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Abstract  

A malignant tumor of plasma cells and multiple myeloma has complicated the disorders. These 

multiple myeloma images were taken microscopically. The process is time-consuming and labor-

intensive, so it results in some noisy images. Identifying cancer cells is difficult and provides 

less accuracy due to noise in the images. To overcome the above problem, the Softmax Logical 

Gated Convolutional Neural Network (SLGCNN) approach was applied. The first step is to filter 

the multiple myeloma by implementing a Median Image Filter based Edge Detection (MIFED). 

The second stage divides the multiple myeloma preprocessed images using Screen Cluster Area 

Segmentation (SCAS) enhancing image clarity by eliminating irrelevant parts. After 

segmentation, we used Recurrent Feature Elimination (RFE) to achieve the selection of an 

essential set of features to decrease the number of features making processing faster without a 

loss of efficiency. Moreover, a SLGCNN is employed for the final classification of the refined 

features, due to its capacity for logical gating that enables the distinction between cytoplasm and 

nucleus cells with high accuracy. This methodology solves the problems of the and makes this 

approach to detecting multiple myeloma computationally efficient and clinically valid. The 

proposed framework could contribute to early intervention and improve the results of multiple 

myeloma patients by increasing the reliability of diagnosis. The proposed method archives a high 

accuracy of 96.8% compared to the other systems.   

Keywords: Multiple Myeloma, Microscopic Images, Median Image Filter, Edge Detection 

Area Segmentation, Cancer Cell, Clinical Diagnosis, Cytoplasm and Nucleus Differentiation 

 

1. INTRODUCTION 

In the past, multiple myeloma (MM) was an incurable B-cell malignancy characterized by the 

proliferation and growth of clonal plasma cells in the bone marrow [1]. When MM is identified, 80% of patients 

have osteolytic lesions. The axial skeleton's proximal long bones and vertebrae are the most often impacted.  In 

recent years, imaging techniques and improved medical and non-pharmacological treatments have improved the 

performance of the underlying pathophysiological framework to protect the patient affected by myeloma-

associated bone disease (MBD), which can have a profound impact on morbidity and quality of life. According to 

the Visual Image Analysis and Processing Department, leukemia is defined as the percentage of red or white blood 

cells in a plasma sample [2]. etiquette-free methods. 

MM is an incurable hematological cancer caused by the clonal growth of plasma cells. The bone marrow 

frequently contains malignant plasma cells, which generate aberrant antibodies (M protein). In economically 

developed nations, the lifetime risk of MM is between 0.6 and 1%, and over 140,000 cases are diagnosed globally 

each year. Patients are identified based on conventional diagnostic methods for MM, such as clinical analysis, 
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bone marrow biopsy, and radiological evaluation [3-5]. As a result, detecting test results while implementing new 

techniques to achieve a quick, economical, and accurate identification of MM is time-consuming and costly. In 

recent years, laser-induced breakdown spectroscopy (LIBS) has been used in a variety of biomedical materials, 

including tumor tissues, soft tissues, and bioaerosols. A new method in biomedical applications is the combination 

of machine learning methods and blood sample-based LIBS for the identification and diagnosis of malignant 

tumors. These tumors are characterized by monoclonal immunoglobulins and the buildup and clonal growth of 

cancerous plasma cells in the bone marrow. 

MM is the second most common hematologic malignancy among diseases involving abnormal plasma 

cells. Due to the development of immunomodulators and proteasome inhibitors, the survival rate of MM patients 

has improved significantly over the past decade. Comprehending the underlying mechanisms and novel targets 

causing disease development and recurrence in MM is crucial to enhancing treatment and prognostic prediction 

[6-7]. The treatment of MM has changed in recent years with the introduction of proteasome inhibitors, 

immunomodulators, histone deacetylase inhibitors, and monoclonal antibodies. 

Subsequently, it has been demonstrated that MM cells and cells in the surrounding bone marrow 

environment react to medications when myeloma cells' biological behavior changes. Direct adhesion contributes 

to drug resistance by leading to the emergence of survival signals [8]. Clarifying the molecular systems involved 

in Cell Adhesion-Mediated Drug Resistance (CAM-DR) may support identifying new therapeutic strategies to 

address this issue. Furthermore, stroma-induced defences, secreted soluble factors, and Bone marrow stromal cells 

(BMSCs) contribute to drug resistance in associated MM. 

 
Figure 1. Diagram of the phases and its working process of the proposed method 

 However, lytic bone lesions, which result in pathological fractures and excruciating pain, are an indicator 

of bone disease in MM patients. Moreover, compared to physiological bone transformation, bone creation takes 

place in areas of bone resorption. Severe dysfunction of osteoblasts is marked by increased local osteolysis or 

suppression in areas adjacent to MM Bone Disease (MMBD) cells. Systemic bone loss and nonhealing lytic bone 

lesions are the outcomes of this combo. Additionally, MMBD can lead to bone fractures and rapid tumor growth, 

both of which decrease survival rates [9-10]. Similarly, conventional testing methods require a lot of resources, 

which makes extending challenging. In addition to restricting the capacity to expand diagnostic facilities in remote 

areas, they necessitate costly medical infrastructure and skilled personnel to inspect. 
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2. LITERATURE SURVEY 

 Complete blood cell counts and myeloma plasma cell counts on aspirate slide images are two techniques 

for MM detection in bone marrow [11]. These manual detection methods require a lot of time, and the pathologist's 

experience determines the final result. 

 The novel proposed a new identification technique for myeloma-infected plasma cells [12]. According 

to experimental results on the SegPC dataset, the suggested deep learning (DL) approach performs better in 

myeloma diagnosis and detection than other competing approaches. 

Using existing MM imaging data, a convolutional neural network (CNN) model is built and evaluated 

by inputting classified image data to verify its accuracy [13]. Furthermore, CNN improves diagnostic performance 

by leveraging the depth of field to detect medical images. 

 The effect of different chemotherapy regimens on patient prognosis was investigated using a suggested 

Regional CNN (RCNN) model [14]. It was established that various chemotherapy regimens affected the prognosis 

of patients utilizing a DL-based model segmented myeloma CT images. 

 The novel proposed a two-stage DL model that incorporates bone segmentation and subsequent damage 

detection. Correspondingly, it suggests "You Look Only One" (YOLO) models for damage detection and bone 

segmentation. 

Using accurate and rapid segmentation techniques, doctors can diagnose diseases and treat patients more 

effectively and quickly [16]. Algorithms like a multilayer perceptron and a novel composite histogram-based 

smooth-covered rough k-means clustering technique are used in preprocessing. 

The author [17] described Machine Learning (ML) algorithms designed for MM clinical and RNA 

sequencing data collected by the CoMMpass consortium. They developed a random forest model with 50 variables 

that consistently predicted overall survival across both training and validation sets. 

A hybrid multi-objective and category-based optimization technique is used to adaptively optimize 

hyperparameters in the deep CNN architecture that was described [18]. However, because a pathologist must 

identify the specimen, manual specimen identification is delicate and time-consuming, delaying prompt diagnosis 

and treatment. 

Then, an optimized Dense CNN (DCNN) architecture is used to train the model and eventually predict 

the type of cancer within the cell [19]. Models are trained on cell images, first pre-processing images to extract 

the optimal features. 

The author [20] proposed a suitable framework for MM diagnosis using microscopic blood cell image 

data, which addresses our proposed key challenges of visual similarity between healthy cell types and cancer cell 

types and label noise.  

Table 1. Multiple Myeloma Based on Image Processing using machine learning  

Author Classification Performance 

Evaluation 

Limitation Accuracy 

Zbigniew 

Omiotek 

[21] 

K-Nearest Neighbour 

(K-NN) 

positive 

predictive value, 

Sensitivity, 

accuracy 

When the healthy cells are 

replaced, the bone is 

destroyed. 

93% 

Shobana M 

[22] 

Fuzzy Support Vector 

Machine (FSVM) 

Accuracy, 

Sensitivity, 

Specificity 

The majority of patients in the 

advanced stage become 

resistant to therapy. 

91.5% 

Guilal,[23] Random Forest (RF) Accuracy The diagnostic process is 

time-consuming since it is 

hard to identify in its early 

stages. 

72% 

Cai [24] SVM  sensitivity, 

specificity 

The prevalence of multiple 

myeloma is rising worldwide.  

77% 

Aarthy, R 

[25] 

 Gated CNN 

(GCNN)  

Precision, recall 

and F-measure 

Because of the noise in the 

images, conventional 

methods are unable to detect 

cancer cells. 

83% 

Yu [26] Mask Region–Based 

CNN (Mask R-CNN) 

Recall, Precision An automated differential 

technique that can be used in 

clinical settings is not 

provided. 

88% 

Xiong X [27] Artificial Neural 

Networks (ANN) 

Matthew’s 

correlation 

When bone marrow analysis 

becomes part of medical 

0.648% 
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coefficient 

(MCC), 

sensitivity 

practice, it causes fractures in 

patients. 

Ubels J [28] Simulated Treatment 

Learned Signatures 

(STLsig), 

Sensitivity  Proteasome medicine's 

possible advantages for MM 

patients must be evaluated. 

0.91% 

 

Patients with advanced myeloma had more stage 1 features (p < 0.02), yet stage 2 "Grey Level Co-Occurrence 

Matrix (GLCM) clusters were significant." Histology and serological factors associated with myeloma exhibit a 

strong correlation with CT structural features applied to non-calcium bone marrow imaging [29]. The author [30] 

discussed the overall accuracy when training using the optimal Dense CNN (DCNN) model, with a final prediction 

rate of 91.2% for intracellular cancer types.  

 

3. MATERIALS AND METHODS 

In this section we briefly described about the proposed method. In this proposed method we execute the 

four phases: preprocessing, segmentation, feature selection, and classification. In this first phase we use MIFED, 

in the second phase we SCAS, at the third phase RFE, and the final phase we use SLGCNN method.  For classify 

the multiple myeloma with high accuracy we use SegPC-2021-dataset, and it is taken from Kaggle website.  

 
Figure 2. Architecture diagram of the of the proposed method 

In figure 2 we illustrate the architecture diagram of the deployed methodology. The MIFED technique 

removes high-frequency noises like salt and pepper noise, which makes it appropriate for improving image quality, 

especially in medical imaging, without improving the smoothing of important structures.  SCAS is used to identify 

and isolate specific regions in medical images that may include cancerous cells in order to segment images of 

multiple myeloma. The SCAS technique is a system for segmenting images of multiple myeloma into smaller, 

easier-to-manage portions or "clusters" based on specific criteria or attributes. The RFE technique, which reduced 

the amount of features and speeds up processing with no loss of efficiency, is then used to pick a critical set of 

features. For the final classification of the enhanced features, an SLGCNN is used because of its ability to perform 

logical prohibiting, which allows for an high level of accuracy in differentiating between cytoplasm and nucleus 

cells. 
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3.1 Dataset Description 

We employ the SegPC-2021 dataset, obtained from the Kaggle website, to precisely categorize multiple 

myeloma. The training set, validation set, and final test set, which are all used for the challenge, are contained in 

the data folder. The GT is not available for the test set, but it is for the train and validation sets. Using bone marrow 

aspirate slides, microscopic pictures of patients with Multiple Myeloma (MM), a kind of white blood malignancy, 

were taken. Plasma cells, or cells of interest, need to be segmented, and slides were stained with Jenner-Giemsa 

stain. Figure 3 shows example pictures of the cytoplasm and nucleus of multiple myeloma cells. 

  

 

 

 

 

 

 

 

 

Figure 3(a) Sample image of cytoplasm cell    Figure 3 (b). Sample image of nucleus cells 

There are 298 images in throughout the dataset. The GT for the cell of interest has been supplied in 

subfolder y (under the train folder) for every image in subfolder x (under the train folder). Although GT is only 

available for cells of interest, there may be more cells as well. Only the cells of interest will be used to test 

performance during evaluation. As a result, the algorithm's performance on the cells of interest will be the sole 

basis for ranking. Only the cells of interest that we have pre-identified will be taken into account by the evaluation 

algorithm.  

 

3.2 Median Image Filter based Edge Detection (MIFED) method 

The median image filter, is one of the most precious tools for removing the noise from the images. The 

median filter is another method of FFT that works by sliding a window (kernel) over the image and replacing each 

pixel in the window with the value of the median of the pixels in that window when the images of SegPC-2021-

dataset were undergoing preprocessing. This process assists in preserving edges in addition to removing salt and 

pepper noise and other high-frequency noises, and that is why it is appropriate, especially in medical imaging, to 

improve image quality without enriching the smoothening of essential structures. The MIFED method is computed 

through the equation 1, 

𝑗(𝑥, 𝑦) = 𝜇𝑖(𝐼, 1):    (𝐼, 1) ∈ 𝑈(𝑥, 𝑦)       (1) 

Let assume, 𝐼 as image, 𝑥, 𝑦 as the position  𝑗(𝑥, 𝑦) as output pixel price at place, 𝜇 as median, and 𝑈 as 
the predetermined window length. This equation enables to do away with salt and pepper noise from the 

microscopic images even as preserving the important diagnostic facts. After that while decreasing noise inside the 

image the hold the edges and information through equation 2, 

𝑗(𝑥, 𝑦) = 𝑈(𝑥, 𝑦) ∑ 𝑚 = −𝑟 ∑ 𝑜 = −𝑟𝑓𝑞(𝑥−𝐼,𝑦−𝑜)𝑓𝑚(𝑖(𝑥,𝑦)−𝑖(𝐼,0))𝑖(𝐼.𝑜)
    (2) 

Let assume, 𝑚, 𝑜 as variety weighting function, 𝑓𝑞(𝑥, 𝑦) as the spatial weighting feature.  The equation 

2 is used to hold edges and info within the image while reducing noise. In equation 3 we enhance the first-rate of 

the microscopic images, 

𝑈(𝑥, 𝑦) = ∑ 𝐼 = −𝑟 ∑ 1 = −𝑟𝑓𝑞(𝑥−𝑁,𝑦−𝑜)𝑓𝑚(𝑖(𝑥,𝑦)−𝑖(𝑘,𝑜))
     (3) 

This equation enhances the first-rate of the microscopic images and decorate the overall performance of 

the SegPC-2021-dataset images. By the following equation 4 we detect the edges, 

𝐷(𝑖, 𝑗) = √(𝐷𝑖)2 + (𝐷𝑗)
2
         (4) 

Let assume, 𝑖, 𝑗 as pixel, (𝐷𝑖)2 as gradient addition horizontal axes, and (𝐷𝑗)
2
 as vertical axes, after 

detect the edges we compute the gradient path through equation 5, 

𝜃(𝑖, 𝑗) = 𝑡𝑎𝑛(−1)
(

𝐷𝑗(𝑖,𝑗)

𝐷𝑖(𝑖,𝑗))

         (5) 

It extends the basic Sobel operator by adopting a scale-area technique, which enhances the recognition 

of edges by smoothing the picture at some Gaussian clear-out at one or additional scales. This enables to reduction 

of the noise inside the image and boosts the brink detection efficiency. The scale area is applied after overlaying 

the picture with a Gaussian clear-out at distinctive scales, after which determining the gradient significance and 

direction at each scale. In the case of the SegPC-2021 dataset, employing a MIFED assists in enhancing the overall 

nature of images for the target disease, and riding such deep learning form features related to the disease. 
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3.3 Screen Cluster Area Segmentation (SCAS) method 

For multiple myeloma image segmentation, Screen Cluster Area Segmentation (SCAS) entails locating 

and separating the precise areas in medical pictures that might contain malignant cells. The SCAS approach 

divides the image into smaller, more manageable segments or "clusters" according to particular criteria or 

qualities. This method allows for more precisely identifying and isolating the regions of interest linked to multiple 

myeloma cells or lesions. In equation 6 we maximizing the intensity values in the image, 

𝑆 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠{𝑄(𝑠)}         (6) 

Let assume, 𝑆 as threshold, 𝑄(𝑠) as the intensity values in the image. It is used to separating background 
and potential multi myeloma clusters. It is often determined via algorithms like Otsu’s method. By following the 

equation 7 we classify the pixels, 

𝑚𝑖𝑛 ∑ ∑ ‖𝑖 − 𝜇𝑥‖2
𝑖∈𝐷𝑥

𝑘
𝑥=1         (7) 

Let assume, 𝑖 as pixels, 𝐷 as cluster, 𝜇𝑥 as centroid of each 𝐷, and 𝑘 as k-means clustering partitions 
pixels. This equation is used to highlight possible myeloma regions based on similarity in pixel intensities. After 

highlight the possible myeloma regions we compute the region growing based on segmenting cluster areas through 

equation 8, 

𝑅 = ⋃ {𝑞|‖𝑋(𝑞) − 𝑋(𝑟)‖ < 𝜖}𝑞∈𝑁        (8) 

Let assume, 𝑅 as region, 𝑋 as intensity, 𝑟 as initial seed, and 𝜖 as threshold. This equation is used to 
isolate contiguous areas associated with multiple myeloma lesions. By following we set the level for boundary 

detection through equation 9, 
𝜕∅

𝜕𝑠
= 𝛿(∅) (𝛼∇. (

∇∅

|∇∅|
) + 𝛽)        (9) 

The level set function ϕ evolves over time s to detect boundaries of regions. This equation balances 

contour smoothing (first term) with boundary adherence (second term), identifying precise borders around clusters 

in the segmented image. In equation 10 we perform the post-segmentation morphological operations, 

𝑋𝑐 = (𝑋 ⊖ 𝐸) ⊕ 𝐸         (10) 

Let assume, 𝑋 as input image, 𝐸 as structuring element, ⊖ as erosion, and ⊕ as dilation. In this equation 

⊖ and ⊕ are applied to refine segmented areas by removing small artifacts or filling holes, where E is a 

structuring element. These helps clean up the final segmented clusters, enhancing segmentation accuracy for 

multiple myeloma areas. Then we compute the Dice Similarity Coefficient 𝐺 through equation 11, 

 𝐺 =
2|𝐼∩𝐽|

|𝐼|+|𝐽|
          (11) 

Here, 𝐼, 𝐽 is represent for sets of pixels in the segmented region and the ground truth. The equation 11 is 
a common metric used to evaluate the accuracy of segmentation. It measures how well the segmented clusters 

match with true multiple myeloma regions, providing a score from 0 (no overlap) to 1 (perfect overlap).  

 

3.4 Recurrent Feature Elimination (RFE) method 

RFE is an iterative approach to choosing features since it involves recycling and iteratively using the 

feature selection model repeatedly. Based on the image data, a predictive model is developed to assess the 

importance of each of the features in question. They, of course, could be pixel intensities, texture patterns, or other 

extracted higher-level features. In this RFE it seems that the features are ordered according to the relevance, it 

often turns out the numbers right from the weights, coefficients or contribution scores. The feature that contributes 

the least to the model is removed, and the process reiterates until all the features are removed and the model is 

rebuilt. The process continues till the best set of features is brought into focus in order to eliminate overlapping 

features and also increase the speed of computational ability and generalization of the best model. RFE is most 

suitable for medical image analysis tasks such as multiple myeloma detection since it assists the model in paying 

attention to the relevant features and consequently increases the model’s accuracy and interpretability. In equation 

12 we compute the feature importance score, 

𝑋(𝑓𝑥) =
𝜕ℒ

𝜕𝑓𝑥
          (12) 

Let assume, 𝑋 as importance score, 𝑓𝑥 as feature, 
𝜕ℒ

𝜕𝑓𝑥
 as loss function, and 

𝜕ℒ

𝜕𝑓𝑥
 as gradient of the ℒ with 

respect to the 𝑓𝑥. The feature importance is calculated based on the contribution of each feature to the predictive 

model. This equation compute how sensitive the ℒ is to changes in 𝑓𝑥, indicating its significance. By following 

we perform the criterion of the recursive elimination through the equation 13, 

𝐸(𝑖) = {𝑓𝑥|𝑋(𝑓𝑥) ≤ 𝑇(𝑖)}        (13) 

Let assume, 𝐸 as eliminated features, 𝑖 as iteration, 𝑇 as threshold it is minimum importance score for 
retaining a feature in 𝑖. In this equation in each iteration, features with the least importance scores are eliminated. 
Then, it removes less relevant features iteratively to refine the feature subset. After eliminated the least importance 

scores, we retraining the model through equation 14, 
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𝑗̂ = 𝑓(𝑋𝑖)          (14) 

Let assume 𝑗̂ as predicted output, 𝑓 as model, 𝑋𝑖 as reduced feature set after the 𝑖. The equation is 
adjusting to the new feature subset, improving the reliability of feature importance scores. After improving the 

reliability of feature importance scores, features are ranked based on their elimination order or final importance 

scores, so we ranking the features through equation 15, 

𝑅(𝑓𝑥) = 𝑖(𝑓𝑥)          (15) 

In this equation assigns higher ranks to features retained longer, indicating greater importance. By 

following we stopping the criterion through equation 16, 

∆𝑃 < 𝜖          (16) 

Let assume 𝑃 as performance, ∆𝑃 as change in performance metric between successive 𝑖, and 𝜖 as 
tolerance 𝑇. The process stops when a predefined number of features remain or performance metrics. This equation 
avoids over-elimination and ensures the optimal subset of features is selected. To choose the best-performing 

feature subset on the provided data, RFE iteratively removes irrelevant features and assesses model performance 

via cross-validation. This reduces the possibility of overfitting while improving the model's ability to generalize. 

 
Figure 4. Flowchart Diagram of the RFE method 

In figure 4 we illustrate the work flow diagram of the RFE method. In this RFE method we first input 

the preprocessed dataset which containing multiple myeloma images. After we evaluate the feature importance 
 

Start 

Input the preprocessed 

dataset 

Evaluate the 𝑋(𝑓𝑥) 

Perform 𝐸(𝑖) 

Residual 

features  1 

NO 

Yes 

Retrain the 𝑓 

Ranking the features  

Stop the criterion  
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score 𝑋(𝑓𝑥),  then perform the criterion of the recursive elimination, if residual features is equal to 1 retrain the 
function, else again evaluate the 𝑋(𝑓𝑥). After retrain the model assigns higher ranks to features retained longer, 
indicating greater importance. Last, we stopping the criterion to avoids over-elimination and ensures the optimal 

subset of features is selected.  

 

3.5 Softmax Logical Gated Convolutional Neural Network (SLGCNN) method 

  The SLGCNN is actually a modification of CNN, particularly for improving the performance of multiple 

myeloma as an image classification algorithm. SLGCNN is a deep learning-based architecture that extends the 

basic CNN framework through a logical gating mechanism within the hierarchical architecture of CNN to 

selectively gated feature maps based on logical conditions instead of storing them. The model applies Softmax 

activation for the prediction mechanism to enable the classification of multiple myeloma images using probability 

functions. For the raw network predictions coming out from the previous layers of the same architecture, 

SLGCNN was applied in the final output layer. It makes it possible to do the multi-class classifications since it 

makes the total of the output probabilities equal to 1. SLGCNN uses gate control from various layers and integrates 

them to have a holistic view of image input. The final layer is utilized to classify the image as normal or multiple 

myeloma-affected or other categories depending on the application. In the equation 17 we perform the convolution 

operation which is used to extract the features through the used dataset, 

𝑐𝑥𝑦
𝑝

= ∑ ∑ 𝑖(𝑥+𝑚)
(𝑝−1)

. 𝑢𝑚𝑛
(𝑝)

+ 𝑏(𝑝)𝑁
𝑛=1

𝑀
𝑚=1        (17) 

Let assume, 𝑐 as output feature map, (𝑥, 𝑦) as position, 𝑝 as layer, 𝑖 as input image, 𝑢 as kernel weight, 
𝑀, 𝑁 as size of 𝑢, and 𝑏 as bias term. This equation extracts spatial features from input images. After extracts the 
spatial features we perform logical gating mechanism through equation 18, 

ℎ(𝑖) = 𝜎(𝑢ℎ. 𝑖 + 𝑏ℎ)         (18) 

Here, ℎ is represent for the gating function, and 𝜎 for sigmoid activation. The logical gating mechanism 
controls the flow of information by mimicking logical functions like AND, OR, and XOR to enhance feature 

selection. By following we perform the classification layer and also called as Softmax activation function through 

the equation 19, 

𝑄(𝑗𝑥|𝑖) =
exp(𝑐𝑥)

∑ exp(𝑐𝑥)𝐷
𝑦=1

         (19) 

Let assume, 𝑄 as Probability, 𝑥 as class, and 𝐷 as number of classes. This equation is used to logits (raw 
scores) into probabilities for each class. After converts raw scores into 𝑄 we perform the loss function in equation 
20, 

ℒ = −
1

𝑁
∑ ∑ 𝑗𝑥𝑦

𝐷
𝑦=1 log (𝑄(𝑗𝑦|𝑖𝑥))𝑁

𝑥=1       (20) 

This equation is used to measures the difference between the predicted probabilities and the actual labels. 

In Algorithm 1 we perform the pseudocode of the SLGCNN method,  

Algorithm 1: 

Input: Set the raw images 

Output: Detection of cytoplasm and nucleus cells of multiple myeloma image 

Start 

For each 𝑅(𝑓𝑥) in image 
Use RFE features as input to the SLGCNN 

Perform 𝑐𝑥𝑦
𝑝
 to extract the features form the used dataset 

Accomplish the ℎ(𝑖) to enhance feature selection 

End For 

Execute the Softmax activation function  

𝑄(𝑗𝑥|𝑖) =
exp(𝑐𝑥)

∑ exp(𝑐𝑥)𝐷
𝑦=1

 to convert raw scores into probabilities of each class 

Evaluate ℒ  
Measures the difference between the predicted probabilities and the actual labels 

Detect the cytoplasm and nucleus cells 

Stop 

The presented approach based on the SLGCNN can become a valuable tool for helping doctors diagnose 

multiple myeloma and increasing the probability of early diagnosis for patients. The SLCNN had higher accuracy 

because of the logical gating mechanism it used. The methodology proposed here is valuable as the means of 

developing multiple myeloma image classification tasks. The SLGCNN built with a logical gated type is 

appropriate for learning and classification because it can effectively solve the difficulties and variants in multiple 

myeloma images. The softmax activation layer used on the output layer improves the interpretability of 
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probabilities for the sake of giving more clinically relevant decisions. The use of the proposed SLGCNN for 

multiple myeloma prediction has shown accurate and reliable performance in the detection of the same.  

 
Figure 5. Flowchart Diagram of the SLGCNN method 

 

Start 

Initialize the raw images 

of multiple myeloma 

For each 𝑅(𝑓𝑥) in 

image 

Utilized RFE features 

as input 

Extract the features 

through 𝑐𝑥𝑦
𝑝

 

Enhance the feature 

selection through ℎ(𝑖) 

Execute 𝑄(𝑗𝑥|𝑖) 

Convert raw scores into 

probabilities 

Evaluate ℒ 

 

Predicted Outcome 

  

Stop 
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In Figure 5, we illustrate the workflow diagram of the SLGCNN method. In this method, we first 

initialize the raw images of multiple myeloma to perform the SLGCNN method. For each 𝑅(𝑓𝑥) in the image, use 
the RFE features as input, then extract the features through 𝑐𝑥𝑦

𝑝
. After removing the image, we progressed with 

the feature selection through ℎ(𝑖). Then, we perform the 𝑄(𝑗𝑥|𝑖) to convert the raw scores into probabilities. Then, 
we measure the difference between the predicted probabilities and the actual labels through the ℒ, after which we 
evaluate the L to get the expected outcome, which is cytoplasm and nucleus cells. 

 

4. Result and Discussion 

 In this section, the proposed SLGCNN method for myeloma prediction using a bone cancer dataset is 

evaluated using the dataset's incidence and features. Furthermore, the features in the dataset were selected and 

analyzed based on previous techniques such as FSVM, ANN, and DCNN and the proposed SLGCNN method for 

multiple myeloma detection. Moreover, bone cancer can be diagnosed by using classification features that 

represent each image type in the dataset. The performance of the proposed system was evaluated based on the 

predicted and actual results using a confusion matrix to construct the sensitivity, specificity, F1 score, accuracy, 

and time complexity for bone cancer prediction. 

Table 2. Simulation Parameter 

Parameters Value 

Dataset Name SegPC-2021-dataset 

No of Images 575 

Training  298 

Testing 277 

Tool Jupyter Notebook 

Language Python 

 

Table 3. Performance in Sensitivity 

No of Images FSVM in% ANN in% DCNN in% SLGCNN in % 

143 56 59 63 66 

286 63 66 68 71 

429 67 69 72 75 

572 71 73 75 77 

 

 
Figure 6. Analysis of Sensitivity 
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Figure 6 and Table 3 shows that bone cancer can be predicted using a dataset through image processing 

using sensitivity analysis. The proposed SLGCNN method can classify MM disease images based on the images 

in the dataset. Furthermore, the proposed SLGCNN has been shown to have a rate of 77% compared to other 

techniques. Similarly, the sensitivity analysis rates of the proposed method and previous techniques, such as 

FSVM, ANN, and DCNN, have been described as 71%, 73%, and 75%, respectively. 

Table 4. Performance in Specificity 

No of Images FSVM in % ANN in % DCNN in % SLGCNN in% 

143 63 66 69 73 

286 67 70 74 77 

429 71 75 78 81 

572 75 79 82 85 

 

 

 
Figure 7. Analysis of Specificity 

Figure 7 and Table 4, indicates that bone cancer can be predicted using imaged datasets with specificity 

analyses. The proposed SLGCNN method can classify multiple myeloma disease images based on images in the 

dataset. Furthermore, the proposed SLGCNN has been demonstrated to have an accuracy of 85% compared to 

other methods. Similarly, the specificity analysis rates of the proposed method and the conventional techniques, 

such as FSVM, ANN, and DCNN, are 75%, 79%, and 82%, respectively. 

Table 5. Performance in F1-Score 

No of Images FSVM in % ANN in % DCNN in % SLGCNN in% 

143 66 69 74 79 

286 70 76 79 85 

429 75 79 85 89 

572 79 84 89 92 
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Figure 8. Analysis of F1-Score 

Figure 8 and Table 5 shows that image datasets with F1 score analysis can be used for bone cancer 

prediction. The proposed SLGCNN method can classify multiple myeloma disease images based on images in the 

dataset. Also, the proposed SLGCNN has been demonstrated to have 92% accuracy compared to other methods. 

Similarly, the F1-score analysis rates of the proposed method and conventional methods such as FSVM, ANN, 

and DCNN are 79%, 84%, and 89%, respectively. 

Table 6. Performance in Accuracy 

No of Images FSVM in % ANN in % DCNN in % SLGCNN in % 

143 71 75 79 83 

286 75 79 83 88 

429 79 82 87 92 

572 83 86 92 96.8 

 

 
Figure 4. Analysis of Accuracy 
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As shown in Figure 9 and Table 6, bone cancer can be predicted using the picture dataset that was 

examined for accuracy. Images from the collection can be used to classify multiple myeloma illness images using 

the suggested SLGCNN approach. Similarly, this method's accuracy analysis rates are 83%, 86%, and 92%, 

respectively, compared to the conventional techniques FSVM, ANN, and DCNN. Furthermore, the suggested 

SLGCNN outperforms other techniques with an accuracy of 96.8%. 

Table 7. Performance in Time Complexity 

No of Images FSVM in ms ANN in ms DCNN in ms SLGCNN ms 

143 37 33 29 24 

286 34 29 24 21 

429 30 27 21 17 

572 24.9 20.6 18.7 14.3 

 

 
Figure 10. Analysis of Time Complexity 

The bone cancer image collection that was evaluated for time complexity can be used to predict bone cancer, as 

illustrated in Figure 10 and Table 7. The proposed SLGCNN method can be implemented in the dataset to 

categorize images of multiple myeloma diseases. Comparing this method to the traditional techniques of ANN, 

DCNN, and FSVM, the accuracy analysis rates are 18.7ms, 20.6 ms, and 24.9 ms, respectively. Furthermore, with 

a time complexity of 14.3 ms, the proposed SLGCNN exceeds previous approaches.  

 

5. CONCLUSION 

In this study, we employed the SLGCNN technique to accurately categorise multiple myeloma cells as 

cytoplasm or nucleus. The accuracy of the suggested approach is 96.8%. The MIFED technique is suitable, 

particularly in medical imaging, to enhance image quality without enhancing the smoothening of crucial structures 

since it eliminates high-frequency noises like salt and pepper noise. By using a MIFED, the SegPC-2021 dataset 

helps to improve the overall quality of images for the target disease and ride such deep learning form features 

associated with the disease. Following preprocessing, we employ SCAS to segment the preprocessed image into 

more manageable, smaller sections, or "clusters," based on specific attributes or criteria. By matching with actual 

multiple myeloma locations, the segmented clusters yield a score ranging from 0 (no overlap) to 1 (perfect 

overlap). The selection of an essential set of features was then accomplished using the RFE approach, which 

reduced the number of features and sped up processing without sacrificing efficiency. Lastly, we classified 

multiple myeloma images using the SLGCNN method, providing an accurate and efficient way to identify this 

type of cancer. It helps to overcome the difficulties caused by the complex visual features of multiple myeloma 

by discriminating between classes with a high degree of accuracy. With its strong capacity to detect multiple 
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myeloma accurately, the SLGCNN technique shows promise as a method to support early diagnosis and advance 

cancer treatment. 
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