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Abstract 

Accurate and early detection of plant diseases is critical for sustainable agriculture and 

crop yield optimization. This study presents a comprehensive framework for soybean 

disease classification and anomaly detection using high-resolution UAV-based aerial 

imagery. We investigate two complementary deep learning approaches tailored to 

different aspects of disease detection. First, we implement a Vision Transformer (ViT)-

based model for image-level classification, exploiting 

its global attention mechanism to capture subtle disease patterns across complex canopy 

structures. Second, we deploy a Memory-Augmented Autoencoder (MemAE) for 

anomaly detection, which reconstructs healthy samples and flags deviations indicative of 

disease presence, offering a robust approach for scenarios with limited labeled data. The 

proposed multi-perspective methodology is designed to address key challenges in real-

world agricultural monitoring, including label scarcity, intra-class variability, and the 

spatial complexity of field environments. The ViT-based classifier achieves strong 

performance on disease identification, while the MemAE highlights abnormal regions 

that diverge from learned healthy patterns, providing complementary insight. Extensive 

experiments demonstrate that the integration of these models facilitates robust, scalable, 

and interpretable disease monitoring from aerial data, data, establishing a powerful toolkit 

for precision agriculture applications. 
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1. INTRODUCTION 

 

Plant diseases continue to pose a critical challenge to global food security, potentially reducing yields by up to 40% 

if unmanaged [1, 2]. Traditional scouting methods, which are primarily based on expert visual inspection, are 

insufficient for large-scale agricultural monitoring due to their labour-intensive and subjective nature. Machine 

learning, especially deep learning, has been a key enabler in various domains, driving advancements in areas such as 

computer vision, natural language processing, healthcare diagnostics, autonomous vehicles, and recommendation 

systems. Moreover, it has opened up new avenues for scalable crop monitoring and disease detection, enabling 

precision agriculture, early intervention, and optimized resource management to enhance yield and sustainability. 

Recent studies have explored deep learning-based methods achieving high accuracies in disease classification [3–7]. 

Convolutional Neural Networks CNNs) [4, 7] and attention mechanisms [6] have shown remarkable performance in 

image classification by autonomously learning spatial hierarchies of features from raw images, removing the reliance 

on manual feature engineering. CNNs excel at capturing local spatial dependencies through convolutional filters, while 

attention mechanisms enhance this capability by adaptively focusing on the most informative regions of an image, 

leading to improved accuracy and robustness. Therefore, deep learning -based approaches have significantly advanced 

state-of-the-art solutions in plant disease detection, where subtle visual cues are critical. However, existing approaches 

face certain limitations. Most models rely on individual images (eg. single-leaf images or fruit image) for classification 

or doing the desired task, which reduces their relevance in real-world agricultural settings where multiple plants and 

overlapping foliage are observed [5, 8–10]. This becomes particularly problematic when diseases present visually 

similar symptoms triggered by different factors, such as nutrient deficiencies, pest damage, or environmental stress, 

often leading to misclassifications. Moreover, these conventional models offer limited explainability, providing little 

insight into which leaf regions contribute to predictions. This lack of interpretability diminishes trust among 

agricultural experts and hinders the adoption of such deep learning-driven tools in practical farming scenarios [11, 
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12]. The advent of Unmanned Aerial Vehicles (UAVs) has provided a promising solution to overcome the limitations 

of single-leaf imaging by enabling scalable, non-invasive, and real-time monitoring of crops at the field level [13, 14]. 

UAV-based imaging systems can capture canopy-level information, integrate spatial and temporal patterns, and thus 

improve the robustness of disease classification while reducing the reliance on manually collected single-leaf datasets. 

This field-level perspective also allows early disease detection and supports precision agriculture practices through 

efficient data collection over large areas. Despite these advantages, UAV-based approaches are not without challenges 

due to variable environmental conditions, such as lighting, wind, and occlusion by overlapping leaves, which can 

reduce image quality and hinder disease classification accuracy [15, 16]. Additionally, the high visual similarity 

between healthy and infected areas leads to reduced sensitivity in early-stage detection and crops are frequently 

masked by complex backgrounds, such as soil, weeds, or miscellaneous field objects, which introduce noise and 

further degrade model performance Such factors collectively hinder the reliability of existing deep learning approaches 

for precision disease identification in real-world agricultural scenarios. In this work, we propose a unified deep 

learning framework for plant disease detection from UAV-acquired imagery that integrates supervised, and 

unsupervised paradigms within a single pipeline. The framework is composed of three core modules: (i) a Vision 

Transformer (ViT)-based classifier [17] that leverages global self-attention to capture long-range spatial dependencies 

for robust disease categorization and (ii) a Memory-Augmented Autoencoder (MemAE) that performs unsupervised 

anomaly detection by encoding normal feature distributions into an external memory bank and identifying deviations 

indicative of disease symptoms [18]. The proposed framework offers several advantages over existing approaches. 

The ViT effectively models long-range dependencies and captures subtle textural variations across large aerial plots. 

The MemAE model enhances anomaly detection by leveraging external memory to reconstruct normal (healthy) 

patterns, identifying deviations as potential disease symptoms. This hybrid architecture is designed to exploit 

complementary strengths of different learning strategies, thereby enhancing classification accuracy, anomaly 

sensitivity, and interpretability in real-world UAV-based crop monitoring scenarios. We will evaluate the proposed 

framework on soybean plants, which represent an ideal testbed for UAV-based disease detection due to their global 

economic importance and susceptibility to a wide range of biotic and abiotic stresses. Soybeans are the second most 

cultivated crop worldwide, serving as a critical source of protein and oil for human consumption, livestock feed, and 

biofuel production [19]. However, soybean yield is heavily constrained by foliar diseases such as soybean rust, frogeye 

leaf spot, and bacterial blight, which often manifest with visually similar symptoms, making manual diagnosis both 

time-consuming and error-prone [4, 20, 21]. These factors, combined with the availability of large-scale UAV imagery 

datasets, make soybean an excellent candidate crop for benchmarking and validating advanced deep learning-based 

disease detection systems. The main contributions of this article are concluded as follows:  

• We propose a unified deep learning pipeline for UAV-based soybean disease detection that integrates supervised 

and unsupervised, overcoming the limitations of conventional single-leaf and CNN-based methods. 

• By combining anomaly detection with classification, the proposed approach provides not only accurate predictions 

but also enhances trust and adoption among agricultural experts. 

• We validate the framework on UAV-captured soybean datasets, demonstrating its effectiveness for real-world 

precision agriculture by addressing challenges such as complex field backgrounds, overlapping canopies, and visually 

confounding stress factors (e.g., pests, nutrient deficiencies, and environmental stressors). 

 

2 RELATED WORKS 

 

2.1 Plant Disease Identification 

Plant disease identification has seen rapid progress with the adoption of deep learning, particularly through automatic 

feature extraction from visual data, which surpassed utilized Convolutional Neural Networks (CNNs), trained on 

controlled datasets such as Plant Village, achieving high accuracy in classifying diseases at the leaf level [22, 23]. 

Architectures like AlexNet, VGG, and ResNet captured local spatial patterns through hierarchical convolutions. 

However, these models exhibited limited robustness when deployed in real-world agricultural environments. 

Challenges such as inconsistent lighting, complex backgrounds, leaf occlusions, and varying growth stages hindered 

their generalizability and field applicability. To address these shortcomings, researchers turned to more sophisticated 

architectures. Attention mechanisms and Transformer based models to model long-range spatial dependencies across 

large images by treating patches as input tokens and applying global self-attention [17]. This shift improved resilience 

to spatial variability and enabled better disease classification across different environmental contexts. Hybrid 

approaches combining CNNs with Graph Neural Networks (GNNs) further enhanced performance by incorporating 

spatial topology and relational features into the learning process [4]. These models improved generalizability and 

interpretability, particularly when paired with multimodal data.  

Despite these developments, each class of method still presents notable drawbacks. CNNs and even Transformer-

based classifiers rely heavily on large labeled datasets and frequently underperform when faced with unseen 
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environmental conditions such as variable lighting, growth stages, or field locations [17, 22]. Unsupervised methods 

can reduce labeling burden but often lack semantic robustness or reliability when applied to disease detection in 

complex field imagery [24, 25]. Anomaly detection techniques especially those utilizing standard autoencoders or 

variational models can flag novel symptoms but typically produce blurred reconstructions and exhibit low localization 

fidelity in the presence of background noise and texture variation [11, 12]. Our proposed framework holistically 

addresses these challenges by combining complementary learning strategies into a single pipeline. A ViT-based 

classifier captures global spatial dependencies for robust disease recognition under field variability, while a memory 

augmented autoencoder enables region-level anomaly localization by modeling healthy patterns and identifying 

deviations as reconstruction errors without labeled disease data. Together, these components form a robust, scalable, 

and label-efficient solution for plant disease detection from UAV imagery. 

 

2.2 UAVs in Precision Agriculture 

UAVs have become indispensable in precision agriculture, enabling rapid, high resolution monitoring of crop health 

and stress conditions. Reviews have catalogued applications ranging from phenotyping to irrigation management [26, 

27]. In disease specific contexts, multispectral imaging combined with machine learning has proven useful for yield 

prediction and canopy stress estimation [28]. Deep learning approaches built on RGB or multispectral UAV imagery 

employ supervised models such as CNNs or combinations with spatial-temporal graphs to detect disease symptoms 

with high accuracy [3], but these remain limited by reliance on labeled training data. However, UAV-based disease 

monitoring faces several challenges. Variability in flight altitude, sensor type, and environmental conditions 

complicate model generalization. Classifiers trained on dense labeled UAV datasets seldom perform well when 

transferred across fields or seasons [16]. Anomaly detection pipelines applied to UAV data often fail to capture disease 

spread at high resolution. Our framework mitigates these issues by leveraging a ViT classifier robust to spatial scale 

changes and a memory-augmented autoencoder that requires only healthy training examples. 

 

3 METHODOLOGY 

 

 
Fig. 1 Overview of our approach. 

 

3.1 Overview of the Proposed Framework 

We propose a unified deep learning framework for robust soybean disease detection using high-resolution UAV-

acquired RGB imagery. This framework integrates two complementary components: a Vision Transformer (ViT) for 

global image-level disease classification and a Memory-Augmented Autoencoder (MemAE) for unsupervised 

anomaly detection as shown in Figure 1. The ViT captures long-range spatial dependencies through global self-

attention, allowing it to model complex textural and spatial patterns across entire field plots. This facilitates resilient 

classification performance across diverse environmental conditions, including varying lighting, crop maturity stages, 

and sensor altitudes. The MemAE, trained only on healthy image patches, reconstructs expected visual patterns and 

identifies disease symptoms as anomalous deviations in the residual map, thus enabling detection of both known and 

unseen disease phenotypes without requiring diseased annotations.  
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A fusion mechanism integrates the classification probabilities from the ViT with anomaly scores from the MemAE to 

compute a joint confidence score that reflects both disease presence and severity. Overall, the proposed architecture 

achieves high classification accuracy and supports unsupervised anomaly detection in realistic field conditions, 

addressing key challenges in UAV-based plant health monitoring. 

 

3.2 Problem Formulation 

Let I = {I1, I2, . . . , IN} denote a dataset of N UAV-acquired RGB images of soybean fields, each image  𝐼𝑖 ∈ 𝑅𝐻×𝑊×3 

representing a high-resolution aerial view. Our objective is to develop a robust framework that jointly performs (i) 

disease classification at the image level and (ii) anomaly detection to flag unknown or novel disease phenotypes. 

Formally, the goal is to learn a mapping: 

F : I → (ˆy, ˆa) 

where: 

• ˆy ∈ C is the predicted disease class from a predefined set C (including healthy), 

• ˆa ∈ [0, 1] is an anomaly score estimating deviation from healthy patterns, 

This composite prediction enables both coarse-grained (classification) and fine grained (anomaly) disease monitoring 

from UAV data without relying entirely on pixel level annotations. Our framework integrates supervised and 

unsupervised learning paradigms to address field-level variability, dataset limitations, and annotation costs, in line 

with prior works on hybrid plant disease detection [17, 18, 25]. 

 

3.3 Global Classification via Vision Transformer 

To perform robust global disease classification from UAV-acquired RGB imagery, we employ a Vision Transformer 

(ViT) architecture [17], which has demonstrated superior performance over convolutional networks in capturing long-

range dependencies and contextual features in high-resolution visual data. Unlike CNNs, which operate on local 

receptive fields, the ViT processes the image as a sequence of non-overlapping patches and models their interactions 

using global self-attention. This makes the model particularly well-suited for capturing field-level disease patterns that 

are spatially dispersed or texturally subtle. Each input image I ∈ RH×W×3 is partitioned into fixed-size patches of p 

× p pixels. These patches are flattened and linearly projected to form a sequence of patch embeddings, each of 

dimension D. A learnable positional 

embedding is added to retain spatial ordering, and a special classification token [CLS] is prepended to the sequence. 

This token aggregates the global image context through multi-head self-attention layers and is used as the final 

representation for classification. In our implementation, we use a patch size of 16×16, embedding dimension D = 768, 

12 transformer layers (depth), and 12 attention heads per layer, consistent with the ViT-Base configuration. 

The ViT is trained in a fully supervised manner using cross-entropy loss over a predefined set of disease categories 

C, which includes both healthy and diseased classes. To improve generalization and prevent overfitting on limited 

labeled UAV data, we incorporate several regularization techniques. First, label smoothing is applied to the 

classification targets to encourage probabilistic predictions and mitigate overconfidence. Second, extensive data 

augmentation is used during training, including random cropping, horizontal and vertical flipping, brightness jittering, 

and color normalization, to simulate the diverse visual conditions encountered in real-world field imagery. The 

patterns, detect subtle discolorations or lesions across the canopy, and remain robust to viewpoint changes and 

background variability. This property is critical in UAV based disease monitoring, where symptoms may manifest at 

different scales and spatial distributions. The final output of the ViT is a probability vector ˆy ∈ R|C| representing the 

confidence of the input image belonging to each disease class. This output is later fused with the anomaly scores for 

integrated disease confidence estimation. 

 

3.4 Unsupervised Anomaly Detection via Memory-Augmented Autoencoder 

To enable detection of both known and previously unseen soybean diseases in an unsupervised setting, we integrate a 

Memory-Augmented Autoencoder (MemAE) [18] into our framework. The key idea behind MemAE is to learn a 

compact representation of normal (healthy) plant appearance and leverage reconstruction failure to identify anomalous 

regions that deviate from the learned healthy patterns. Unlike supervised classification models, MemAE does not 

require labeled diseased samples for training, making it especially suitable for large-scale agricultural deployment 

where rare or novel disease instances may not be annotated. The MemAE comprises three main components: an 

encoder network, a memory-augmented bottleneck, and a decoder network. The encoder extracts hierarchical visual 

features through a multi-scale convolutional backbone that includes parallel branches with varying kernel sizes (e.g., 

3×3 and 5×5) to capture fine and coarse image structures. Residual blocks with skip connections preserve spatial 

information, while attention gates (both spatial and channel-wise) enhance feature saliency around vegetation 

structures. Downsampling is achieved via strided depth-wise separable convolutions to retain efficiency while 

reducing spatial resolution. 
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At the bottleneck, a learned memory module stores prototypical latent representations of healthy crops. This key-value 

memory mechanism enables the network to selectively reconstruct only familiar (i.e., healthy) patterns by querying 

the memory with encoded features and retrieving the most relevant memory items. We optionally incorporate a 

variational component to model uncertainty and facilitate probabilistic reasoning over normal representations. A 

contrastive objective is used during training to force separation between distinct normal feature embeddings, thereby 

improving memory addressing accuracy and anomaly discrimination. The decoder mirrors the encoder with 

progressive upsampling via transposed convolutions and nearest-neighbor interpolation. Dense connections from 

encoder layers ensure rich feature reuse, while non-local self-attention blocks provide long-range context 

reconstruction. This design allows the decoder to reconstruct only normal structures it has seen during training, making 

it sensitive to pathological deviations in disease-affected areas. 

The MemAE is trained exclusively on healthy crop regions using a reconstruction loss comprising pixel-wise mean 

squared error (MSE) and a perceptual loss based on VGG feature distances to maintain semantic fidelity. No labels 

for diseased instances are required. During inference, given an input UAV patch, the network reconstructs the expected 

(healthy) version. The pixel-wise difference between the input and its reconstruction yields a residual anomaly map, 

where larger residuals correspond to potential disease symptoms. The final anomaly score is computed by aggregating 

three complementary signals: (i) the pixel-level reconstruction error (MSE), (ii) perceptual deviation in feature space, 

and (iii) the memory addressing distance quantifying how well the input conforms to any stored healthy prototype. 

This multi-faceted scoring provides both robust detection and spatial localization of anomalous patterns across UAV 

images, without the need for any disease-specific labels. As such, the MemAE acts as a general-purpose anomaly 

detector capable of identifying both known and novel disease symptoms across varying crop stages and imaging 

conditions. 

 

3.5 Fusion Strategy and Confidence Aggregation 

To robustly determine the presence and severity of plant disease, we design a fusion mechanism that integrates the 

outputs of the Vision Transformer classifier and the Memory-Augmented Autoencoder (MemAE) after they are 

trained. Specifically, we combine the softmax-normalized classification probabilities ŷ = softmax(fViT(I)), with the 

anomaly score â = a(I) computed from the residual map produced by MemAE. This fusion enables the system to 

account for both high-level semantic predictions and low-level visual irregularities, improving generalization in 

ambiguous or out-of distribution scenarios. We define a confidence-aware score  ˆc ∈ R|C| that captures the model’s 

trust in each class prediction while modulating it by anomaly intensity. The score is computed using a weighted 

heuristic: 

 

ˆc = α ・ softmax(fViT(I)) + (1 − α) ・ a(I),       (1) 

 

where α ∈ [0, 1] is a tunable hyper parameter controlling the relative contribution of the classifier and the anomaly 

detector. Here, a(I) is broadcast or reshaped to match the class dimension via disease-specific anomaly attribution if 

applicable, or applied globally as a scalar anomaly intensity. When α is high, the framework relies more heavily on 

the classifier output, whereas lower values allow greater influence from the anomaly detector, which is particularly 

useful for unknown or ambiguous cases not well represented in the training distribution. The fused score ˆc serves 

multiple purposes. First, it enables ranking of predictions by overall confidence, allowing the system to flag uncertain 

samples for manual review or deferred decision-making. Second, it supports threshold-based decision rules for 

rejecting low-confidence predictions or identifying potential novel disease phenotypes. This design increases 

robustness in real-world field conditions, where visual ambiguity and distributional shifts are common. By integrating 

semantic classification with visual anomaly estimation, the confidence aggregation module provides a principled 

mechanism to bridge supervised and unsupervised inference, improving both reliability and interpretability in disease 

monitoring pipelines. 

 

4 Dataset Preparation 

 

The dataset utilized in this study is sourced from a publicly available repository on Mendeley Data [29], specifically 

curated for research in plant pathology and precision agriculture. It comprises high-resolution RGB images of soybean 

leaves captured under diverse natural lighting and environmental conditions, reflecting real-world field variability. 

Each image is labeled based 
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Fig. 2 Representative UAV-captured soybean leaf samples illustrating various foliar diseases and stress symptoms, 

including rust, mosaic, and pest-induced damage. The visual similarity between certain diseases (e.g., rust vs. mosaic) 

and the subtle appearance of pest traces highlight the challenges of accurate diagnosis from aerial imagery. 

 

on the visible presence of biotic stressors such as fungal infections or pest-induced physical damage. As shown in 

Figure 2, soybean leaves exhibit a variety of diseases, and it is particularly challenging to differentiate between rust 

and mosaic due to their visually similar symptoms. Moreover, traces of pest attacks are difficult to detect in UAV 

imagery, as the resulting holes appear very small from aerial views. Despite these adverse conditions, our proposed 

technique demonstrates strong performance and reliably identifies the affected regions. 

 

4.0.1 Categories and Distribution 

The dataset is organized into four categorical folders, each corresponding to a distinct visual phenotype of soybean 

foliage:  

• Healthy Soybean: Images showing healthy leaves with uniform texture and color, free of lesions or discoloration 

(326 MB). 

• Soybean Mosaic: Infected with mosaic virus, exhibiting characteristic mottling, chlorosis, and color disruption (1.01 

GB). 

• Soybean Rust: Marked by rust pustules, typically reddish-brown lesions concentrated on the leaf underside (1.7 GB). 

• Pest Attack (Semilooper and Caterpillar): Includes leaf damage such as holes, bites, and deformation caused by 

chewing insects. 

The image resolutions vary between 1024 × 768 and 3000 × 2000 pixels, with heterogeneous backgrounds including 

soil, sky, weeds, and other field artifacts, posing realistic challenges for vision models. 

 

4.0.2 Cleaning and Label Assignment 

To ensure dataset integrity and minimize redundancy, a two-stage cleaning process was applied. First, corrupted or 

unreadable files were identified and removed. Next, duplicate images were eliminated using perceptual hashing 

(pHash) followed by cosine similarity thresholding. Labels were assigned according to directory structure: 0 for 

Healthy, 1 for Mosaic, 2 for Rust, and 3 for Pest Attack, enabling direct use in supervised classification tasks. 

 

4.0.3 Resizing and Normalization 

All images were resized to a uniform resolution of 224 × 224 pixels using bicubic interpolation, preserving aspect 

ratio and detail fidelity. For normalization, standard ImageNet mean and standard deviation statistics were employed: 

𝐼𝑛𝑜𝑟𝑚 =  
𝐼−𝜇

𝜎
 ,      μ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225] 

This step ensures compatibility with pretrained backbone models used in both classification and anomaly modules. 

 

4.0.4 Data Augmentation 

To enhance model generalization to variable UAV capture conditions, extensive on the fly data augmentation was 

applied during training. This includes: 

• Random horizontal and vertical flips 

• Rotation within a 30° range 

• Brightness and contrast jittering 

• Random zooming up to 20% 

• Gaussian noise injection 

These augmentations simulate UAV-based variations such as angular distortions, lighting shifts, and minor occlusions. 
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4.0.5 Dataset Splits 

The complete dataset was partitioned into training, validation, and testing subsets in a stratified manner to preserve 

class proportions: 

• Training set (70%): Used for supervised and self-supervised model training. 

• Validation set (15%): Used for hyperparameter tuning and early stopping. 

• Test set (15%): Held out for final model evaluation and benchmarking. 

This split enables a rigorous assessment of model performance under realistic, unseen conditions. 

 

4.0.6 Task-Specific Preprocessing 

To align with the multi-task pipeline architecture, the dataset was tailored differently for each subtask: 

• Classification: All categories were included, and labels were converted to one-hot encoding for cross-entropy 

training. 

• Anomaly Detection: Only healthy and known disease categories (excluding pest attack) were used to train the 

memory-augmented autoencoder on normal reconstruction patterns. 

 This modular preprocessing allows seamless integration into the respective classification and anomaly detection 

branches of the pipeline. 

 

5 Training and Implementation Details 

This section outlines the training configurations and loss formulations for each component of our proposed pipeline. 

We provide mathematical expressions for the loss functions used in the classifiera and anomaly detector modules. All 

models were implemented in PyTorch 2.0 and trained on a workstation equipped with an NVIDIA RTX A6000 GPU 

(48 GB VRAM), 128 GB RAM, and an AMD Threadripper 3970X CPU. 

 

5.1 Vision Transformer Classifier 

The classification module is based on the ViT-Base architecture pretrained on ImageNet-21k. The model is fine-tuned 

to predict one of C = 5 crop health classes. Given a batch of input images {𝑥𝑖} 𝑁
𝑖=1

 and corresponding one-hot labels 

{𝑦𝑖} 𝑁
𝑖=1

 , the model outputs class logits{𝑧𝑖} 𝑁
𝑖=1

. We minimize the cross-entropy loss with label smoothing: 

 
 

5.2 Memory-Augmented Autoencoder (MemAE) 

To detect anomalies, a Memory-Augmented Autoencoder is trained in an unsupervised fashion on only healthy image 

patches. Let  𝐼𝑖 ∈ 𝑅𝐻×𝑊×3 be an input patch, and ˆx its reconstruction. The total loss consists of two components: 
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5.3 Fusion Strategy 

The final disease prediction score Sfused is computed by linearly fusing the classifier score Scls with the normalized 

anomaly residual score Sanom : 

𝑆𝑓𝑢𝑠𝑒𝑑 =  𝛼 ∗ 𝑆𝑐𝑙𝑠 +  (1 − 𝛼) ∗  𝑆𝑎𝑛𝑜𝑚 ,                                                          (8) 

 

where α ∈ [0, 1] is a tunable fusion weight. We set α = 0.7 based on validation set performance. A threshold τ = 0.65 

is applied to Sfused for binary decision-making (disease vs. no-disease). 

 

6 EXPERIMENTS AND RESULTS 

 

6.1 Evaluation Metrics 

To comprehensively evaluate the performance of our proposed framework across the three primary tasks disease 

classification and anomaly localization we employ a range of standard and task-specific metrics. 

1) Classification Metrics: For multi-class disease classification, we report accuracy, precision, recall, and F1-score. 

Additionally, we compute the Area Under the Receiver Operating Characteristic Curve (ROC-AUC) to assess the 

model’s ability to distinguish between classes in an imbalanced setting. Given true positives (TP), false positives (FP), 

and false negatives (FN). 

2) Anomaly Detection Metrics: We evaluate the performance of MemAE in detecting and localizing anomalies using: 

• AUROC (Area Under the ROC Curve): Measures the separability between normal and anomalous regions. 

• Pixel-wise F1-score: Calculated using thresholded anomaly heatmaps. 

All metrics are averaged across the test set and reported per class where applicable. 

 

6.2 Baselines and Comparison Models 
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To validate the effectiveness of our approach, we compare against a set of strong baselines tailored to each task: 

1) Classification Baselines: 

 

• ResNet-50 [30]: A widely used CNN backbone trained with cross-entropy loss. 

• EfficientNet-B0: [31] A parameter-efficient architecture known for high classification accuracy. 

2) Anomaly Detection Baselines: 

• Vanilla Autoencoder (AE): Trained on healthy images; anomaly score is based on pixel-wise reconstruction error. 

• f-AnoGAN [32]: A generative adversarial method that uses feature-space distance for anomaly scoring. 

• PatchCore [33]: A patch-based embedding and nearest-neighbor search method for out-of-distribution detection. 

All baselines are trained using the same data and computational budget for fairness. Hyperparameters are tuned via 

cross-validation on a held-out validation set. 

 

6.3 Quantitative Results 

Before evaluating each module separately, we first report the overall performance of our fusion model, which 

integrates anomaly detection and classification. The full framework achieves a fusion accuracy of 94.8%, 

demonstrating its effectiveness in correctly detecting and classifying disease-affected regions. This strong overall 

performance motivates a deeper analysis of the individual components of the framework as follows: 

1) Disease Classification: Table 1 summarizes the performance of different models on disease classification. Our ViT-

based model significantly outperforms CNN-based baselines, achieving an accuracy of 92.4% and an F1-score of 

91.9%, owing to its global receptive field and robust self-attention mechanisms. 

Table 1 Classification performance across models. 

Model Accuracy F1-score Recall ROC-AUC 

ResNet-50 85.6 84.3 83.7 0.887 

EfficientNet-B0 88.1 87.6 86.9 0.903 

ViT-Base (ours) 92.4 91.9 91.2 0.941 

 

 

2) Anomaly Detection: Table 2 compares anomaly detection performance. Our MemAE achieves the highest AUROC 

and pixel-level F1, benefiting from its memory augmented selective reconstruction mechanism. The residual maps 

generated offer strong contrast between normal and anomalous regions. 

Table 2 Anomaly detection performance on test set. 

 

Model AUROC Pixel-F1 

AE 0.781 0.501 

f-AnoGAN 0.805 0.527 

PatchCore 0.861 0.573 

MemAE (ours) 0.918 0.624 

 

6.4 Qualitative Analysis 

Figure 3 provides a visual analysis of our model’s outputs across several tasks. The attention maps from ViT 

successfully localize coarse disease regions. MemAE heatmaps highlight subtle texture-level anomalies undetected 

by the classifier. This multimodal synergy demonstrates the complementary strengths of classification-based attention 

and reconstruction-based anomaly localization. 
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Fig. 3 Qualitative comparison of model outputs across tasks. 

 

6.5 Ablation Studies 

To understand the individual contributions of each module, we perform systematic ablation experiments, as shown in 

Table 3. Removing the MemAE results in degraded anomaly detection performance, confirming its role in localizing 

unseen patterns. Excluding the perceptual loss reduces fine-grained reconstruction quality. 

 

Table 3 Ablation study showing the effect of each component on  classification, anomaly detection, and fusion 

performance. 

 

Configuration Classification Anomaly Fusion 

ViT only 92.4 0.891 - 

ViT + MemAE (no Lperc) 92.6 0.905 92.0 

ViT + MemAE + Lperc 92.7 0.918 92.3 

We find that α = 0.6 yields the best trade-off, balancing coarse attention with high-resolution anomaly cues. 

 

6.6 Discussion 

Our results demonstrate that the hybrid combination of discriminative and generative paradigms significantly 

enhances model robustness and generalization. The ViT-based attention localizes semantically rich regions but lacks 

texture-level anomaly sensitivity. MemAE addresses this by reconstructing only seen (healthy) features, leading to 

precise anomaly heatmaps. One limitation is the reliance on clean healthy data for training the MemAE, which may 

not always be available in-field. Our architecture, while developed for crop disease detection, can generalize to other 

applications like pest damage, nutrient deficiency, and broader precision agriculture tasks. 

 

7 CONCLUSION 

 

In this work, we presented a unified framework that integrates classification and anomaly detection, for the task of 

crop disease diagnosis using multimodal self supervised learning. By leveraging the complementary strengths of 
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discriminative and generative models namely Vision Transformers (ViT) and Memory-Augmented Autoencoders 

(MemAE) we demonstrated a scalable and interpretable approach to disease identification. Our architecture 

successfully tackles two core challenges in plant phenotyping: (1) accurate disease classification under visual 

variability, (2) robust anomaly detection in the absence of pixel-level supervision. Extensive experiments conducted 

on a curated multi-crop disease dataset validate the superiority of our method over both traditional CNN-based 

classifiers and existing unsupervised techniques. Quantitative evaluations across multiple metrics including AUROC, 

mIoU and F1-score highlight the benefit of each architectural component, particularly the role of perceptual loss in 

improving reconstruction fidelity. Qualitative analysis further supports the interpretability and consistency of anomaly 

responses across spatial regions. It sets a strong precedent for using self-supervised and hybrid vision models in data-

scarce agricultural scenarios, paving the way for precision agriculture applications in the wild. 
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