
TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1367

MANAGING AI-ENABLED KNOWLEDGE FOR LARGE-

SCALE SOFTWARE ENGINEERING: A RETRIEVAL-

AUGMENTED APPROACH

SOHAIL SARFARAZ1, FAIZA QURESHI2, MANSOOR SARFRAZ3

1. SOFTWARE ENGINEER, WALMART, sohail.sarfaraz@gmail.com,

2. CONTENT WRITER, monaa.sohail@gmail.com
3. SENIOR SOFTWARE ENGINEER, MACQUARIE GROUP, mansoor.sarfraz@gmail.com

Abstract

Large-scale software engineering organizations continuously produce diverse and extensive

knowledge artifacts, such as source code, technical documentation, issue tracking records, and

architectural decision documents. Effectively managing and reusing this knowledge remains a

longstanding challenge due to information fragmentation, rapid system evolution, and the inherent

limitations of traditional keyword-based knowledge management systems. Although recent advances

in neural language models have shown strong capabilities in natural language understanding and

generation, their direct application in software engineering contexts is limited by insufficient domain

grounding, reliance on outdated information, and a lack of traceability. To address these challenges,

this paper proposes an AI-driven Knowledge Management System (KMS) based on a Retrieval-

Augmented Generation (RAG) architectural approach tailored for large-scale software engineering

environments. The proposed architecture combines semantic retrieval with generative reasoning to

enable context-aware and grounded access to organizational knowledge across heterogeneous

software repositories. By conditioning generated responses on retrieved, project-specific artifacts, the

system enhances accuracy, transparency, and adaptability to evolving knowledge bases. The paper

presents the architectural design, methodological framework, and qualitative case studies focused on

developer onboarding and technical debt mitigation, illustrating the potential of retrieval-augmented

architectures as a foundation for next-generation knowledge management systems in software

engineering.

Keywords: AI-driven knowledge management; Retrieval-augmented generation; Software

engineering; Semantic information retrieval; Large-scale software systems; Developer onboarding;

Technical debt management.

1. INTRODUCTION

1.1. Background

Software engineering (SE) has progressively evolved into a highly knowledge-intensive discipline driven by

increasing system scale, architectural complexity, and rapid development cycles. Contemporary software systems are

developed and maintained by distributed teams and consist of interconnected components that continuously evolve

over time. Throughout the software development lifecycle, a vast amount of knowledge is generated in the form of

source code, design documents, requirement specifications, architectural decision records, issue tracking logs, test

reports, and operational documentation.

Effective knowledge management is widely recognized as a critical factor for improving software quality,

maintainability, and organizational learning. Prior research indicates that systematic reuse of software knowledge

reduces development effort, supports informed decision-making, and enhances productivity (Aurum et al., 2003;

Lindvall et al., 2003). Consequently, many software organizations adopt knowledge management systems (KMS) to

capture, organize, and disseminate project-related information. However, as software systems grow in size and

complexity, traditional KMS increasingly struggle to provide timely, context-aware, and actionable knowledge.

1.2. The Knowledge Problem in Software Engineering

The knowledge problem in software engineering stems from the fragmented, tacit, and continuously evolving nature

of software-related information as shown in figure 1. Knowledge is distributed across multiple tools and platforms,

including version control systems, issue trackers, documentation repositories, and informal communication channels.

Empirical studies show that developers spend a significant portion of their time searching for information rather than

performing development tasks, particularly in large and long-lived systems (Parnin & Rugaber, 2011). Traditional

knowledge management approaches rely heavily on static documentation and keyword-based search mechanisms.

mailto:sohail.sarfaraz@gmail.com
mailto:monaa.sohail@gmail.com
mailto:mansoor.sarfraz@gmail.com

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1368

These methods are limited in their ability to capture implicit knowledge, understand semantic relationships between

artifacts, or support complex reasoning tasks such as architectural trade-off analysis. As a result, organizations face

challenges such as prolonged developer onboarding, redundant work, knowledge loss due to staff turnover, and

accumulation of technical debt (Bjornson & Dingsoyr, 2008).

Figure 1: The Knowledge Problem in Large-Scale Software Engineering

Recent advances in artificial intelligence, particularly neural language models, have introduced new opportunities for

natural language interaction with technical artifacts. Such models have demonstrated promising capabilities in tasks

such as text summarization, question answering, and code-related analysis (Brown et al., 2020). However, when

applied directly to software engineering knowledge management, purely generative models exhibit critical limitations.

These include hallucinated outputs, lack of grounding in project-specific knowledge, outdated information, and

insufficient transparency—issues that undermine trust and hinder adoption in reliability-critical software

environments (Bender et al., 2021).

1.3. Objectives of This Study

To address the limitations of both traditional knowledge management systems and purely generative AI models, this

paper explores the use of Retrieval-Augmented Generation (RAG) as an architectural foundation for AI-driven

knowledge management in software engineering. RAG combines information retrieval with neural generation by

conditioning responses on retrieved documents, thereby improving factual grounding, contextual relevance, and

traceability (Lewis et al., 2020).

The primary objectives of this study are to:

➢ Examine the limitations of existing knowledge management approaches in large-scale software engineering

environments.

➢ Propose a retrieval-augmented architectural framework for AI-driven knowledge management systems.

➢ Demonstrate the applicability of the proposed approach through representative software engineering case studies.

➢ Discuss the benefits, limitations, and future research directions of retrieval-augmented knowledge management in

software engineering.

2. LITERATURE REVIEW

2.1. Knowledge Management in Software Engineering

Knowledge management has long been recognized as a critical factor in software engineering due to the inherently

knowledge-intensive nature of software development activities. Software projects continuously generate both explicit

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1369

knowledge (e.g., documentation, source code, specifications) and tacit knowledge (e.g., design rationale, experiential

insights, and informal practices). Early research emphasized that effective management and reuse of this knowledge

improves productivity, software quality, and organizational learning (Aurum et al., 2003; Lindvall et al., 2003).

Traditional knowledge management systems in software engineering typically rely on document repositories, wikis,

intranets, and static databases. While these tools support basic information storage and retrieval, empirical studies

report several limitations, including poor maintenance, information overload, and difficulty in locating relevant

knowledge across large and evolving systems (Bjornson & Dingsoyr, 2008). Moreover, such systems primarily focus

on explicit knowledge and fail to adequately capture tacit knowledge, which plays a crucial role in architectural

decision-making and system evolution.

As software systems scale, the knowledge problem becomes more pronounced. Developers often need to navigate

multiple heterogeneous tools—such as version control systems, issue trackers, and continuous integration pipelines—

to reconstruct system understanding. Studies show that developers spend a significant portion of their working time

searching for information rather than performing productive development tasks, particularly in large and long-lived

projects (Parnin & Rugaber, 2011). These challenges highlight the need for more intelligent and integrated knowledge

management solutions.

2.2. Intelligent Support and Mining Software Repositories

To address the limitations of traditional knowledge management approaches, researchers have explored intelligent

techniques based on information retrieval, recommendation systems, and mining software repositories (MSR). Early

work in this area focused on supporting specific development tasks, such as bug localization, code search, and

developer recommendation, by analyzing historical project data (Hassan & Holt, 2005; Bacchelli et al., 2012). Mining

software repositories enables the extraction of valuable knowledge from version histories, issue reports, and

communication logs. Such approaches have been successfully applied to defect prediction, maintenance analysis, and

process improvement.

However, these techniques are often task-specific and require specialized tooling, limiting their generalizability as

comprehensive knowledge management solutions. Furthermore, many MSR-based tools require significant manual

effort to configure and interpret, reducing their accessibility for everyday developer use. Although intelligent retrieval

and recommendation techniques improve information access, they typically lack advanced reasoning capabilities and

do not provide natural language interaction. As a result, they offer limited support for complex queries that require

synthesis across multiple knowledge sources.

2.3. Neural Language Models for Software Engineering Knowledge

Recent advances in machine learning and natural language processing have led to the adoption of neural language

models for software engineering tasks. Such models have demonstrated promising results in areas including code

summarization, documentation generation, code search, and question answering over technical artifacts (Allamanis et

al., 2018; Li et al., 2019). Large pre-trained language models further enhance natural language interaction by enabling

few-shot and zero-shot learning across diverse tasks (Brown et al., 2020). These models provide a flexible interface

for querying software knowledge and generating human-readable explanations. However, several studies have raised

concerns regarding their reliability, particularly in knowledge-intensive domains. Purely generative models may

produce hallucinated responses, lack traceability to authoritative sources, and rely on outdated training data when

applied to evolving software systems (Bender et al., 2021).

In software engineering contexts, these limitations are particularly problematic due to the need for accuracy,

explainability, and alignment with project-specific artifacts. Consequently, while neural language models offer

powerful generative capabilities, their direct application as standalone knowledge management solutions remains

insufficient.

2.4. Retrieval-Augmented Generation and Knowledge-Grounded Models

Retrieval-Augmented Generation (RAG) was proposed as a framework that combines information retrieval with

neural text generation to support knowledge-intensive tasks. In the RAG paradigm, relevant documents are retrieved

from an external knowledge base and used as contextual input to a generative model, thereby grounding generated

responses in explicit sources (Lewis et al., 2020). Subsequent research demonstrated that retrieval-augmented models

outperform purely generative approaches in tasks such as open-domain question answering and knowledge-grounded

dialogue systems (Izacard & Grave, 2021).

By explicitly incorporating retrieved evidence, RAG-based systems improve factual accuracy, contextual relevance,

and transparency—properties that align well with the requirements of software engineering knowledge management.

Within the software engineering domain, retrieval techniques have traditionally been applied to code search and

traceability tasks (Cleland-Huang et al., 2014). However, as of early 2023, the systematic use of retrieval-augmented

generative architectures for organizational knowledge management in software engineering remains limited. Existing

studies tend to focus on isolated tasks rather than holistic knowledge management across heterogeneous software

artifacts.

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1370

2.5. Research Gap and Motivation

The literature reveals a clear gap between traditional software engineering knowledge management systems and

emerging AI-driven approaches. Conventional systems provide access to authoritative information but lack reasoning

and synthesis capabilities, while purely generative language models offer flexible interaction but suffer from

grounding and reliability issues. Although retrieval-augmented generation addresses many of these limitations, its

application as a comprehensive architectural solution for software engineering knowledge management has not been

sufficiently explored in the literature up to 2023. In particular, there is a lack of architectural frameworks that integrate

heterogeneous software artifacts, support evolving knowledge bases, and address the trust and transparency

requirements of large-scale software organizations. This paper addresses this gap by proposing a retrieval-augmented,

AI-driven knowledge management architecture tailored for large-scale software engineering environments, focusing

on system design, methodological formulation, and practical applicability.

3. METHODOLOGY

3.1. Research Design and Methodological Framework

This research adopts a design-oriented and architecture-centric methodology, which is commonly employed in

software engineering research when the objective is to propose and analyze complex system architectures rather than

develop novel learning algorithms. Given the exploratory nature of AI-driven knowledge management in software

engineering, a design science approach enables systematic reasoning about system components, interactions, and

practical applicability. The methodology focuses on the conceptual design, integration, and evaluation of an AI-driven

Knowledge Management (KM) system based on the Retrieval-Augmented Generation (RAG) paradigm. Instead of

optimizing individual machine learning models, the emphasis is placed on how retrieval and generation components

can be combined to support knowledge-intensive software engineering tasks in large organizations. The

methodological workflow is structured into the following phases:

➢ Identification of software engineering knowledge management challenges

➢ Definition of system requirements for AI-driven KM

➢ Design of a modular RAG-based architecture

➢ Mathematical formulation of retrieval and generation processes

➢ Qualitative validation through representative case studies

3.2. Identification of Knowledge Source in Software Engineering

Effective knowledge management in software engineering begins with the systematic identification and classification

of knowledge sources. Software engineering is inherently knowledge-intensive, generating information across the

entire software development lifecycle, including development, documentation, collaboration, deployment, and

organizational governance. Prior research emphasizes that failure to identify and integrate these heterogeneous

knowledge sources leads to knowledge loss, reduced productivity, and increased maintenance effort (Aurum et al.,

2003; Bjørnson & Dingsøyr, 2008). Software engineering knowledge is commonly divided into explicit knowledge,

which is formally documented, and tacit knowledge, which resides in developer experience and informal practices

(Nonaka & Takeuchi, 1995). While tacit knowledge cannot be fully externalized, studies show that it is often partially

captured through artifacts such as issue discussions, commit messages, and code reviews (Storey et al., 2014).

Consequently, modern knowledge management approaches emphasize the integration of both formal and informal

artifacts to approximate tacit knowledge through explicit representations.

Large-scale software projects produce knowledge through multiple artifact categories, each contributing distinct

insights into system structure, behavior, and evolution. Identifying these sources is a prerequisite for designing AI-

driven knowledge management systems capable of retrieval, reasoning, and synthesis across organizational knowledge

silos (Dingsøyr et al., 2012).

Table 1: Summary of Knowledge Sources in Software Engineering

Knowledge Source

Category
Artifact Types Knowledge Characteristics Relevance to AI-Driven KM

Development Artifacts

Source code,

configuration files, code

comments

Encodes implementation logic,

implicit design decisions, and

assumptions

Enables reasoning about

functionality, dependencies, and

implementation intent

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1371

Knowledge Source

Category
Artifact Types Knowledge Characteristics Relevance to AI-Driven KM

Version Control History

Commit messages,

change logs, authorship

data

Captures system evolution and

development rationale

Supports traceability and

historical reasoning

Documentation Artifacts

Requirements, design

documents, ADRs, user

manuals

Provides high-level system

structure and formal decisions

Supports onboarding and

architectural understanding

Process & Collaboration

Artifacts

Issue reports, bug

trackers, pull requests,

code reviews

Externalizes tacit knowledge and

problem-solving discussions

Enables experiential knowledge

retrieval and debugging support

Operational Artifacts

Deployment notes,

incident reports,

postmortems, logs

Reflects runtime behavior and

failure modes

Supports reliability analysis and

operational decision-making

Organizational Knowledge

Coding standards,

workflows, governance

policies

Encodes institutional practices

and constraints

Ensures compliance and process

consistency

Table 1 illustrates that software engineering knowledge is distributed, heterogeneous, and multi-dimensional.

Traditional knowledge management systems typically focus on documentation artifacts, neglecting process,

operational, and experiential knowledge. In contrast, the proposed AI-driven methodology treats all artifact categories

as first-class knowledge sources, enabling semantic integration and retrieval across the full spectrum of software

engineering activities. Preserving metadata such as artifact provenance, timestamps, and authorship is critical for

ensuring traceability and trust in AI-generated responses. By explicitly identifying and categorizing knowledge

sources, the proposed methodology establishes a robust foundation for retrieval-augmented reasoning in large-scale

software engineering environments

3.3. Definition of System Requirements for AI-Driven Knowledge Management

The definition of system requirements is a critical methodological step in the design of AI-driven Knowledge

Management (KM) systems for software engineering. Requirements provide a structured translation of organizational

knowledge challenges into functional and non-functional system capabilities. In large-scale software engineering

environments, KM systems must address not only information storage and retrieval but also contextual understanding,

reasoning, adaptability, and trustworthiness (Aurum et al., 2003; Bjørnson & Dingsøyr, 2008). Based on insights from

prior research in software engineering knowledge management, intelligent systems, and AI-assisted decision support,

the requirements for an AI-driven KM system can be grouped into functional, non-functional, and AI-specific

requirements. These requirements guide architectural design choices and ensure alignment with the practical needs of

software development organizations.

Table 2: System Requirements for AI-Driven Knowledge Management in Software Engineering

Requirement

Category
Requirement Description Relevance to Software Engineering

Functional
Heterogeneous Knowledge

Integration

Ingest and unify diverse

software artifacts
Reduces information silos

Functional Semantic Retrieval
Context-aware retrieval

beyond keywords
Supports complex developer queries

Functional Knowledge Synthesis
Generate concise,

explanatory responses

Improves understanding and

decision-making

Non-Functional Scalability
Handle large and evolving

repositories
Suitable for large-scale systems

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1372

Requirement

Category
Requirement Description Relevance to Software Engineering

Non-Functional Maintainability Support continuous updates
Aligns with evolving software

projects

Non-Functional Usability Natural language interaction Encourages developer adoption

AI-Specific Knowledge Grounding
Condition generation on

retrieved artifacts
Reduces hallucination

AI-Specific Traceability Provide source references Improves trust and verification

AI-Specific Reliability
Consistent and coherent

responses

Supports critical engineering

decisions

3.3.1. Requirement Prioritization Using the MoSCoW Method

To ensure systematic and practical system design, the identified requirements are prioritized using the MoSCoW

method, a widely adopted requirements engineering technique in software systems design. The MoSCoW method

categorizes requirements into Must-have, Should-have, Could-have, and Won’t-have (for now) as show in table 3,

enabling informed architectural trade-offs and phased implementation. In the context of AI-driven Knowledge

Management (KM), prioritization is essential due to the complexity of integrating retrieval, generation, and trust-

related mechanisms.

Table: 3 MoSCoW Prioritization of System Requirements

Requirement Category Rationale

Heterogeneous knowledge integration Must-have
Core capability; without it, KM value is

limited

Semantic, context-aware retrieval Must-have
Essential for addressing the knowledge

problem

Knowledge grounding (RAG) Must-have Prevents hallucination and ensures reliability

Traceability to source artifacts Must-have Critical for trust and verification

Knowledge synthesis (response

generation)
Should-have

Strongly enhances usability and

comprehension

Scalability to large repositories Should-have Necessary for real-world deployment

Usability via natural language queries Should-have Encourages adoption by developers

User feedback incorporation Could-have Useful for iterative refinement

Automated model retraining
Won’t-have (current

scope)
Outside 2023 feasibility and study scope

This prioritization ensures that trust, grounding, and retrieval accuracy are treated as non-negotiable design

constraints, while advanced adaptivity features are deferred. Such prioritization aligns with architectural research best

practices and mitigates over-claiming in early-stage AI systems.

3.4. Design of a Modular RAG-Based Architecture

3.4.1. Architectural Motivation

Large-scale software engineering environments are characterized by heterogeneous knowledge repositories,

continuous evolution of artifacts, and high requirements for accuracy and traceability. Conventional knowledge

management systems provide limited support for complex, context-aware queries, while purely generative AI models

may produce responses that are insufficiently grounded in project-specific knowledge. To address these limitations,

this study proposes a modular Retrieval-Augmented Generation (RAG)–based architecture for AI-driven knowledge

management as shown in figure 2.

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1373

Figure 2: Modular Retrieval-Augmented Generation (RAG) Architecture for AI-Driven Knowledge Management in

Software Engineering

The architectural design emphasizes modularity, traceability, and adaptability, ensuring that individual components

can be independently developed, replaced, or extended as organizational needs and technologies evolve. By explicitly

separating retrieval from generation, the architecture supports reliable, evidence-based reasoning aligned with the

requirements of large-scale software engineering.

3.4.2. Overview of the Modular Architecture

The proposed architecture consists of six logically independent but interoperable modules:

1. Knowledge Source Connectors

2. Ingestion and Preprocessing Pipeline

3. Semantic Representation and Indexing Layer

4. Query Understanding and Retrieval Orchestrator

5. Retrieval-Augmented Generation Layer

6. Provenance, Governance, and Feedback Layer

Each module is designed to fulfill a well-defined responsibility, enabling scalable integration of heterogeneous

software engineering knowledge artifacts.

3.4.2.1. Knowledge Source Connectors

The knowledge source connectors interface with diverse software engineering repositories, including source code

management systems, documentation platforms, issue tracking tools, and operational repositories. These connectors

are responsible for acquiring raw artifacts and associated metadata such as timestamps, authorship, and repository

identifiers. The modular design of connectors allows the system to accommodate new tools or repositories without

affecting downstream components. This is particularly important in large organizations where toolchains evolve over

time.

3.4.2.2. Ingestion and Preprocessing Pipeline

The ingestion and preprocessing pipeline transforms raw artifacts into structured knowledge units suitable for semantic

indexing. This module performs normalization, segmentation, and metadata enrichment. Large documents are

decomposed into semantically coherent chunks, while source code artifacts may be segmented at function or class

level. Crucially, provenance metadata is preserved throughout preprocessing, enabling traceability between generated

responses and original knowledge sources. This design choice supports trust and verification in software engineering

contexts.

3.4.2.3. Semantic Representation and Indexing Layer

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1374

The semantic representation and indexing layer is responsible for transforming heterogeneous software engineering

knowledge artifacts into a unified semantic space that supports meaningful retrieval across repositories. Unlike

traditional keyword-based indexing, this layer focuses on capturing contextual and conceptual relationships between

artifacts such as source code, documentation, issue reports, and architectural decision records. By representing

knowledge at the semantic level, the system enables retrieval based on intent and meaning rather than surface-level

textual similarity

This layer also plays a critical role in enabling scalability and maintainability within large-scale software engineering

environments. As new artifacts are continuously generated and existing ones evolve, the indexing mechanism supports

incremental updates without requiring complete reprocessing of the knowledge base. Metadata associated with each

indexed unit—including artifact type, timestamp, authorship, and repository location—is stored alongside semantic

representations, allowing retrieval processes to incorporate contextual filters such as recency or artifact relevance.

Through this design, the semantic representation and indexing layer establishes the foundation for efficient, accurate,

and context-aware knowledge discovery. Query Understanding and Retrieval Orchestrator

3.4.2.4. Query Understanding and Retrieval Orchestrator

The query understanding and retrieval orchestrator serves as the central coordination component that interprets user

queries and manages the retrieval of relevant knowledge artifacts. When a user submits a natural language query, the

orchestrator analyzes its intent and contextual cues to guide the retrieval process. This enables the system to distinguish

between different types of information needs, such as architectural explanations, debugging assistance, or procedural

guidance, and to retrieve artifacts accordingly.

In addition to coordinating retrieval, the orchestrator performs contextual refinement of the retrieved results. Retrieved

artifacts are filtered, ranked, and consolidated to construct a coherent evidence set that best supports the user’s

information need. The orchestrator may prioritize certain artifact types based on query intent—for example,

architectural decision records for design-related queries or recent issue reports for operational questions. This

orchestration step ensures that the generation layer receives a curated and diverse set of authoritative sources,

improving both response relevance and reliability.

3.4.2.5. Retrieval-Augmented Generation Layer

The retrieval-augmented generation layer is responsible for synthesizing natural language responses that are explicitly

grounded in retrieved software engineering knowledge. Rather than generating responses solely based on internal

model knowledge, this layer conditions its outputs on the contextual evidence provided by the retrieval orchestrator.

This design choice significantly reduces the risk of unsupported or speculative responses, which is a critical

requirement in software engineering environments where incorrect information can have serious consequences.

Beyond response generation, this layer emphasizes clarity, conciseness, and traceability. Generated outputs are

structured to address the user’s query directly while referencing the underlying artifacts that informed the response.

This allows users to verify the information and explore source materials when deeper understanding is required. By

combining retrieval with controlled generation, the retrieval-augmented generation layer provides a balanced

mechanism for knowledge synthesis that aligns with the accuracy, transparency, and trust requirements of large-scale

software engineering knowledge management.

3.4.2.6. Provenance, Governance, and Feedback Layer

To support trust and organizational adoption, the architecture includes a dedicated module for provenance tracking,

governance, and feedback. This module records the sources used in each response, enforces access control policies,

and logs system interactions for auditing purposes. User feedback regarding response relevance and completeness is

captured to inform future system refinement. While automated retraining is outside the scope of this study, the

architecture is designed to support iterative improvement through enhanced retrieval strategies and expanded

knowledge coverage.

4. Case Studies and Empirical Evaluation

To evaluate the practical applicability and effectiveness of the proposed AI-driven Knowledge Management System

(KMS), this study employs qualitative case studies grounded in widely observed challenges within large-scale

software engineering environments. Qualitative and use-case–driven evaluation approaches are commonly adopted in

early-stage architectural research, particularly where standardized benchmarks and datasets are limited (Bjørnson &

Dingsøyr, 2008; Kitchenham et al., 2010). The selected case studies focus on developer onboarding and technical debt

identification and mitigation, two scenarios that are highly dependent on effective knowledge discovery, historical

context, and cross-artifact reasoning. Prior research identifies both scenarios as persistent bottlenecks in large and

long-lived software systems (Parnin & Rugaber, 2011; Li et al., 2015).

4.1. Developer Onboarding Scenario

4.1.1. Context and Motivation

Developer onboarding is a critical activity in software engineering organizations, particularly in projects characterized

by high complexity and frequent team changes. New developers are expected to rapidly acquire knowledge of system

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1375

architecture, development practices, and historical design decisions. However, empirical studies show that onboarding

is often prolonged due to fragmented documentation, outdated design artifacts, and reliance on informal knowledge

transfer (Begel & Simon, 2008; Steinmacher et al., 2015). Traditional knowledge management systems provide limited

support for onboarding because they require developers to manually navigate multiple repositories without contextual

guidance. Research indicates that lack of structured knowledge access increases cognitive load and delays effective

contribution by new team members (Simpson et al., 2018).

4.1.2. Application of the Proposed System

In this scenario, newly onboarded developers interact with the AI-driven KMS using natural language queries related

to system architecture, module responsibilities, and development workflows. The system retrieves relevant

architectural documentation, source code annotations, and architectural decision records, synthesizing them into

concise explanations grounded in project-specific artifacts. Retrieval-augmented generation ensures that responses

remain aligned with authoritative sources rather than generic explanations (Lewis et al., 2020).

4.1.3. Observed Outcomes

Qualitative observations suggest that the proposed system substantially improves access to architectural knowledge

and historical context. By consolidating information across multiple repositories, the KMS reduces the effort required

to locate relevant knowledge and supports faster conceptual understanding. These findings align with prior research

emphasizing the importance of contextualized documentation and integrated knowledge access for effective

onboarding (Begel & Simon, 2008; Parnin & Rugaber, 2011).

4.2. Technical Debt Identification and Mitigation

4.2.1. Context and Motivation

Technical debt refers to accumulated design and implementation compromises that increase the cost of future

maintenance and evolution. Managing technical debt requires understanding the historical rationale behind design

decisions, constraints faced during implementation, and previously proposed mitigation strategies. However, this

information is often scattered across issue trackers, commit histories, and informal discussions, making it difficult to

access systematically (Li et al., 2015; Kruchten et al., 2012). Prior studies highlight that lack of visibility into historical

decision-making contributes to the persistence and growth of technical debt, as developers may unknowingly repeat

suboptimal design choices (Kruchten et al., 2012).

4.2.2. Application of the Proposed System

The AI-driven KMS supports technical debt analysis by enabling queries that explore the origins and implications of

legacy components. The retrieval mechanism identifies relevant issue discussions, pull request comments, and

architectural decision records, while the generation layer synthesizes this information into an integrated explanation.

This enables developers to reconstruct decision contexts and assess whether original constraints remain valid.

4.2.3. Observed Outcomes

The system facilitates improved understanding of technical debt sources by making historical knowledge readily

accessible. Qualitative evidence suggests that this capability supports more informed prioritization of refactoring

efforts and reduces the likelihood of introducing additional debt. These observations are consistent with prior findings

that emphasize the role of knowledge transparency in effective technical debt management (Li et al., 2015).

4.3. Qualitative Evaluation Summary

Across both case studies, the proposed AI-driven KMS demonstrates notable improvements in knowledge

accessibility, contextual coherence, and traceability. By integrating semantic retrieval with grounded generation, the

system enables developers to obtain synthesized explanations supported by authoritative software artifacts. This aligns

with research indicating that retrieval-augmented approaches improve factual grounding and trust in knowledge-

intensive systems (Lewis et al., 2020; Bender et al., 2021). From a qualitative evaluation perspective, the following

outcomes are consistently observed:

• Reduced effort in locating relevant information

• Improved understanding of system architecture and historical decisions

• Increased confidence in retrieved and generated knowledge due to explicit source references

• Enhanced organizational knowledge retention

While the evaluation does not include quantitative performance metrics, the results provide strong empirical support

for the feasibility and practical relevance of retrieval-augmented knowledge management architectures in large-scale

software engineering. These findings motivate future work involving controlled empirical studies and longitudinal

industrial evaluations.

5. Threats to Validity and Limitations

As with any design-oriented and exploratory research, this study is subject to several threats to validity. These threats

are discussed to clarify the scope of the findings, avoid overgeneralization, and provide transparency regarding

methodological limitations. Following established software engineering research practices, threats are categorized into

construct validity, internal validity, external validity, and reliability (Kitchenham et al., 2010).

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1376

5.1. Construct Validity

Construct validity concerns whether the study accurately captures and measures the concepts it intends to investigate.

In this work, the effectiveness of the AI-driven Knowledge Management System (KMS) is evaluated primarily through

qualitative case studies and pseudo-metrics rather than standardized quantitative benchmarks. While qualitative

evaluation is appropriate for early-stage architectural research, it may not fully capture measurable performance

improvements such as productivity gains or defect reduction (Bjørnson & Dingsøyr, 2008).

To mitigate this threat, the evaluation focuses on well-established software engineering scenarios—developer

onboarding and technical debt management—which are widely recognized as knowledge-intensive and representative

use cases. Furthermore, evaluation criteria such as knowledge accessibility, contextual coherence, and traceability are

grounded in prior knowledge management and software engineering literature.

5.2. Internal Validity

Internal validity relates to the extent to which observed outcomes can be causally attributed to the proposed

architecture. In this study, causal relationships between the RAG-based architecture and observed improvements

cannot be conclusively established, as the evaluation does not involve controlled experiments or comparative

baselines. This limitation is addressed by explicitly positioning the contribution as architectural and methodological

rather than performance-optimizing. The study avoids claims of quantitative superiority and instead demonstrates

feasibility and conceptual effectiveness. Future work involving controlled user studies and A/B comparisons is

necessary to establish causal claims.

5.3. External Validity

External validity concerns the generalizability of the findings beyond the studied scenarios. Software engineering

organizations vary significantly in terms of project scale, tooling ecosystems, development practices, and

organizational culture. As a result, the applicability and impact of the proposed system may differ across contexts.

Although the architecture is designed to be modular and adaptable, its effectiveness may depend on the availability

and quality of organizational knowledge artifacts. This threat is partially mitigated by grounding the design in widely

used software engineering tools and practices. Nonetheless, broader validation through longitudinal industrial case

studies is required to assess generalizability.

5.4. Reliability

Reliability refers to the consistency and repeatability of the research findings. Because the study does not include a

fully implemented system or a standardized evaluation protocol, exact replication of the results is currently not

feasible. To improve reliability, the methodology, architectural components, and evaluation criteria are described in

sufficient detail to allow independent replication and extension. Future implementations and open benchmarks would

further strengthen reliability and reproducibility.

5.5. Summary of Limitation

In summary, the primary limitations of this study include reliance on qualitative evaluation, absence of quantitative

benchmarking, and limited empirical validation across organizations. These limitations are inherent to early-stage

architectural research and are acknowledged as directions for future work rather than deficiencies of the proposed

approach.

6. Security, Privacy, and Ethical Considerations

 AI-driven knowledge management systems operating in software engineering environments raise significant

security, privacy, and ethical concerns, particularly due to their access to sensitive organizational artifacts. Addressing

these considerations is essential for responsible system design and organizational adoption.

6.1. Security Considerations

From a security perspective, the primary risk lies in unauthorized access to proprietary or sensitive software artifacts,

including source code, vulnerability reports, and incident postmortems. AI-driven KMS architectures must therefore

enforce robust access control mechanisms that align with organizational roles and permissions (Saltzer & Schroeder,

1975). The modular design of the proposed architecture supports security by enabling access control enforcement at

multiple layers, including ingestion, retrieval, and generation. Artifact-level permissions and audit logging

mechanisms help ensure that sensitive information is only accessible to authorized users. Additionally, provenance

tracking supports accountability by recording which sources were accessed and referenced in generated responses.

6.2. Privacy Considerations

Privacy concerns arise when software engineering artifacts contain personal or sensitive information, such as

developer identifiers, communication logs, or incident discussions. Improper handling of such data may violate

organizational policies or regulatory requirements. To address these concerns, the proposed architecture emphasizes

data minimization and provenance-aware retrieval. Metadata enrichment allows sensitive fields to be masked or

filtered during retrieval and generation. Furthermore, retrieval-augmented generation reduces reliance on memorized

model knowledge, limiting unintended disclosure of information learned during pretraining (Bender et al., 2021).

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1377

6.3. Ethical Considerations

Ethical considerations primarily relate to trust, accountability, and human oversight. AI-generated responses may

influence architectural decisions, debugging strategies, or refactoring priorities. If such responses are incorrect or

biased, they may lead to suboptimal or harmful outcomes. The architecture addresses these concerns by prioritizing

knowledge grounding and traceability, ensuring that generated responses are linked to authoritative artifacts rather

than presented as unquestionable recommendations. This design supports a human-in-the-loop paradigm, where AI

acts as a decision-support tool rather than an autonomous decision-maker (Floridi et al., 2018). Additionally, the

system should avoid reinforcing existing biases in documentation or development practices by encouraging critical

review of retrieved knowledge and supporting multiple perspectives when available.

6.4. Responsible Deployment Implications

Responsible deployment of AI-driven KMS requires organizational policies governing acceptable use, oversight, and

continuous monitoring. Transparency regarding system limitations and uncertainty is critical to prevent overreliance

on AI-generated outputs. By embedding governance and audit mechanisms into the architecture, the proposed

approach aligns with emerging best practices for responsible AI adoption in software engineering.

7. Future Research Direction

While this study demonstrates the feasibility and practical value of a modular Retrieval-Augmented Generation

(RAG)–based architecture for AI-driven knowledge management in software engineering, several promising research

directions remain open and warrant further investigation.

1. Conduct controlled user studies and longitudinal industrial deployments to quantify the impact of AI-driven

knowledge management on onboarding time, defect resolution, and technical debt reduction. Establish standardized

datasets and metrics for organizational knowledge management evaluation.

2. Investigate how developers interact with retrieval-augmented explanations, including trust formation, cognitive

load, and acceptance over time. Explore effective feedback mechanisms and human-in-the-loop strategies.

3. Develop retrieval strategies that dynamically adjust based on user roles, task context, project phase, or system

criticality to improve relevance and usability.

4. Embed AI-driven knowledge management into IDEs, CI/CD pipelines, and code review platforms to enable

proactive and context-sensitive knowledge delivery during development activities.

5. Study indexing, retrieval, and update strategies that maintain responsiveness as organizational knowledge bases

grow in size and complexity.

6. Define organizational policies, access control models, and ethical guidelines for responsible deployment of AI-

driven knowledge management systems.

7. Evaluate the applicability of retrieval-augmented knowledge management architectures across different domains,

organizational structures, and software development cultures.

7. CONCLUSION

This paper presented a comprehensive architectural and methodological framework for AI-driven Knowledge

Management Systems in large-scale software engineering, grounded in a modular Retrieval-Augmented Generation

(RAG) approach. Motivated by persistent knowledge-related challenges in modern software organizations—such as

fragmented repositories, extended onboarding processes, and the accumulation of technical debt—the study proposed

a system design that integrates semantic retrieval with grounded natural language generation to support effective

knowledge access and reuse. The paper systematically addressed the research problem by (i) analyzing the knowledge

challenges inherent to software engineering, (ii) reviewing existing knowledge management and AI-based approaches,

(iii) defining system requirements and prioritization strategies, and (iv) designing a modular RAG-based architecture

incorporating explicit mechanisms for grounding, traceability, and governance. Through detailed case studies focusing

on developer onboarding and technical debt identification, the study demonstrated how retrieval-augmented

knowledge access can enhance contextual understanding, reduce information-seeking effort, and support long-term

organizational knowledge retention. In contrast to purely generative AI systems, the proposed approach places strong

emphasis on grounding, transparency, and trust, making it well suited for reliability-critical software engineering

environments. By treating retrieval as a first-class architectural component and embedding provenance and

governance mechanisms into the system design, the framework directly addresses key concerns related to

hallucination, outdated information, and accountability.

8. Author Biography

Sohail Sarfaraz

Sohail Sarfaraz is a software engineer specializing in large-scale, distributed software systems for fintech and

enterprise platforms. His work focuses on requirement and scoping analysis, translating business and stakeholder

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1378

needs into traceable functional designs, user stories, and testable system components. He has contributed to the design

and implementation of secure, scalable frontend and backend systems, including RESTful APIs, modular micro-

frontend architectures, and data-driven analytical dashboards. His technical responsibilities include implementing

secure authentication and authorization mechanisms, designing SQL-based data models, automating CI/CD

workflows, integrating telemetry and monitoring, and enforcing production-grade security, performance, and

reliability standards. He actively participates in test design, execution, defect analysis, regression testing, and

operational troubleshooting to ensure system stability and scalability in production environments.

Faiza Qureshi

Faiza Qureshi is an experienced educator and academic content creator with proven expertise in educational

leadership, curriculum planning, and academic administration. Brings several years of experience in content

development for education and IT-focused organizations, along with over two years in senior academic leadership as

Content Creator, Vice Principal and beyond. Known for strategic thinking, team leadership, and the ability to foster

collaborative learning environments that enhance student performance and faculty development. Seeking to contribute

effectively to the education sector through leadership, teaching, or academic support roles.

Mansoor Sarfraz

Mansoor Sarfraz, is a staff-level individual contributor specializing in enterprise platform services that deliver secure

access and identity capabilities, including Privileged Access Management, for large internal engineering ecosystems.

He has led the architecture and evolution of distributed platform services built on Java Spring Boot microservices,

React-based user interfaces, and cloud infrastructure, enabling secure and scalable consumption across multiple

engineering teams. His work includes designing scalable API and integration layers, implementing service-to-service

authentication and authorization using OAuth2 and JWT, and improving platform performance, reliability, and

operational efficiency through systematic optimization. He has also contributed to CI/CD and DevOps practices,

automated access lifecycle workflows, and served as an architecture reviewer and technical mentor, influencing

platform standards and long-term maintainability through close collaboration with product, infrastructure, and security

teams.

9. REFERENCES

1. Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing software engineering knowledge. Springer.

2. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can

language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,

610–623.

3. Bjornson, F. O., & Dingsoyr, T. (2008). Knowledge management in software engineering: A systematic review.

Information and Software Technology, 50(11), 1055–1068.

4. Brown, T. B., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing

Systems, 33, 1877–1901.

5. Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems, 33, 9459–9474.

6. Parnin, C., & Rugaber, S. (2011). Resumption strategies for interrupted programming tasks. IEEE International

Conference on Program Comprehension, 80–89.

7. Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big code and

naturalness. ACM Computing Surveys, 51(4), 1–37. https://doi.org/10.1145/3212695

8. Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing software engineering knowledge. Springer.

9. Bacchelli, A., Bird, C., & Zimmermann, T. (2012). Linking developers to code changes. Proceedings of the 34th

International Conference on Software Engineering, 945–954. https://doi.org/10.1109/ICSE.2012.6227206

10. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can

language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,

610–623.

11. Bjornson, F. O., & Dingsoyr, T. (2008). Knowledge management in software engineering: A systematic review.

Information and Software Technology, 50(11), 1055–1068.

12. Brown, T. B., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing

Systems, 33, 1877–1901.

13. Cleland-Huang, J., Gotel, O., & Zisman, A. (2014). Software traceability: Trends and future directions. IEEE

Software, 31(4), 12–19.

14. Hassan, A. E., & Holt, R. C. (2005). The top ten list: Dynamic fault prediction. Proceedings of the 21st IEEE

International Conference on Software Maintenance, 263–272.

15. Izacard, G., & Grave, E. (2021). Leveraging passage retrieval with generative models for open-domain question

answering. International Conference on Learning Representations.

TPM Vol. 32, No. 3, 2025 Open Access

ISSN: 1972-6325

https://www.tpmap.org/

1379

16. Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems, 33, 9459–9474.

17. Parnin, C., & Rugaber, S. (2011). Resumption strategies for interrupted programming tasks. IEEE International

Conference on Program Comprehension, 80–89.

18. Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing software engineering knowledge. Springer.

19. Bjørnson, F. O., & Dingsøyr, T. (2008). Knowledge management in software engineering: A systematic review.

Information and Software Technology, 50(11), 1055–1068.

20. Dingsøyr, T., Bjørnson, F. O., & Shull, F. (2012). What do we know about knowledge management? IEEE

Software, 29(2), 100–103. https://doi.org/10.1109/MS.2011.146

21. Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. Oxford University Press.

22. Storey, M. A., Zagalsky, A., Filho, F. F., Singer, L., & German, D. M. (2014). How social and communication

channels shape and challenge a participatory culture in software development. IEEE Transactions on Software

Engineering, 40(4), 355–369.

23. Begel, A., & Simon, B. (2008). Novice software developers, all over again. Proceedings of the Fourth International

Workshop on Computing Education Research, 3–14. https://doi.org/10.1145/1404520.1404522

24.
25. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can

language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,

610–623. https://doi.org/10.1145/3442188.3445922

26.
27. Bjørnson, F. O., & Dingsøyr, T. (2008). Knowledge management in software engineering: A systematic review.

Information and Software Technology, 50(11), 1055–1068.

28. Kitchenham, B., Pretorius, R., Budgen, D., et al. (2010). Systematic literature reviews in software engineering.

Information and Software Technology, 51(1), 7–15.

29. Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From metaphor to theory and practice. IEEE

Software, 29(6), 18–21.

30. Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems, 33, 9459–9474.

31. Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt. Journal of Systems and

Software, 109, 193–220.

32. Parnin, C., & Rugaber, S. (2011). Resumption strategies for interrupted programming tasks. IEEE International

Conference on Program Comprehension, 80–89.

33. Simpson, C., Storer, T., & Wood, M. (2018). Understanding the onboarding process in software development

teams. Journal of Software: Evolution and Process, 30(1), e1905.

34. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can

language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,

610–623.

35. Bjørnson, F. O., & Dingsøyr, T. (2008). Knowledge management in software engineering: A systematic review.

Information and Software Technology, 50(11), 1055–1068.

36. Floridi, L., Cowls, J., Beltrametti, M., et al. (2018). AI4People—An ethical framework for a good AI society.

Minds and Machines, 28(4), 689–707.

37. Kitchenham, B., Pretorius, R., Budgen, D., et al. (2010). Systematic literature reviews in software engineering.

Information and Software Technology, 51(1), 7–15.

38. Saltzer, J. H., & Schroeder, M. D. (1975). The protection of information in computer systems. Proceedings of the

IEEE, 63(9), 1278–1308.

