TPM Vol. 32, No. 3, 2025
ISSN: 1972-6325
https://www.tpmap.org/

Open Access

MANAGING AI-ENABLED KNOWLEDGE FOR LARGE-
SCALE SOFTWARE ENGINEERING: A RETRIEVAL-
AUGMENTED APPROACH

SOHAIL SARFARAZ', FAIZA QURESHI?, MANSOOR SARFRAZ?

I-SOFTWARE ENGINEER, WALMART, sohail.sarfaraz@gmail.com,
2 CONTENT WRITER, monaa.sohail@gmail.com
3 SENIOR SOFTWARE ENGINEER, MACQUARIE GROUP, mansoor.sarfraz@gmail.com

Abstract

Large-scale software engineering organizations continuously produce diverse and extensive
knowledge artifacts, such as source code, technical documentation, issue tracking records, and
architectural decision documents. Effectively managing and reusing this knowledge remains a
longstanding challenge due to information fragmentation, rapid system evolution, and the inherent
limitations of traditional keyword-based knowledge management systems. Although recent advances
in neural language models have shown strong capabilities in natural language understanding and
generation, their direct application in software engineering contexts is limited by insufficient domain
grounding, reliance on outdated information, and a lack of traceability. To address these challenges,
this paper proposes an Al-driven Knowledge Management System (KMS) based on a Retrieval-
Augmented Generation (RAG) architectural approach tailored for large-scale software engineering
environments. The proposed architecture combines semantic retrieval with generative reasoning to
enable context-aware and grounded access to organizational knowledge across heterogenecous
software repositories. By conditioning generated responses on retrieved, project-specific artifacts, the
system enhances accuracy, transparency, and adaptability to evolving knowledge bases. The paper
presents the architectural design, methodological framework, and qualitative case studies focused on
developer onboarding and technical debt mitigation, illustrating the potential of retrieval-augmented
architectures as a foundation for next-generation knowledge management systems in software
engineering.

Keywords: Al-driven knowledge management; Retrieval-augmented generation; Software
engineering; Semantic information retrieval; Large-scale software systems; Developer onboarding;
Technical debt management.

1. INTRODUCTION

1.1. Background

Software engineering (SE) has progressively evolved into a highly knowledge-intensive discipline driven by
increasing system scale, architectural complexity, and rapid development cycles. Contemporary software systems are
developed and maintained by distributed teams and consist of interconnected components that continuously evolve
over time. Throughout the software development lifecycle, a vast amount of knowledge is generated in the form of
source code, design documents, requirement specifications, architectural decision records, issue tracking logs, test
reports, and operational documentation.

Effective knowledge management is widely recognized as a critical factor for improving software quality,
maintainability, and organizational learning. Prior research indicates that systematic reuse of software knowledge
reduces development effort, supports informed decision-making, and enhances productivity (Aurum et al., 2003;
Lindvall et al., 2003). Consequently, many software organizations adopt knowledge management systems (KMS) to
capture, organize, and disseminate project-related information. However, as software systems grow in size and
complexity, traditional KMS increasingly struggle to provide timely, context-aware, and actionable knowledge.

1.2. The Knowledge Problem in Software Engineering

The knowledge problem in software engineering stems from the fragmented, tacit, and continuously evolving nature
of software-related information as shown in figure 1. Knowledge is distributed across multiple tools and platforms,
including version control systems, issue trackers, documentation repositories, and informal communication channels.
Empirical studies show that developers spend a significant portion of their time searching for information rather than
performing development tasks, particularly in large and long-lived systems (Parnin & Rugaber, 2011). Traditional
knowledge management approaches rely heavily on static documentation and keyword-based search mechanisms.

1367

mailto:sohail.sarfaraz@gmail.com
mailto:monaa.sohail@gmail.com
mailto:mansoor.sarfraz@gmail.com

TPM Vol. 32, No. 3, 2025 - Open Access
ISSN: 1972-6325
https://www.tpmap.org/

These methods are limited in their ability to capture implicit knowledge, understand semantic relationships between
artifacts, or support complex reasoning tasks such as architectural trade-off analysis. As a result, organizations face
challenges such as prolonged developer onboarding, redundant work, knowledge loss due to staff turnover, and
accumulation of technical debt (Bjornson & Dingsoyr, 2008).

Maintaining Data

Privacy and Rapidly Evolving
Security Technologies
Managing " Code Quality and
Distributed Teams Delivery Speed
Ensuring Debugging
Scalability Complex Systems
Yo
Overcoming Managing
Burnout and Technical Debt
Stress

Figure 1: The Knowledge Problem in Large-Scale Software Engineering

Recent advances in artificial intelligence, particularly neural language models, have introduced new opportunities for
natural language interaction with technical artifacts. Such models have demonstrated promising capabilities in tasks
such as text summarization, question answering, and code-related analysis (Brown et al., 2020). However, when
applied directly to software engineering knowledge management, purely generative models exhibit critical limitations.
These include hallucinated outputs, lack of grounding in project-specific knowledge, outdated information, and
insufficient transparency—issues that undermine trust and hinder adoption in reliability-critical software
environments (Bender et al., 2021).

1.3. Objectives of This Study

To address the limitations of both traditional knowledge management systems and purely generative Al models, this
paper explores the use of Retrieval-Augmented Generation (RAG) as an architectural foundation for Al-driven
knowledge management in software engineering. RAG combines information retrieval with neural generation by
conditioning responses on retrieved documents, thereby improving factual grounding, contextual relevance, and
traceability (Lewis et al., 2020).

The primary objectives of this study are to:

» Examine the limitations of existing knowledge management approaches in large-scale software engineering
environments.

» Propose a retrieval-augmented architectural framework for Al-driven knowledge management systems.

» Demonstrate the applicability of the proposed approach through representative software engineering case studies.
» Discuss the benefits, limitations, and future research directions of retrieval-augmented knowledge management in
software engineering.

2. LITERATURE REVIEW

2.1. Knowledge Management in Software Engineering
Knowledge management has long been recognized as a critical factor in software engineering due to the inherently
knowledge-intensive nature of software development activities. Software projects continuously generate both explicit

1368

a B Y\ W E
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y X/
https://www.tpmap.org/ V,

knowledge (e.g., documentation, source code, specifications) and tacit knowledge (e.g., design rationale, experiential
insights, and informal practices). Early research emphasized that effective management and reuse of this knowledge
improves productivity, software quality, and organizational learning (Aurum et al., 2003; Lindvall et al., 2003).
Traditional knowledge management systems in software engineering typically rely on document repositories, wikis,
intranets, and static databases. While these tools support basic information storage and retrieval, empirical studies
report several limitations, including poor maintenance, information overload, and difficulty in locating relevant
knowledge across large and evolving systems (Bjornson & Dingsoyr, 2008). Moreover, such systems primarily focus
on explicit knowledge and fail to adequately capture tacit knowledge, which plays a crucial role in architectural
decision-making and system evolution.

As software systems scale, the knowledge problem becomes more pronounced. Developers often need to navigate
multiple heterogeneous tools—such as version control systems, issue trackers, and continuous integration pipelines—
to reconstruct system understanding. Studies show that developers spend a significant portion of their working time
searching for information rather than performing productive development tasks, particularly in large and long-lived
projects (Parnin & Rugaber, 2011). These challenges highlight the need for more intelligent and integrated knowledge
management solutions.

2.2. Intelligent Support and Mining Software Repositories

To address the limitations of traditional knowledge management approaches, researchers have explored intelligent
techniques based on information retrieval, recommendation systems, and mining software repositories (MSR). Early
work in this area focused on supporting specific development tasks, such as bug localization, code search, and
developer recommendation, by analyzing historical project data (Hassan & Holt, 2005; Bacchelli et al., 2012). Mining
software repositories enables the extraction of valuable knowledge from version histories, issue reports, and
communication logs. Such approaches have been successfully applied to defect prediction, maintenance analysis, and
process improvement.

However, these techniques are often task-specific and require specialized tooling, limiting their generalizability as
comprehensive knowledge management solutions. Furthermore, many MSR-based tools require significant manual
effort to configure and interpret, reducing their accessibility for everyday developer use. Although intelligent retrieval
and recommendation techniques improve information access, they typically lack advanced reasoning capabilities and
do not provide natural language interaction. As a result, they offer limited support for complex queries that require
synthesis across multiple knowledge sources.

2.3. Neural Language Models for Software Engineering Knowledge

Recent advances in machine learning and natural language processing have led to the adoption of neural language
models for software engineering tasks. Such models have demonstrated promising results in areas including code
summarization, documentation generation, code search, and question answering over technical artifacts (Allamanis et
al., 2018; Li et al., 2019). Large pre-trained language models further enhance natural language interaction by enabling
few-shot and zero-shot learning across diverse tasks (Brown et al., 2020). These models provide a flexible interface
for querying software knowledge and generating human-readable explanations. However, several studies have raised
concerns regarding their reliability, particularly in knowledge-intensive domains. Purely generative models may
produce hallucinated responses, lack traceability to authoritative sources, and rely on outdated training data when
applied to evolving software systems (Bender et al., 2021).

In software engineering contexts, these limitations are particularly problematic due to the need for accuracy,
explainability, and alignment with project-specific artifacts. Consequently, while neural language models offer
powerful generative capabilities, their direct application as standalone knowledge management solutions remains
insufficient.

2.4. Retrieval-Augmented Generation and Knowledge-Grounded Models

Retrieval-Augmented Generation (RAG) was proposed as a framework that combines information retrieval with
neural text generation to support knowledge-intensive tasks. In the RAG paradigm, relevant documents are retrieved
from an external knowledge base and used as contextual input to a generative model, thereby grounding generated
responses in explicit sources (Lewis et al., 2020). Subsequent research demonstrated that retrieval-augmented models
outperform purely generative approaches in tasks such as open-domain question answering and knowledge-grounded
dialogue systems (Izacard & Grave, 2021).

By explicitly incorporating retrieved evidence, RAG-based systems improve factual accuracy, contextual relevance,
and transparency—properties that align well with the requirements of software engineering knowledge management.
Within the software engineering domain, retrieval techniques have traditionally been applied to code search and
traceability tasks (Cleland-Huang et al., 2014). However, as of early 2023, the systematic use of retrieval-augmented
generative architectures for organizational knowledge management in software engineering remains limited. Existing
studies tend to focus on isolated tasks rather than holistic knowledge management across heterogeneous software
artifacts.

1369

a B Y\ W E
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y X/
https://www.tpmap.org/ V,

2.5. Research Gap and Motivation

The literature reveals a clear gap between traditional software engineering knowledge management systems and
emerging Al-driven approaches. Conventional systems provide access to authoritative information but lack reasoning
and synthesis capabilities, while purely generative language models offer flexible interaction but suffer from
grounding and reliability issues. Although retrieval-augmented generation addresses many of these limitations, its
application as a comprehensive architectural solution for software engineering knowledge management has not been
sufficiently explored in the literature up to 2023. In particular, there is a lack of architectural frameworks that integrate
heterogeneous software artifacts, support evolving knowledge bases, and address the trust and transparency
requirements of large-scale software organizations. This paper addresses this gap by proposing a retrieval-augmented,
Al-driven knowledge management architecture tailored for large-scale software engineering environments, focusing
on system design, methodological formulation, and practical applicability.

3. METHODOLOGY

3.1. Research Design and Methodological Framework

This research adopts a design-oriented and architecture-centric methodology, which is commonly employed in
software engineering research when the objective is to propose and analyze complex system architectures rather than
develop novel learning algorithms. Given the exploratory nature of Al-driven knowledge management in software
engineering, a design science approach enables systematic reasoning about system components, interactions, and
practical applicability. The methodology focuses on the conceptual design, integration, and evaluation of an Al-driven
Knowledge Management (KM) system based on the Retrieval-Augmented Generation (RAG) paradigm. Instead of
optimizing individual machine learning models, the emphasis is placed on how retrieval and generation components
can be combined to support knowledge-intensive software engineering tasks in large organizations. The
methodological workflow is structured into the following phases:

» Identification of software engineering knowledge management challenges

» Definition of system requirements for Al-driven KM

» Design of a modular RAG-based architecture

» Mathematical formulation of retrieval and generation processes

» Qualitative validation through representative case studies

3.2. Identification of Knowledge Source in Software Engineering

Effective knowledge management in software engineering begins with the systematic identification and classification
of knowledge sources. Software engineering is inherently knowledge-intensive, generating information across the
entire software development lifecycle, including development, documentation, collaboration, deployment, and
organizational governance. Prior research emphasizes that failure to identify and integrate these heterogeneous
knowledge sources leads to knowledge loss, reduced productivity, and increased maintenance effort (Aurum et al.,
2003; Bjernson & Dingseyr, 2008). Software engineering knowledge is commonly divided into explicit knowledge,
which is formally documented, and tacit knowledge, which resides in developer experience and informal practices
(Nonaka & Takeuchi, 1995). While tacit knowledge cannot be fully externalized, studies show that it is often partially
captured through artifacts such as issue discussions, commit messages, and code reviews (Storey et al., 2014).
Consequently, modern knowledge management approaches emphasize the integration of both formal and informal
artifacts to approximate tacit knowledge through explicit representations.

Large-scale software projects produce knowledge through multiple artifact categories, each contributing distinct
insights into system structure, behavior, and evolution. Identifying these sources is a prerequisite for designing Al-
driven knowledge management systems capable of retrieval, reasoning, and synthesis across organizational knowledge
silos (Dingseyr et al., 2012).

Table 1: Summary of Knowledge Sources in Software Engineering

Knowledge Source Artifact Types Knowledge Characteristics Relevance to AI-Driven KM
Category
Source code, Encodes implementation logic, ||Enables reasoning about
Development Artifacts configuration files, code |[implicit design decisions, and functionality, dependencies, and
comments assumptions implementation intent

1370

TPM Vol. 32, No. 3, 2025
ISSN: 1972-6325
https://www.tpmap.org/

B B /

i T"&i \ ‘l‘ /
y 48 Vi
y Y

. i ¥V B

Open Access

Knowledge Source
Category

Artifact Types

Knowledge Characteristics

Relevance to AI-Driven KM

Version Control History

Commit messages,
change logs, authorship
data

Captures system evolution and
development rationale

Supports traceability and
historical reasoning

Documentation Artifacts

Requirements, design
documents, ADRs, user
manuals

Provides high-level system
structure and formal decisions

Supports onboarding and
architectural understanding

Process & Collaboration
Artifacts

Issue reports, bug
trackers, pull requests,
code reviews

Externalizes tacit knowledge and
problem-solving discussions

Enables experiential knowledge
retrieval and debugging support

Operational Artifacts

Deployment notes,
incident reports,
postmortems, logs

Reflects runtime behavior and
failure modes

Supports reliability analysis and
operational decision-making

Organizational Knowledge

Coding standards,
workflows, governance
policies

Encodes institutional practices
and constraints

Ensures compliance and process
consistency

Table 1 illustrates that software engineering knowledge is distributed, heterogeneous, and multi-dimensional.
Traditional knowledge management systems typically focus on documentation artifacts, neglecting process,
operational, and experiential knowledge. In contrast, the proposed Al-driven methodology treats all artifact categories
as first-class knowledge sources, enabling semantic integration and retrieval across the full spectrum of software
engineering activities. Preserving metadata such as artifact provenance, timestamps, and authorship is critical for
ensuring traceability and trust in Al-generated responses. By explicitly identifying and categorizing knowledge
sources, the proposed methodology establishes a robust foundation for retrieval-augmented reasoning in large-scale
software engineering environments
3.3. Definition of System Requirements for AI-Driven Knowledge Management
The definition of system requirements is a critical methodological step in the design of Al-driven Knowledge
Management (KM) systems for software engineering. Requirements provide a structured translation of organizational
knowledge challenges into functional and non-functional system capabilities. In large-scale software engineering
environments, KM systems must address not only information storage and retrieval but also contextual understanding,
reasoning, adaptability, and trustworthiness (Aurum et al., 2003; Bjernson & Dingseyr, 2008). Based on insights from
prior research in software engineering knowledge management, intelligent systems, and Al-assisted decision support,
the requirements for an Al-driven KM system can be grouped into functional, non-functional, and Al-specific
requirements. These requirements guide architectural design choices and ensure alignment with the practical needs of
software development organizations.

Table 2: System Requirements for AI-Driven Knowledge Management in Software Engineering

Requirement Requirement Description Relevance to Software Engineering

Category

Functional Heteroggneous Knowledge Ingest and uplfy diverse Reduces information silos

Integration software artifacts

Functional Semantic Retrieval E:;giztiiv;:;s;gneval Supports complex developer queries

Functional Knowledge Synthesis Generate concise, Imprgves und.erstandmg and
explanatory responses decision-making

. . Handle large and evolving .

Non-Functional Scalability . Suitable for large-scale systems

repositories

1371

TPM Vol. 32, No. 3, 2025
ISSN: 1972-6325
https://www.tpmap.org/

Open Access

Requirement Requirement Description Relevance to Software Engineering

Category

Non-Functional Maintainability Support continuous updates Ahgns with evolving software
projects

|N0n—Functi0na1 ||Usability ||Natural language interaction ||Encourages developer adoption

Condition generation on

Al-Specific Knowledge Grounding retrieved artifacts Reduces hallucination

IAI—Speciﬁc HTraceability HProvide source references ||Improves trust and verification

Al-Specific Reliability Consistent and coherent Sup.p.orts critical engineering
responses decisions

3.3.1. Requirement Prioritization Using the MoSCoW Method

To ensure systematic and practical system design, the identified requirements are prioritized using the MoSCoW
method, a widely adopted requirements engineering technique in software systems design. The MoSCoW method
categorizes requirements into Must-have, Should-have, Could-have, and Won’t-have (for now) as show in table 3,
enabling informed architectural trade-offs and phased implementation. In the context of Al-driven Knowledge
Management (KM), prioritization is essential due to the complexity of integrating retrieval, generation, and trust-
related mechanisms.

Table: 3 MoSCoW Prioritization of System Requirements

Requirement | |Category | |Rati0nale

Core capability; without it, KM value is

Heterogeneous knowledge integration |[Must-have limited

Essential for addressing the knowledge

Semantic, context-aware retrieval Must-have problem

|Kn0wledge grounding (RAG) HMust—have ||Prevents hallucination and ensures reliability |
|Traceabi1ity to source artifacts ||Must-have ||Critica1 for trust and verification |
I;;loe\;v;ziic)e synthesis (response Should-have S;ﬁ;fg :Illlsl;i?lces usability and

Sca1ability to large repositories		Sh0uld—have		Necessary for real-world deployment
Usabi1ity via natural language queries HShould-have		Encourages adoption by developers		
User feedback incorporation “Could-have		Useful for iterative refinement		

Won’t-have (current

scope) Outside 2023 feasibility and study scope

Automated model retraining

This prioritization ensures that trust, grounding, and retrieval accuracy are treated as non-negotiable design
constraints, while advanced adaptivity features are deferred. Such prioritization aligns with architectural research best
practices and mitigates over-claiming in early-stage Al systems.

3.4. Design of a Modular RAG-Based Architecture

3.4.1. Architectural Motivation

Large-scale software engineering environments are characterized by heterogeneous knowledge repositories,
continuous evolution of artifacts, and high requirements for accuracy and traceability. Conventional knowledge
management systems provide limited support for complex, context-aware queries, while purely generative Al models
may produce responses that are insufficiently grounded in project-specific knowledge. To address these limitations,
this study proposes a modular Retrieval-Augmented Generation (RAG)—based architecture for Al-driven knowledge
management as shown in figure 2.

1372

TPM Vol. 32, No. 3, 2025 Open Access
ISSN: 1972-6325
https://www.tpmap.org/

Source Code Repositories Documentation Systems Issus & Collaboration Tools | Operationsl Artitects
« Git repositories « Requiremants « Issue trackers Dephogment motes
Config files - Design docs - Pull requests Imcidant reports
- Code comments - ADRs - Code reviews ' - Posimortems
1 I]
& e a Pipeline
- Normalization
- Chunking
+ Metadata enrichment
« Provenance preservation

1

‘ Semantic Representation & Indexing Layer

- Embedding generation
- Vector similarity index
- Metadata store

x
Retrieved Chunks
¥

Frovenance &(Logs 3 g:::;' smbedding Cuery - Natural language queries
- Top-k retriaval

|
Provenance & Logs rm: "
l

| Query Understanding & Retrieval Orchestrator NARAAIH ‘

« Developers | Architects

‘ I \nuponu
‘ Retrievai- Mmmnd Maﬂm urv"
Pravenancs & Logs - Gr w

- tvtdoﬂmdbmd output

T
r
+ P wmn:n & Logs Feedback

~ Traceability
~ Access control
- Audit logging |

Provenancs, Governance & Fesdback Layer ‘

Figure 2: Modular Retrieval-Augmented Generation (RAG) Architecture for AI-Driven Knowledge Management in
Software Engineering

The architectural design emphasizes modularity, traceability, and adaptability, ensuring that individual components
can be independently developed, replaced, or extended as organizational needs and technologies evolve. By explicitly
separating retrieval from generation, the architecture supports reliable, evidence-based reasoning aligned with the
requirements of large-scale software engineering.

3.4.2. Overview of the Modular Architecture

The proposed architecture consists of six logically independent but interoperable modules:

Knowledge Source Connectors

Ingestion and Preprocessing Pipeline

Semantic Representation and Indexing Layer

Query Understanding and Retrieval Orchestrator

Retrieval-Augmented Generation Layer

Provenance, Governance, and Feedback Layer

Each module is des1gned to fulfill a well-defined responsibility, enabling scalable integration of heterogeneous
software engineering knowledge artifacts.

3.4.2.1. Knowledge Source Connectors

The knowledge source connectors interface with diverse software engineering repositories, including source code
management systems, documentation platforms, issue tracking tools, and operational repositories. These connectors
are responsible for acquiring raw artifacts and associated metadata such as timestamps, authorship, and repository
identifiers. The modular design of connectors allows the system to accommodate new tools or repositories without
affecting downstream components. This is particularly important in large organizations where toolchains evolve over
time.

3.4.2.2. Ingestion and Preprocessing Pipeline

The ingestion and preprocessing pipeline transforms raw artifacts into structured knowledge units suitable for semantic
indexing. This module performs normalization, segmentation, and metadata enrichment. Large documents are
decomposed into semantically coherent chunks, while source code artifacts may be segmented at function or class
level. Crucially, provenance metadata is preserved throughout preprocessing, enabling traceability between generated
responses and original knowledge sources. This design choice supports trust and verification in software engineering
contexts.

3.4.2.3. Semantic Representation and Indexing Layer

AR

1373

a B Y\ W E
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y X/
https://www.tpmap.org/ V,

The semantic representation and indexing layer is responsible for transforming heterogeneous software engineering
knowledge artifacts into a unified semantic space that supports meaningful retrieval across repositories. Unlike
traditional keyword-based indexing, this layer focuses on capturing contextual and conceptual relationships between
artifacts such as source code, documentation, issue reports, and architectural decision records. By representing
knowledge at the semantic level, the system enables retrieval based on intent and meaning rather than surface-level
textual similarity

This layer also plays a critical role in enabling scalability and maintainability within large-scale software engineering
environments. As new artifacts are continuously generated and existing ones evolve, the indexing mechanism supports
incremental updates without requiring complete reprocessing of the knowledge base. Metadata associated with each
indexed unit—including artifact type, timestamp, authorship, and repository location—is stored alongside semantic
representations, allowing retrieval processes to incorporate contextual filters such as recency or artifact relevance.
Through this design, the semantic representation and indexing layer establishes the foundation for efficient, accurate,
and context-aware knowledge discovery. Query Understanding and Retrieval Orchestrator

3.4.2.4. Query Understanding and Retrieval Orchestrator

The query understanding and retrieval orchestrator serves as the central coordination component that interprets user
queries and manages the retrieval of relevant knowledge artifacts. When a user submits a natural language query, the
orchestrator analyzes its intent and contextual cues to guide the retrieval process. This enables the system to distinguish
between different types of information needs, such as architectural explanations, debugging assistance, or procedural
guidance, and to retrieve artifacts accordingly.

In addition to coordinating retrieval, the orchestrator performs contextual refinement of the retrieved results. Retrieved
artifacts are filtered, ranked, and consolidated to construct a coherent evidence set that best supports the user’s
information need. The orchestrator may prioritize certain artifact types based on query intent—for example,
architectural decision records for design-related queries or recent issue reports for operational questions. This
orchestration step ensures that the generation layer receives a curated and diverse set of authoritative sources,
improving both response relevance and reliability.

3.4.2.5. Retrieval-Augmented Generation Layer

The retrieval-augmented generation layer is responsible for synthesizing natural language responses that are explicitly
grounded in retrieved software engineering knowledge. Rather than generating responses solely based on internal
model knowledge, this layer conditions its outputs on the contextual evidence provided by the retrieval orchestrator.
This design choice significantly reduces the risk of unsupported or speculative responses, which is a critical
requirement in software engineering environments where incorrect information can have serious consequences.
Beyond response generation, this layer emphasizes clarity, conciseness, and traceability. Generated outputs are
structured to address the user’s query directly while referencing the underlying artifacts that informed the response.
This allows users to verify the information and explore source materials when deeper understanding is required. By
combining retrieval with controlled generation, the retrieval-augmented generation layer provides a balanced
mechanism for knowledge synthesis that aligns with the accuracy, transparency, and trust requirements of large-scale
software engineering knowledge management.

3.4.2.6. Provenance, Governance, and Feedback Layer

To support trust and organizational adoption, the architecture includes a dedicated module for provenance tracking,
governance, and feedback. This module records the sources used in each response, enforces access control policies,
and logs system interactions for auditing purposes. User feedback regarding response relevance and completeness is
captured to inform future system refinement. While automated retraining is outside the scope of this study, the
architecture is designed to support iterative improvement through enhanced retrieval strategies and expanded
knowledge coverage.

4. Case Studies and Empirical Evaluation

To evaluate the practical applicability and effectiveness of the proposed Al-driven Knowledge Management System
(KMS), this study employs qualitative case studies grounded in widely observed challenges within large-scale
software engineering environments. Qualitative and use-case—driven evaluation approaches are commonly adopted in
early-stage architectural research, particularly where standardized benchmarks and datasets are limited (Bjernson &
Dingseyr, 2008; Kitchenham et al., 2010). The selected case studies focus on developer onboarding and technical debt
identification and mitigation, two scenarios that are highly dependent on effective knowledge discovery, historical
context, and cross-artifact reasoning. Prior research identifies both scenarios as persistent bottlenecks in large and
long-lived software systems (Parnin & Rugaber, 2011; Li et al., 2015).

4.1. Developer Onboarding Scenario

4.1.1. Context and Motivation

Developer onboarding is a critical activity in software engineering organizations, particularly in projects characterized
by high complexity and frequent team changes. New developers are expected to rapidly acquire knowledge of system

1374

a B Y\ W E
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y X/
https://www.tpmap.org/ V,

architecture, development practices, and historical design decisions. However, empirical studies show that onboarding
is often prolonged due to fragmented documentation, outdated design artifacts, and reliance on informal knowledge
transfer (Begel & Simon, 2008; Steinmacher et al., 2015). Traditional knowledge management systems provide limited
support for onboarding because they require developers to manually navigate multiple repositories without contextual
guidance. Research indicates that lack of structured knowledge access increases cognitive load and delays effective
contribution by new team members (Simpson et al., 2018).

4.1.2. Application of the Proposed System

In this scenario, newly onboarded developers interact with the Al-driven KMS using natural language queries related
to system architecture, module responsibilities, and development workflows. The system retrieves relevant
architectural documentation, source code annotations, and architectural decision records, synthesizing them into
concise explanations grounded in project-specific artifacts. Retrieval-augmented generation ensures that responses
remain aligned with authoritative sources rather than generic explanations (Lewis et al., 2020).

4.1.3. Observed Outcomes

Qualitative observations suggest that the proposed system substantially improves access to architectural knowledge
and historical context. By consolidating information across multiple repositories, the KMS reduces the effort required
to locate relevant knowledge and supports faster conceptual understanding. These findings align with prior research
emphasizing the importance of contextualized documentation and integrated knowledge access for effective
onboarding (Begel & Simon, 2008; Parnin & Rugaber, 2011).

4.2. Technical Debt Identification and Mitigation

4.2.1. Context and Motivation

Technical debt refers to accumulated design and implementation compromises that increase the cost of future
maintenance and evolution. Managing technical debt requires understanding the historical rationale behind design
decisions, constraints faced during implementation, and previously proposed mitigation strategies. However, this
information is often scattered across issue trackers, commit histories, and informal discussions, making it difficult to
access systematically (Li et al., 2015; Kruchten et al., 2012). Prior studies highlight that lack of visibility into historical
decision-making contributes to the persistence and growth of technical debt, as developers may unknowingly repeat
suboptimal design choices (Kruchten et al., 2012).

4.2.2. Application of the Proposed System

The Al-driven KMS supports technical debt analysis by enabling queries that explore the origins and implications of
legacy components. The retrieval mechanism identifies relevant issue discussions, pull request comments, and
architectural decision records, while the generation layer synthesizes this information into an integrated explanation.
This enables developers to reconstruct decision contexts and assess whether original constraints remain valid.

4.2.3. Observed Outcomes

The system facilitates improved understanding of technical debt sources by making historical knowledge readily
accessible. Qualitative evidence suggests that this capability supports more informed prioritization of refactoring
efforts and reduces the likelihood of introducing additional debt. These observations are consistent with prior findings
that emphasize the role of knowledge transparency in effective technical debt management (Li et al., 2015).

4.3. Qualitative Evaluation Summary

Across both case studies, the proposed Al-driven KMS demonstrates notable improvements in knowledge
accessibility, contextual coherence, and traceability. By integrating semantic retrieval with grounded generation, the
system enables developers to obtain synthesized explanations supported by authoritative software artifacts. This aligns
with research indicating that retrieval-augmented approaches improve factual grounding and trust in knowledge-
intensive systems (Lewis et al., 2020; Bender et al., 2021). From a qualitative evaluation perspective, the following
outcomes are consistently observed:

e Reduced effort in locating relevant information

o Improved understanding of system architecture and historical decisions

e Increased confidence in retrieved and generated knowledge due to explicit source references

¢ Enhanced organizational knowledge retention

While the evaluation does not include quantitative performance metrics, the results provide strong empirical support
for the feasibility and practical relevance of retrieval-augmented knowledge management architectures in large-scale
software engineering. These findings motivate future work involving controlled empirical studies and longitudinal
industrial evaluations.

5. Threats to Validity and Limitations

As with any design-oriented and exploratory research, this study is subject to several threats to validity. These threats
are discussed to clarify the scope of the findings, avoid overgeneralization, and provide transparency regarding
methodological limitations. Following established software engineering research practices, threats are categorized into
construct validity, internal validity, external validity, and reliability (Kitchenham et al., 2010).

1375

a B Y\ W E
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y X/
https://www.tpmap.org/ V,

5.1. Construct Validity

Construct validity concerns whether the study accurately captures and measures the concepts it intends to investigate.
In this work, the effectiveness of the Al-driven Knowledge Management System (KMS) is evaluated primarily through
qualitative case studies and pseudo-metrics rather than standardized quantitative benchmarks. While qualitative
evaluation is appropriate for early-stage architectural research, it may not fully capture measurable performance
improvements such as productivity gains or defect reduction (Bjernson & Dingsayr, 2008).

To mitigate this threat, the evaluation focuses on well-established software engineering scenarios—developer
onboarding and technical debt management—which are widely recognized as knowledge-intensive and representative
use cases. Furthermore, evaluation criteria such as knowledge accessibility, contextual coherence, and traceability are
grounded in prior knowledge management and software engineering literature.

5.2. Internal Validity

Internal validity relates to the extent to which observed outcomes can be causally attributed to the proposed
architecture. In this study, causal relationships between the RAG-based architecture and observed improvements
cannot be conclusively established, as the evaluation does not involve controlled experiments or comparative
baselines. This limitation is addressed by explicitly positioning the contribution as architectural and methodological
rather than performance-optimizing. The study avoids claims of quantitative superiority and instead demonstrates
feasibility and conceptual effectiveness. Future work involving controlled user studies and A/B comparisons is
necessary to establish causal claims.

5.3. External Validity

External validity concerns the generalizability of the findings beyond the studied scenarios. Software engineering
organizations vary significantly in terms of project scale, tooling ecosystems, development practices, and
organizational culture. As a result, the applicability and impact of the proposed system may differ across contexts.
Although the architecture is designed to be modular and adaptable, its effectiveness may depend on the availability
and quality of organizational knowledge artifacts. This threat is partially mitigated by grounding the design in widely
used software engineering tools and practices. Nonetheless, broader validation through longitudinal industrial case
studies is required to assess generalizability.

5.4. Reliability

Reliability refers to the consistency and repeatability of the research findings. Because the study does not include a
fully implemented system or a standardized evaluation protocol, exact replication of the results is currently not
feasible. To improve reliability, the methodology, architectural components, and evaluation criteria are described in
sufficient detail to allow independent replication and extension. Future implementations and open benchmarks would
further strengthen reliability and reproducibility.

5.5. Summary of Limitation

In summary, the primary limitations of this study include reliance on qualitative evaluation, absence of quantitative
benchmarking, and limited empirical validation across organizations. These limitations are inherent to early-stage
architectural research and are acknowledged as directions for future work rather than deficiencies of the proposed
approach.

6. Security, Privacy, and Ethical Considerations

Al-driven knowledge management systems operating in software engineering environments raise significant
security, privacy, and ethical concerns, particularly due to their access to sensitive organizational artifacts. Addressing
these considerations is essential for responsible system design and organizational adoption.
6.1. Security Considerations
From a security perspective, the primary risk lies in unauthorized access to proprietary or sensitive software artifacts,
including source code, vulnerability reports, and incident postmortems. Al-driven KMS architectures must therefore
enforce robust access control mechanisms that align with organizational roles and permissions (Saltzer & Schroeder,
1975). The modular design of the proposed architecture supports security by enabling access control enforcement at
multiple layers, including ingestion, retrieval, and generation. Artifact-level permissions and audit logging
mechanisms help ensure that sensitive information is only accessible to authorized users. Additionally, provenance
tracking supports accountability by recording which sources were accessed and referenced in generated responses.
6.2. Privacy Considerations
Privacy concerns arise when software engineering artifacts contain personal or sensitive information, such as
developer identifiers, communication logs, or incident discussions. Improper handling of such data may violate
organizational policies or regulatory requirements. To address these concerns, the proposed architecture emphasizes
data minimization and provenance-aware retrieval. Metadata enrichment allows sensitive fields to be masked or
filtered during retrieval and generation. Furthermore, retrieval-augmented generation reduces reliance on memorized
model knowledge, limiting unintended disclosure of information learned during pretraining (Bender et al., 2021).

1376

a B Y\ W E
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y X/
https://www.tpmap.org/ V,

6.3. Ethical Considerations

Ethical considerations primarily relate to trust, accountability, and human oversight. Al-generated responses may
influence architectural decisions, debugging strategies, or refactoring priorities. If such responses are incorrect or
biased, they may lead to suboptimal or harmful outcomes. The architecture addresses these concerns by prioritizing
knowledge grounding and traceability, ensuring that generated responses are linked to authoritative artifacts rather
than presented as unquestionable recommendations. This design supports a human-in-the-loop paradigm, where Al
acts as a decision-support tool rather than an autonomous decision-maker (Floridi et al., 2018). Additionally, the
system should avoid reinforcing existing biases in documentation or development practices by encouraging critical
review of retrieved knowledge and supporting multiple perspectives when available.

6.4. Responsible Deployment Implications

Responsible deployment of Al-driven KMS requires organizational policies governing acceptable use, oversight, and
continuous monitoring. Transparency regarding system limitations and uncertainty is critical to prevent overreliance
on Al-generated outputs. By embedding governance and audit mechanisms into the architecture, the proposed
approach aligns with emerging best practices for responsible Al adoption in software engineering.

7. Future Research Direction

While this study demonstrates the feasibility and practical value of a modular Retrieval-Augmented Generation
(RAG)-based architecture for Al-driven knowledge management in software engineering, several promising research
directions remain open and warrant further investigation.

1. Conduct controlled user studies and longitudinal industrial deployments to quantify the impact of Al-driven
knowledge management on onboarding time, defect resolution, and technical debt reduction. Establish standardized
datasets and metrics for organizational knowledge management evaluation.

2. Investigate how developers interact with retrieval-augmented explanations, including trust formation, cognitive
load, and acceptance over time. Explore effective feedback mechanisms and human-in-the-loop strategies.

3. Develop retrieval strategies that dynamically adjust based on user roles, task context, project phase, or system
criticality to improve relevance and usability.

4. Embed Al-driven knowledge management into IDEs, CI/CD pipelines, and code review platforms to enable
proactive and context-sensitive knowledge delivery during development activities.

5. Study indexing, retrieval, and update strategies that maintain responsiveness as organizational knowledge bases
grow in size and complexity.

6. Define organizational policies, access control models, and ethical guidelines for responsible deployment of Al-
driven knowledge management systems.

7. Evaluate the applicability of retrieval-augmented knowledge management architectures across different domains,
organizational structures, and software development cultures.

7. CONCLUSION

This paper presented a comprehensive architectural and methodological framework for Al-driven Knowledge
Management Systems in large-scale software engineering, grounded in a modular Retrieval-Augmented Generation
(RAG) approach. Motivated by persistent knowledge-related challenges in modern software organizations—such as
fragmented repositories, extended onboarding processes, and the accumulation of technical debt—the study proposed
a system design that integrates semantic retrieval with grounded natural language generation to support effective
knowledge access and reuse. The paper systematically addressed the research problem by (i) analyzing the knowledge
challenges inherent to software engineering, (ii) reviewing existing knowledge management and Al-based approaches,
(iii) defining system requirements and prioritization strategies, and (iv) designing a modular RAG-based architecture
incorporating explicit mechanisms for grounding, traceability, and governance. Through detailed case studies focusing
on developer onboarding and technical debt identification, the study demonstrated how retrieval-augmented
knowledge access can enhance contextual understanding, reduce information-seeking effort, and support long-term
organizational knowledge retention. In contrast to purely generative Al systems, the proposed approach places strong
emphasis on grounding, transparency, and trust, making it well suited for reliability-critical software engineering
environments. By treating retrieval as a first-class architectural component and embedding provenance and
governance mechanisms into the system design, the framework directly addresses key concerns related to
hallucination, outdated information, and accountability.

8. Author Biography

Sohail Sarfaraz

Sohail Sarfaraz is a software engineer specializing in large-scale, distributed software systems for fintech and
enterprise platforms. His work focuses on requirement and scoping analysis, translating business and stakeholder

1377

‘i?f f ?@5’1\@-‘. ./,-. s
TPM Vol. 32, No. 3, 2025 4 | BA it / Open Access
ISSN: 1972-6325 y A8 W,
https://www.tpmap.org/ V,

needs into traceable functional designs, user stories, and testable system components. He has contributed to the design
and implementation of secure, scalable frontend and backend systems, including RESTful APIs, modular micro-
frontend architectures, and data-driven analytical dashboards. His technical responsibilities include implementing
secure authentication and authorization mechanisms, designing SQL-based data models, automating CI/CD
workflows, integrating telemetry and monitoring, and enforcing production-grade security, performance, and
reliability standards. He actively participates in test design, execution, defect analysis, regression testing, and
operational troubleshooting to ensure system stability and scalability in production environments.

Faiza Qureshi

Faiza Qureshi is an experienced educator and academic content creator with proven expertise in educational
leadership, curriculum planning, and academic administration. Brings several years of experience in content
development for education and IT-focused organizations, along with over two years in senior academic leadership as
Content Creator, Vice Principal and beyond. Known for strategic thinking, team leadership, and the ability to foster
collaborative learning environments that enhance student performance and faculty development. Seeking to contribute
effectively to the education sector through leadership, teaching, or academic support roles.

Mansoor Sarfraz

Mansoor Sarfraz, is a staff-level individual contributor specializing in enterprise platform services that deliver secure
access and identity capabilities, including Privileged Access Management, for large internal engineering ecosystems.
He has led the architecture and evolution of distributed platform services built on Java Spring Boot microservices,
React-based user interfaces, and cloud infrastructure, enabling secure and scalable consumption across multiple
engineering teams. His work includes designing scalable API and integration layers, implementing service-to-service
authentication and authorization using OAuth2 and JWT, and improving platform performance, reliability, and
operational efficiency through systematic optimization. He has also contributed to CI/CD and DevOps practices,
automated access lifecycle workflows, and served as an architecture reviewer and technical mentor, influencing
platform standards and long-term maintainability through close collaboration with product, infrastructure, and security
teams.

9. REFERENCES

1. Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing software engineering knowledge. Springer.
2. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can
language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,
610-623.

3. Bjornson, F. O., & Dingsoyr, T. (2008). Knowledge management in software engineering: A systematic review.
Information and Software Technology, 50(11), 1055-1068.

4. Brown, T. B., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing
Systems, 33, 1877—1901.

5. Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.
Advances in Neural Information Processing Systems, 33, 9459-9474.

6. Parnin, C., & Rugaber, S. (2011). Resumption strategies for interrupted programming tasks. IEEE International
Conference on Program Comprehension, 80—89.

7. Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big code and
naturalness. ACM Computing Surveys, 51(4), 1-37. https://doi.org/10.1145/3212695

8. Aurum, A, Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing software engineering knowledge. Springer.
9. Bacchelli, A., Bird, C., & Zimmermann, T. (2012). Linking developers to code changes. Proceedings of the 34th
International Conference on Software Engineering, 945-954. https://doi.org/10.1109/ICSE.2012.6227206

10. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can
language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,
610-623.

11.Bjornson, F. O., & Dingsoyr, T. (2008). Knowledge management in software engineering: A systematic review.
Information and Software Technology, 50(11), 1055—-1068.

12. Brown, T. B, et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing
Systems, 33, 1877-1901.

13. Cleland-Huang, J., Gotel, O., & Zisman, A. (2014). Software traceability: Trends and future directions. IEEE
Software, 31(4), 12—-19.

14.Hassan, A. E., & Holt, R. C. (2005). The top ten list: Dynamic fault prediction. Proceedings of the 21st IEEE
International Conference on Software Maintenance, 263—-272.

15.1zacard, G., & Grave, E. (2021). Leveraging passage retrieval with generative models for open-domain question
answering. International Conference on Learning Representations.

1378

TPM Vol. 32, No. 3, 2025
ISSN: 1972-6325
https://www.tpmap.org/

Open Access

16. Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.
Advances in Neural Information Processing Systems, 33, 9459-9474.

17. Parnin, C., & Rugaber, S. (2011). Resumption strategies for interrupted programming tasks. IEEE International
Conference on Program Comprehension, 80—89.

18. Aurum, A., Jeffery, R., Wohlin, C., & Handzic, M. (2003). Managing software engineering knowledge. Springer.
19. Bjornson, F. O., & Dingseyr, T. (2008). Knowledge management in software engineering: A systematic review.
Information and Software Technology, 50(11), 1055-1068.

20. Dingseyr, T., Bjernson, F. O., & Shull, F. (2012). What do we know about knowledge management? IEEE
Software, 29(2), 100-103. https://doi.org/10.1109/MS.2011.146

21.Nonaka, 1., & Takeuchi, H. (1995). The knowledge-creating company. Oxford University Press.

22.Storey, M. A., Zagalsky, A., Filho, F. F., Singer, L., & German, D. M. (2014). How social and communication
channels shape and challenge a participatory culture in software development. IEEE Transactions on Software
Engineering, 40(4), 355-369.

23.Begel, A., & Simon, B. (2008). Novice software developers, all over again. Proceedings of the Fourth International
Workshop on Computing Education Research, 3—14. https://doi.org/10.1145/1404520.1404522

24.

25.Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can
language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,
610-623. https://doi.org/10.1145/3442188.3445922

26.

27.Bjernson, F. O., & Dingseyr, T. (2008). Knowledge management in software engineering: A systematic review.
Information and Software Technology, 50(11), 1055-1068.

28. Kitchenham, B., Pretorius, R., Budgen, D., et al. (2010). Systematic literature reviews in software engineering.
Information and Software Technology, 51(1), 7-15.

29.Kruchten, P., Nord, R. L., & Ozkaya, 1. (2012). Technical debt: From metaphor to theory and practice. IEEE
Software, 29(6), 18-21.

30. Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.
Advances in Neural Information Processing Systems, 33, 9459-9474.

31.Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt. Journal of Systems and
Software, 109, 193-220.

32.Parnin, C., & Rugaber, S. (2011). Resumption strategies for interrupted programming tasks. IEEE International
Conference on Program Comprehension, 80—89.

33.Simpson, C., Storer, T., & Wood, M. (2018). Understanding the onboarding process in software development
teams. Journal of Software: Evolution and Process, 30(1), ¢1905.

34. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can
language models be too big? Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,
610-623.

35.Bjernson, F. O., & Dingseyr, T. (2008). Knowledge management in software engineering: A systematic review.
Information and Software Technology, 50(11), 1055-1068.

36.Floridi, L., Cowls, J., Beltrametti, M., et al. (2018). Al4People—An ethical framework for a good Al society.
Minds and Machines, 28(4), 689—-707.

37.Kitchenham, B., Pretorius, R., Budgen, D., et al. (2010). Systematic literature reviews in software engineering.
Information and Software Technology, 51(1), 7-15.

38. Saltzer, J. H., & Schroeder, M. D. (1975). The protection of information in computer systems. Proceedings of the
IEEE, 63(9), 1278-1308.

1379

