)      (11) 

Where: 

• 𝐹(𝑥)(𝑡)  is the model at iteration ttt, 

• ℎ𝑡(𝑥)  is the weak learner (usually a decision tree), 

• η is the learning rate (shrinkage). 

XGBoost implements enhancements to gradient boosting through the implementation of regularized 

techniques for preventing overfitting along with parallelization capabilities and handling of missing values. The 

competitive machine learning landscape has embraced XGBoost because it manages extensive datasets with 

multiple data formats through its high accuracy output. 
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• Random Forest 

Random Forest creates numerous decision trees which merge their predictions to achieve better accuracy levels 

while fighting overfitting behavior. Random subsets of data alongside selected features get used to train decision 

trees in a manner that produces diverse models which minimize variances. The prediction combines all individual 

tree outputs through an average calculation process during regression tasks while utilizing majority voting for 

classification problems. A random forest produces its final classification output y' by applying the following 

mathematical expression: 

𝑦′ = 𝑚𝑜𝑑(𝑦1, 𝑦2, … . 𝑦𝑛)                 (12) 

The prediction for the 𝑖- th tree takes the form of 𝑦𝑖  while mode represents the predominant class label which 

emerges from all tree predictions. Random Forest demonstrates strong capabilities when analyzing datasets with 

numerous dimensions and withstands overfitting issues as the number of trees increases. The high computational 

complexity makes this method difficult to handle big data while its lack of interpretability becomes a problem 

where clear explanations are necessary. 

 

• Support Vector Machine (SVM) 

The supervised machine learning model Support Vector Machines (SVM) acts as a classifier for non-linearly 

separable data during classification tasks. SVM aims to discover a hyperplane which provides maximum margin 

separation by choosing support vectors as the closest points between every classification. The SVM algorithm 

applies a kernel function to elevate data dimensions so linear hyperplanes can separate the classes. A linear SVM 

produces its decision function using the following expression: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)                      (13) 

Where: 

• w is the weight vector, 

• x is the input feature vector, 

• b is the bias term. 

When data cannot be separated through linear methods the SVM uses kernel transformation to move data into 

higher dimensional spaces for finding suitable hyperplane solutions. The common SVM kernels used in practice 

include Radial Basis Function (RBF), polynomial and sigmoid types. SVM achieves excellent results when 

operating in spaces with many dimensions while at the same time working well when problems demonstrate clear 

boundary separations. The use of SVM becomes expensive in terms of computation when dealing with extensive 

datasets while dependency on both kernel selection and hyperparameters affects its performance. 

 

• Neural Networks 

Neural Networks function as robust machine learning systems that adopt brain neural network structures as a 

blueprint. A neural network comprises various stages of linked neural cells that conduct mathematical 

transformations to input data. Neural networks function remarkably well when identifying complex nonlinear 

patterns found inside large datasets. These systems achieve deep learning capabilities through the ability to identify 

elaborate patterns as they serve crucial roles across image recognition activities and natural language processing 

methods and many additional domains using advanced learning methods. The basic formula for a neural network 

layer appears as: 

𝑎(𝑙) = 𝜎(𝑊(𝑙)𝑥(𝑙−1) + 𝑏(𝑙))                     (14) 

Where: 

• 𝑎(𝑙) is the activation of layer lll, 

• 𝑊(𝑙) 𝑎𝑛𝑑 𝑏(𝑙) are the weights and biases of the layer, 

• Σ  is the activation function (e.g., ReLU, Sigmoid, or Tanh), 

• 𝑥(𝑙−1)  is the input to layer lll. 

The functionality of neural networks extends to complex functions yet they need large training data because 

excessive modeling can occur if regularization methods are absent. The prevention of overfitting and 

generalization enhancement in neural networks depends on three techniques: dropout and batch normalization and 

early stopping. 

E. Model Optimization 

Optimizing machine learning models requires selection of hyperparameters as a premier step in the process. 

During this step we choose different values of hyperparameters that will be optimized for XGBoost as well as 

Random Forest modelsloy. All performance characteristics of a model emerge from values known as 

hyperparameters which must be established before training starts. 

For XGBoost, key hyperparameters include: 
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1. n_estimators: The number of boosting rounds or trees determines through n_estimators. An increase in 

number generally delivers better model performance at the cost of heightened chances for overfitting. 

𝑀𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝛼𝑖ℎ𝑖

𝑛

𝑖=1

(𝑥)               (15) 

where ℎ𝑖 (x) are the individual decision trees and 𝛼𝑖   are the weights assigned to each tree. 

2. learning_rate: The step size which determines model parameter updates during each iteration is 

learning_rate while n_estimators indicates the number of trees to build for boosting. The model generalizes 

better when using slow training steps although it might need many more trees for the ensemble 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 . 

3. max_depth: The maximum depth of each tree. The model can identify more intricate patterns by increasing 

depth but extremely deep trees tend to fit the data excessively. 

4. subsample: The subsample represents the portion of samples which gets utilized during tree training. Putting 

a number lower than 1 as an input helps decrease overfitting because it adds randomness to the model training 

method. 

For Random Forest, key hyperparameters include: 

1. n_estimators: The  𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠  parameter functions the same way as XGBoost by defining the quantity of 

trees within the forest. Model performance increases with higher n_estimators implementation however the 

computational load becomes heavier accordingly. 

2. max_depth: The maximum depth of each decision tree in the forest. Limiting the depth helps control 

overfitting. 

3. min_samples_split: The minimum node splitting requirement stands at 3. High values of this parameter stop 

the model from developing excessively complex branches from tiny data clusters. 

4. max_features: The maximum number of features determines how many attributes will be used to pick the 

best split. The size value for max_features usually corresponds to the square root of total feature count but 

administrators can modify it to adjust complexity levels. 

• Perform GridSearchCV 

GridSearchCV performs an exhaustive search to find the optimal hyperparameters from the specified ranges which 

have been defined previously. During its operation GridSearchCV tests all possible hyperparameter sets from 

predefined ranges and identifies the set that delivers optimal performance based on selected evaluation metrics 

(such as accuracy, F1 score, etc.).Mathematically the procedure follows the formula: 

𝜃′ = 𝑎𝑟𝑔0
𝑚𝑎𝑥𝐶𝑉(𝜃)                  (16) 

Where: 

• 𝜃′  is the set of hyperparameters that maximize cross-validation performance, 

• θ represents the hyperparameter configuration, 

The indicator CV stands for performance across validation (accuracy, precision, recall included).With k-fold 

cross-validation GridSearchCV evaluates the robustness and generalizability of the model by testing each set of 

hyperparameters. The model becomes less prone to overfitting through this process because it demonstrates high 

performance on previously unseen data. The model cross-validation process employs k sets of data splits where 

the model trains on k−1 splits while testing on the left-out set to produce averaged results. 

The evaluation of hyperparameter performances calculates an average result from all cross-validation folds: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑉 𝑠𝑐𝑜𝑟𝑒 =
1

𝑘
∑ 𝑠𝑐𝑜𝑟𝑒𝑖

𝑘

𝑖=0

                      (17) 

Where  𝑠𝑐𝑜𝑟𝑒𝑖  is the performance score on fold i. 

• Optimize Hybrid Model 

A hybrid model consists of several base models that work together to enhance predictive outcomes. Two common 

hybrid techniques exist as Voting and Stacking. The application of GridSearchCV helps us adjust the 

hyperparameters for the hybrid model that merges XGBoost with Random Forest or alternative models. A Voting 

Classifier predicts new data values through the compilation of predictions originating from individual models. 

Different weighting options of the classifiers exist to find the best performing model. The algorithm uses the 

following calculation to obtain the final prediction results: 

𝑦′ = 𝑎𝑟𝑔𝑚𝑎𝑥 (∑ 𝑤𝑖

𝑛

𝑖=0

. 𝑦′𝑖)                     (18) 

Where 𝑤𝑖   are the weights assigned to each model, and 𝑦′𝑖  is the predicted output from the i-th model. Using 

GridSearchCV lets users discover the best combination of weights at each classifier to generate the highest 

performance level. A Stacking Classifier requires base classifier predictions that serve as inputs for a subsequent 

final model which usually implements logistic regression or an alternative classification approach. Through the 
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stacker model the predictions from base models serve as input for determining the final prediction by learning 

suitable model combination. The collective model minimizes a specified loss function in order to train: 

 

𝐿 = ∑(𝑦′𝑖 − 𝑦𝑖)2

𝑛

𝑖=0

                       (19) 

Where 𝑦′𝑖   is the prediction of the stacked model, and 𝑦𝑖  is the true label. The goal is to minimize the difference 

between the predicted and actual values across all base models. 

 

III. RESULT &DISCUSSION 

A dataset containing EEG recordings from 10 mental health patient groups includes measurements of Healthy 

controls and patients experiencing Depressive, Bipolar and Panic disorders as well as Social anxiety and Alcohol 

use irregularities alongside Behavioral addiction, Posttraumatic stress, Acute stress and Adjustment disorders. The 

dataset consists of over 1,000 samples containing details which affect the dataset structure while showing brain 

wave activity across different frequency bands including delta, theta, alpha, beta and gamma bands. The data acts 

as input for machine learning models which use the EEG features for mental health classification. Predictive 

diagnostic models need to be created through brain wave pattern examinations under these conditions [11]. A 

display of performance metrics has been presented in table 2 for each model design. 

Table 2: Model Classification Metrics 

 

Model Accuracy Precision  Recall  F1-Score  

XGBoost 0.93 0.97 0.85 0.91 

Random Forest 0.87 0.95 0.79 0.84 

SVM 0.54 0.47 0.44 0.44 

Neural Network 0.37 0.29 0.29 0.28 

 

 

 

 
Figure 12: Comparison of Model Accuracies 

The accuracy levels between XGBoost, Random Forest, SVM and Neural Network machines are displayed 

in Figure 12. XGBoost achieves the highest accuracy from the plotted data followed by Random Forest which 

demonstrates good accuracy performance. The SVM model demonstrates average model performance but Neural 

Networks perform the least effectively among all models. Model evaluation shows XGBoost and Random Forest 

(tree-based model) attain better results than the other models for this dataset. The performed analysis demonstrates 

XGBoost as the most suitable model for this reconstruction task yet the Neural Networks require optimization to 

achieve optimal results. 
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Figure 13: Confusion Matrix Comparison for XGBoost, Random Forest, SVM, and Neural Network 

The confusion matrix analysis presents data about XGBoost, Random Forest, SVM along with Neural 

Network using figure 13. The seven classes undergo performance comparison through each matrix which displays 

predicted label outcomes against actual labels. The red diagonal elements of the confusion matrices represent 

correct classifications for each class type but the misclassifications appear as off-diagonal elements. XGBoost and 

Random Forest show strong performance, with high values along the diagonal, particularly for the correct class 

(class 3, 4, 6). The correct predictions of SVM and Neural Network are observed in the data while these models 

display higher misclassified instances within classes 0 and 6. The models' evaluation through these matrices 

demonstrates their capabilities and weaknesses which directs developers to focus on decreasing classification 

errors across particular categories.  
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Figure 14: ROC Curves Comparison for XGBoost, Random Forest, SVM, and Neural Network 

This figure 14 depicts Receiver Operating Characteristic (ROC) curves which evaluate XGBoost, Random 

Forest, SVM and Neural Network models across 6 different classes. The ROC curves demonstrate the performance 

balance of TPR against FPR using different threshold parameters through which AUC scores are identified. 

According to this figure 14 XGBoost with high AUC values illustrates better performance compared to Random 

Forest and surpasses SVM and Neural Network with their lower scores. The diagonal dashed line shows the 

prediction results of what a random classifier would achieve. ROC curves provide visual representation of model 

discriminative power for classifying different classes through this figure.  

An optimized model was developed by integrating XGBoost and Random Forest models through 

GridSearchCV-based hyperparameter search. A hybrid model was developed with the purpose of combining the 

specific advantages of both models to improve overall prediction accuracy. The XGBoost hyperparameter 

optimization practice included tuning n_estimators alongside learning_rate and max_depth and subsample while 

Random Forest optimization centered on n_estimators along with max_depth and min_samples_split and 

max_features. The implementation of GridSearchCV performed an extensive search across pre-defined parameter 

combinations for the models after which best hyperparameters were identified through cross-validation. The 

technique enables adjustments to each model's configurations until the hybrid component reaches its peak 

performance while minimizing overfitting problems and enhancing general accuracy rates. 
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Figure 15: Comparison of Model Accuracies (Hybrid Classifier) 

This Figure 15 compares the accuracy of three hybrid classification models: Stacking Classifier, Voting 

Classifier (Hard), and Voting Classifier (Soft). The Stacking Classifier demonstrates an optimal accuracy level 

through its implementation of combined multiple predictive models. Green-colored Voting Classifier (Hard) 

demonstrates an impressive performance by analyzing multiple prediction outcomes to determine the majority 

class. The Voting Classifier (Soft) pictured in red operates through probability-based voting for prediction 

purposes and delivers results comparable to other methods. The stacking model represents the best performance 

outcome among multiple classifiers because of its combined optimization approach. 

 
Figure 16: GridSearchCV Results Scatter Plot 

Figure 16 demonstrates the GridSearchCV hyperparameter analysis which depicts the connection between 

the two hyperparameters C and max_iter through scatter plot visualization. A point in this graphic delivers unique 

pairings of these hyperparameters and their respective test score means show through color presentation. The 

performance indicators are arranged in a blue-to-red color spectrum where red denotes superior accuracy levels to 
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blue which indicates lower accuracy outcomes. The plot enables researchers to select the most efficient 

combination between C and max_iter values to enhance the model performance and maximize mean test scores. 

 
Figure 17: Multiclass ROC Curve 

The Figure 17 illustrates the Receiver Operating Characteristic (ROC) Curve for a multiclass classification 

problem. The figure shows True Positive Rate versus False Positive Rate measurements for all seven categories 

from Class 0 through Class 6. Every class exhibits a perfect classification performance according to their AUC 

(Area Under the Curve) score of 1.00. A random classifier's output is presented through the dashed diagonal line 

that appears in the graph. The ROC curve shows how accurate the classification method detects different classes 

between each other while better performances result in higher curves. 

 
Figure 18: Confusion Matrix for Model Evaluation 
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The Figure 18 illustrates performance assessment of a classification model through its true class labels 

compared to predicted labels within a 7-class classification scenario. Each row stands in for true class assignments 

and every column represents predicted class outputs. The most accurate predictions belong to Class 3 since the 

confusion matrix shows 56 correct matches along the diagonal. A total of two wrong predictions exist where data 

from Class 1 gets classified as Class 2 in the analysis. The right part of the illustration uses a color spectrum to 

show the frequency distribution of each category where darker blue tones demonstrate higher frequency numbers 

that help track performance across all classes.  

Table 3: Model Performance Comparison with Hybrid Classifier 

Model Accuracy Precision  Recall  F1-Score  

Hybrid Classifier 1 0.99 0.99 0.97 

XGBoost 0.93 0.97 0.85 0.91 

Random Forest 0.87 0.95 0.79 0.84 

SVM 0.54 0.47 0.44 0.44 

Neural Network 0.37 0.29 0.29 0.28 

 

 

This table 3,evaluation presents a comparison of four classification methods which include XGBoost alongside 

Random Forest and SVM and Neural Network and the Hybrid Classifier that unites their individual strengths. The 

presented metrics consist of Accuracy in combination with Precision and Recall and F1-Score. XGBoost and 

Random Forest demonstrate competent results but XGBoost attains the highest accuracy rating at 0.93 and the 

Hybrid Classifier surpasses all other models by obtaining exceptional scores of 1.00 for each metric. Such results 

show how the hybrid model optimization strategy achieves its intended outcome of superior performance. 

 

IV. CONCLUSION 

 

The researchers assessed different machine learning algorithms XGBoost, Random Forest, SVM, and Neural 

Network which used EEG data to identify mental health conditions. XGBoost exhibited superior performance 

compared to other models by achieving scoring 0.93 accuracy, 0.97 precision and 0.85 recall and 0.91 F1-score. 

Random Forest demonstrated optimal performance levels through an accuracy of 0.87 together with precision at 

0.95 and recall at 0.79 and F1-score at 0.84. The SVM and the Neural Network model struggled during the 

evaluation since the SVM reached accuracy at 0.54, precision at 0.47 while the F1-score came to 0.44 while the 

Neural Network achieved accuracy only at 0.37 and precision of 0.29 along with an F1-score of 0.28. To enhance 

the model's performance a Hybrid Classifier running XGBoost with Random Forest was created. The Hybrid 

Classifier outperformed all single models by reaching an outstanding outcome with perfect accuracy (1.00), 

precision (0.99), recall (0.99) and F1-score (0.97). The united strengths of various models enable optimal 

performance enhancement when their powers are combined for classification purposes. 

Further development of the model would require implementing extra feature extraction techniques that 

combine advanced EEG signal processing and temporal feature integration. Deep learning network evaluations 

involving Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) should be deployed 

to increase model performance for sequential datasets. The model robustness can be enhanced when applying 

ensemble methods and cross-validation while conducting hyperparameter tuning as optimization technique. A real-

time hybrid classifier deployment in clinical mental health monitoring setups presents itself as a possible practical 

utilization of this research to provide early evaluation opportunities for diagnosis and intervention. 
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