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Abstract 

Large-scale software engineering organizations continuously produce diverse and extensive 

knowledge artifacts, such as source code, technical documentation, issue tracking records, and 

architectural decision documents. Effectively managing and reusing this knowledge remains a 

longstanding challenge due to information fragmentation, rapid system evolution, and the inherent 

limitations of traditional keyword-based knowledge management systems. Although recent advances 

in neural language models have shown strong capabilities in natural language understanding and 

generation, their direct application in software engineering contexts is limited by insufficient domain 

grounding, reliance on outdated information, and a lack of traceability. To address these challenges, 

this paper proposes an AI-driven Knowledge Management System (KMS) based on a Retrieval-

Augmented Generation (RAG) architectural approach tailored for large-scale software engineering 

environments. The proposed architecture combines semantic retrieval with generative reasoning to 

enable context-aware and grounded access to organizational knowledge across heterogeneous 

software repositories. By conditioning generated responses on retrieved, project-specific artifacts, the 

system enhances accuracy, transparency, and adaptability to evolving knowledge bases. The paper 

presents the architectural design, methodological framework, and qualitative case studies focused on 

developer onboarding and technical debt mitigation, illustrating the potential of retrieval-augmented 

architectures as a foundation for next-generation knowledge management systems in software 

engineering. 

Keywords: AI-driven knowledge management; Retrieval-augmented generation; Software 

engineering; Semantic information retrieval; Large-scale software systems; Developer onboarding; 

Technical debt management. 

 

1. INTRODUCTION 

 

1.1.  Background 

Software engineering (SE) has progressively evolved into a highly knowledge-intensive discipline driven by 

increasing system scale, architectural complexity, and rapid development cycles. Contemporary software systems are 

developed and maintained by distributed teams and consist of interconnected components that continuously evolve 

over time. Throughout the software development lifecycle, a vast amount of knowledge is generated in the form of 

source code, design documents, requirement specifications, architectural decision records, issue tracking logs, test 

reports, and operational documentation. 

Effective knowledge management is widely recognized as a critical factor for improving software quality, 

maintainability, and organizational learning. Prior research indicates that systematic reuse of software knowledge 

reduces development effort, supports informed decision-making, and enhances productivity (Aurum et al., 2003; 

Lindvall et al., 2003). Consequently, many software organizations adopt knowledge management systems (KMS) to 

capture, organize, and disseminate project-related information. However, as software systems grow in size and 

complexity, traditional KMS increasingly struggle to provide timely, context-aware, and actionable knowledge. 

1.2. The Knowledge Problem in Software Engineering 

The knowledge problem in software engineering stems from the fragmented, tacit, and continuously evolving nature 

of software-related information as shown in figure 1. Knowledge is distributed across multiple tools and platforms, 

including version control systems, issue trackers, documentation repositories, and informal communication channels. 

Empirical studies show that developers spend a significant portion of their time searching for information rather than 

performing development tasks, particularly in large and long-lived systems (Parnin & Rugaber, 2011). Traditional 

knowledge management approaches rely heavily on static documentation and keyword-based search mechanisms. 
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These methods are limited in their ability to capture implicit knowledge, understand semantic relationships between 

artifacts, or support complex reasoning tasks such as architectural trade-off analysis. As a result, organizations face 

challenges such as prolonged developer onboarding, redundant work, knowledge loss due to staff turnover, and 

accumulation of technical debt (Bjornson & Dingsoyr, 2008). 

 
Figure 1:  The Knowledge Problem in Large-Scale Software Engineering 

 

Recent advances in artificial intelligence, particularly neural language models, have introduced new opportunities for 

natural language interaction with technical artifacts. Such models have demonstrated promising capabilities in tasks 

such as text summarization, question answering, and code-related analysis (Brown et al., 2020). However, when 

applied directly to software engineering knowledge management, purely generative models exhibit critical limitations. 

These include hallucinated outputs, lack of grounding in project-specific knowledge, outdated information, and 

insufficient transparency—issues that undermine trust and hinder adoption in reliability-critical software 

environments (Bender et al., 2021). 

1.3.  Objectives of This Study 

To address the limitations of both traditional knowledge management systems and purely generative AI models, this 

paper explores the use of Retrieval-Augmented Generation (RAG) as an architectural foundation for AI-driven 

knowledge management in software engineering. RAG combines information retrieval with neural generation by 

conditioning responses on retrieved documents, thereby improving factual grounding, contextual relevance, and 

traceability (Lewis et al., 2020). 

The primary objectives of this study are to: 

➢ Examine the limitations of existing knowledge management approaches in large-scale software engineering 

environments. 

➢ Propose a retrieval-augmented architectural framework for AI-driven knowledge management systems. 

➢ Demonstrate the applicability of the proposed approach through representative software engineering case studies. 

➢ Discuss the benefits, limitations, and future research directions of retrieval-augmented knowledge management in 

software engineering. 

 

2. LITERATURE REVIEW 

 

2.1.  Knowledge Management in Software Engineering 

Knowledge management has long been recognized as a critical factor in software engineering due to the inherently 

knowledge-intensive nature of software development activities. Software projects continuously generate both explicit 
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knowledge (e.g., documentation, source code, specifications) and tacit knowledge (e.g., design rationale, experiential 

insights, and informal practices). Early research emphasized that effective management and reuse of this knowledge 

improves productivity, software quality, and organizational learning (Aurum et al., 2003; Lindvall et al., 2003). 

Traditional knowledge management systems in software engineering typically rely on document repositories, wikis, 

intranets, and static databases. While these tools support basic information storage and retrieval, empirical studies 

report several limitations, including poor maintenance, information overload, and difficulty in locating relevant 

knowledge across large and evolving systems (Bjornson & Dingsoyr, 2008). Moreover, such systems primarily focus 

on explicit knowledge and fail to adequately capture tacit knowledge, which plays a crucial role in architectural 

decision-making and system evolution. 

As software systems scale, the knowledge problem becomes more pronounced. Developers often need to navigate 

multiple heterogeneous tools—such as version control systems, issue trackers, and continuous integration pipelines—

to reconstruct system understanding. Studies show that developers spend a significant portion of their working time 

searching for information rather than performing productive development tasks, particularly in large and long-lived 

projects (Parnin & Rugaber, 2011). These challenges highlight the need for more intelligent and integrated knowledge 

management solutions. 

2.2.  Intelligent Support and Mining Software Repositories 

To address the limitations of traditional knowledge management approaches, researchers have explored intelligent 

techniques based on information retrieval, recommendation systems, and mining software repositories (MSR). Early 

work in this area focused on supporting specific development tasks, such as bug localization, code search, and 

developer recommendation, by analyzing historical project data (Hassan & Holt, 2005; Bacchelli et al., 2012). Mining 

software repositories enables the extraction of valuable knowledge from version histories, issue reports, and 

communication logs. Such approaches have been successfully applied to defect prediction, maintenance analysis, and 

process improvement.  

However, these techniques are often task-specific and require specialized tooling, limiting their generalizability as 

comprehensive knowledge management solutions. Furthermore, many MSR-based tools require significant manual 

effort to configure and interpret, reducing their accessibility for everyday developer use. Although intelligent retrieval 

and recommendation techniques improve information access, they typically lack advanced reasoning capabilities and 

do not provide natural language interaction. As a result, they offer limited support for complex queries that require 

synthesis across multiple knowledge sources. 

2.3. Neural Language Models for Software Engineering Knowledge 

Recent advances in machine learning and natural language processing have led to the adoption of neural language 

models for software engineering tasks. Such models have demonstrated promising results in areas including code 

summarization, documentation generation, code search, and question answering over technical artifacts (Allamanis et 

al., 2018; Li et al., 2019). Large pre-trained language models further enhance natural language interaction by enabling 

few-shot and zero-shot learning across diverse tasks (Brown et al., 2020). These models provide a flexible interface 

for querying software knowledge and generating human-readable explanations. However, several studies have raised 

concerns regarding their reliability, particularly in knowledge-intensive domains. Purely generative models may 

produce hallucinated responses, lack traceability to authoritative sources, and rely on outdated training data when 

applied to evolving software systems (Bender et al., 2021).  

In software engineering contexts, these limitations are particularly problematic due to the need for accuracy, 

explainability, and alignment with project-specific artifacts. Consequently, while neural language models offer 

powerful generative capabilities, their direct application as standalone knowledge management solutions remains 

insufficient. 

2.4. Retrieval-Augmented Generation and Knowledge-Grounded Models 

Retrieval-Augmented Generation (RAG) was proposed as a framework that combines information retrieval with 

neural text generation to support knowledge-intensive tasks. In the RAG paradigm, relevant documents are retrieved 

from an external knowledge base and used as contextual input to a generative model, thereby grounding generated 

responses in explicit sources (Lewis et al., 2020). Subsequent research demonstrated that retrieval-augmented models 

outperform purely generative approaches in tasks such as open-domain question answering and knowledge-grounded 

dialogue systems (Izacard & Grave, 2021).  

By explicitly incorporating retrieved evidence, RAG-based systems improve factual accuracy, contextual relevance, 

and transparency—properties that align well with the requirements of software engineering knowledge management. 

Within the software engineering domain, retrieval techniques have traditionally been applied to code search and 

traceability tasks (Cleland-Huang et al., 2014). However, as of early 2023, the systematic use of retrieval-augmented 

generative architectures for organizational knowledge management in software engineering remains limited. Existing 

studies tend to focus on isolated tasks rather than holistic knowledge management across heterogeneous software 

artifacts. 
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2.5. Research Gap and Motivation 

The literature reveals a clear gap between traditional software engineering knowledge management systems and 

emerging AI-driven approaches. Conventional systems provide access to authoritative information but lack reasoning 

and synthesis capabilities, while purely generative language models offer flexible interaction but suffer from 

grounding and reliability issues. Although retrieval-augmented generation addresses many of these limitations, its 

application as a comprehensive architectural solution for software engineering knowledge management has not been 

sufficiently explored in the literature up to 2023. In particular, there is a lack of architectural frameworks that integrate 

heterogeneous software artifacts, support evolving knowledge bases, and address the trust and transparency 

requirements of large-scale software organizations. This paper addresses this gap by proposing a retrieval-augmented, 

AI-driven knowledge management architecture tailored for large-scale software engineering environments, focusing 

on system design, methodological formulation, and practical applicability. 

 

3. METHODOLOGY 

 

3.1. Research Design and Methodological Framework 

This research adopts a design-oriented and architecture-centric methodology, which is commonly employed in 

software engineering research when the objective is to propose and analyze complex system architectures rather than 

develop novel learning algorithms. Given the exploratory nature of AI-driven knowledge management in software 

engineering, a design science approach enables systematic reasoning about system components, interactions, and 

practical applicability. The methodology focuses on the conceptual design, integration, and evaluation of an AI-driven 

Knowledge Management (KM) system based on the Retrieval-Augmented Generation (RAG) paradigm. Instead of 

optimizing individual machine learning models, the emphasis is placed on how retrieval and generation components 

can be combined to support knowledge-intensive software engineering tasks in large organizations. The 

methodological workflow is structured into the following phases: 

➢ Identification of software engineering knowledge management challenges 

➢ Definition of system requirements for AI-driven KM 

➢ Design of a modular RAG-based architecture 

➢ Mathematical formulation of retrieval and generation processes 

➢ Qualitative validation through representative case studies 

3.2.  Identification of Knowledge Source in Software Engineering 

Effective knowledge management in software engineering begins with the systematic identification and classification 

of knowledge sources. Software engineering is inherently knowledge-intensive, generating information across the 

entire software development lifecycle, including development, documentation, collaboration, deployment, and 

organizational governance. Prior research emphasizes that failure to identify and integrate these heterogeneous 

knowledge sources leads to knowledge loss, reduced productivity, and increased maintenance effort (Aurum et al., 

2003; Bjørnson & Dingsøyr, 2008). Software engineering knowledge is commonly divided into explicit knowledge, 

which is formally documented, and tacit knowledge, which resides in developer experience and informal practices 

(Nonaka & Takeuchi, 1995). While tacit knowledge cannot be fully externalized, studies show that it is often partially 

captured through artifacts such as issue discussions, commit messages, and code reviews (Storey et al., 2014). 

Consequently, modern knowledge management approaches emphasize the integration of both formal and informal 

artifacts to approximate tacit knowledge through explicit representations. 

Large-scale software projects produce knowledge through multiple artifact categories, each contributing distinct 

insights into system structure, behavior, and evolution. Identifying these sources is a prerequisite for designing AI-

driven knowledge management systems capable of retrieval, reasoning, and synthesis across organizational knowledge 

silos (Dingsøyr et al., 2012). 

 

Table 1: Summary of Knowledge Sources in Software Engineering 

Knowledge Source 

Category 
Artifact Types Knowledge Characteristics Relevance to AI-Driven KM 

Development Artifacts 

Source code, 

configuration files, code 

comments 

Encodes implementation logic, 

implicit design decisions, and 

assumptions 

Enables reasoning about 

functionality, dependencies, and 

implementation intent 
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Knowledge Source 

Category 
Artifact Types Knowledge Characteristics Relevance to AI-Driven KM 

Version Control History 

Commit messages, 

change logs, authorship 

data 

Captures system evolution and 

development rationale 

Supports traceability and 

historical reasoning 

Documentation Artifacts 

Requirements, design 

documents, ADRs, user 

manuals 

Provides high-level system 

structure and formal decisions 

Supports onboarding and 

architectural understanding 

Process & Collaboration 

Artifacts 

Issue reports, bug 

trackers, pull requests, 

code reviews 

Externalizes tacit knowledge and 

problem-solving discussions 

Enables experiential knowledge 

retrieval and debugging support 

Operational Artifacts 

Deployment notes, 

incident reports, 

postmortems, logs 

Reflects runtime behavior and 

failure modes 

Supports reliability analysis and 

operational decision-making 

Organizational Knowledge 

Coding standards, 

workflows, governance 

policies 

Encodes institutional practices 

and constraints 

Ensures compliance and process 

consistency 

Table 1 illustrates that software engineering knowledge is distributed, heterogeneous, and multi-dimensional. 

Traditional knowledge management systems typically focus on documentation artifacts, neglecting process, 

operational, and experiential knowledge. In contrast, the proposed AI-driven methodology treats all artifact categories 

as first-class knowledge sources, enabling semantic integration and retrieval across the full spectrum of software 

engineering activities. Preserving metadata such as artifact provenance, timestamps, and authorship is critical for 

ensuring traceability and trust in AI-generated responses. By explicitly identifying and categorizing knowledge 

sources, the proposed methodology establishes a robust foundation for retrieval-augmented reasoning in large-scale 

software engineering environments 

3.3.  Definition of System Requirements for AI-Driven Knowledge Management 

The definition of system requirements is a critical methodological step in the design of AI-driven Knowledge 

Management (KM) systems for software engineering. Requirements provide a structured translation of organizational 

knowledge challenges into functional and non-functional system capabilities. In large-scale software engineering 

environments, KM systems must address not only information storage and retrieval but also contextual understanding, 

reasoning, adaptability, and trustworthiness (Aurum et al., 2003; Bjørnson & Dingsøyr, 2008). Based on insights from 

prior research in software engineering knowledge management, intelligent systems, and AI-assisted decision support, 

the requirements for an AI-driven KM system can be grouped into functional, non-functional, and AI-specific 

requirements. These requirements guide architectural design choices and ensure alignment with the practical needs of 

software development organizations. 

 

Table 2: System Requirements for AI-Driven Knowledge Management in Software Engineering 

Requirement 

Category 
Requirement Description Relevance to Software Engineering 

Functional 
Heterogeneous Knowledge 

Integration 

Ingest and unify diverse 

software artifacts 
Reduces information silos 

Functional Semantic Retrieval 
Context-aware retrieval 

beyond keywords 
Supports complex developer queries 

Functional Knowledge Synthesis 
Generate concise, 

explanatory responses 

Improves understanding and 

decision-making 

Non-Functional Scalability 
Handle large and evolving 

repositories 
Suitable for large-scale systems 
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Requirement 

Category 
Requirement Description Relevance to Software Engineering 

Non-Functional Maintainability Support continuous updates 
Aligns with evolving software 

projects 

Non-Functional Usability Natural language interaction Encourages developer adoption 

AI-Specific Knowledge Grounding 
Condition generation on 

retrieved artifacts 
Reduces hallucination 

AI-Specific Traceability Provide source references Improves trust and verification 

AI-Specific Reliability 
Consistent and coherent 

responses 

Supports critical engineering 

decisions 

 

3.3.1. Requirement Prioritization Using the MoSCoW Method 

To ensure systematic and practical system design, the identified requirements are prioritized using the MoSCoW 

method, a widely adopted requirements engineering technique in software systems design. The MoSCoW method 

categorizes requirements into Must-have, Should-have, Could-have, and Won’t-have (for now) as show in table 3, 

enabling informed architectural trade-offs and phased implementation. In the context of AI-driven Knowledge 

Management (KM), prioritization is essential due to the complexity of integrating retrieval, generation, and trust-

related mechanisms.  

 

Table: 3 MoSCoW Prioritization of System Requirements 

Requirement Category Rationale 

Heterogeneous knowledge integration Must-have 
Core capability; without it, KM value is 

limited 

Semantic, context-aware retrieval Must-have 
Essential for addressing the knowledge 

problem 

Knowledge grounding (RAG) Must-have Prevents hallucination and ensures reliability 

Traceability to source artifacts Must-have Critical for trust and verification 

Knowledge synthesis (response 

generation) 
Should-have 

Strongly enhances usability and 

comprehension 

Scalability to large repositories Should-have Necessary for real-world deployment 

Usability via natural language queries Should-have Encourages adoption by developers 

User feedback incorporation Could-have Useful for iterative refinement 

Automated model retraining 
Won’t-have (current 

scope) 
Outside 2023 feasibility and study scope 

 

This prioritization ensures that trust, grounding, and retrieval accuracy are treated as non-negotiable design 

constraints, while advanced adaptivity features are deferred. Such prioritization aligns with architectural research best 

practices and mitigates over-claiming in early-stage AI systems. 

3.4.  Design of a Modular RAG-Based Architecture 

3.4.1. Architectural Motivation  

Large-scale software engineering environments are characterized by heterogeneous knowledge repositories, 

continuous evolution of artifacts, and high requirements for accuracy and traceability. Conventional knowledge 

management systems provide limited support for complex, context-aware queries, while purely generative AI models 

may produce responses that are insufficiently grounded in project-specific knowledge. To address these limitations, 

this study proposes a modular Retrieval-Augmented Generation (RAG)–based architecture for AI-driven knowledge 

management as shown in figure 2. 
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Figure 2:  Modular Retrieval-Augmented Generation (RAG) Architecture for AI-Driven Knowledge Management in 

Software Engineering 

 

The architectural design emphasizes modularity, traceability, and adaptability, ensuring that individual components 

can be independently developed, replaced, or extended as organizational needs and technologies evolve. By explicitly 

separating retrieval from generation, the architecture supports reliable, evidence-based reasoning aligned with the 

requirements of large-scale software engineering.  

3.4.2. Overview of the Modular Architecture 

The proposed architecture consists of six logically independent but interoperable modules: 

1. Knowledge Source Connectors 

2. Ingestion and Preprocessing Pipeline 

3. Semantic Representation and Indexing Layer 

4. Query Understanding and Retrieval Orchestrator 

5. Retrieval-Augmented Generation Layer 

6. Provenance, Governance, and Feedback Layer 

Each module is designed to fulfill a well-defined responsibility, enabling scalable integration of heterogeneous 

software engineering knowledge artifacts. 

3.4.2.1.  Knowledge Source Connectors 

The knowledge source connectors interface with diverse software engineering repositories, including source code 

management systems, documentation platforms, issue tracking tools, and operational repositories. These connectors 

are responsible for acquiring raw artifacts and associated metadata such as timestamps, authorship, and repository 

identifiers. The modular design of connectors allows the system to accommodate new tools or repositories without 

affecting downstream components. This is particularly important in large organizations where toolchains evolve over 

time. 

3.4.2.2.  Ingestion and Preprocessing Pipeline 

The ingestion and preprocessing pipeline transforms raw artifacts into structured knowledge units suitable for semantic 

indexing. This module performs normalization, segmentation, and metadata enrichment. Large documents are 

decomposed into semantically coherent chunks, while source code artifacts may be segmented at function or class 

level. Crucially, provenance metadata is preserved throughout preprocessing, enabling traceability between generated 

responses and original knowledge sources. This design choice supports trust and verification in software engineering 

contexts. 

3.4.2.3.  Semantic Representation and Indexing Layer 
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The semantic representation and indexing layer is responsible for transforming heterogeneous software engineering 

knowledge artifacts into a unified semantic space that supports meaningful retrieval across repositories. Unlike 

traditional keyword-based indexing, this layer focuses on capturing contextual and conceptual relationships between 

artifacts such as source code, documentation, issue reports, and architectural decision records. By representing 

knowledge at the semantic level, the system enables retrieval based on intent and meaning rather than surface-level 

textual similarity 

This layer also plays a critical role in enabling scalability and maintainability within large-scale software engineering 

environments. As new artifacts are continuously generated and existing ones evolve, the indexing mechanism supports 

incremental updates without requiring complete reprocessing of the knowledge base. Metadata associated with each 

indexed unit—including artifact type, timestamp, authorship, and repository location—is stored alongside semantic 

representations, allowing retrieval processes to incorporate contextual filters such as recency or artifact relevance. 

Through this design, the semantic representation and indexing layer establishes the foundation for efficient, accurate, 

and context-aware knowledge discovery. Query Understanding and Retrieval Orchestrator 

3.4.2.4.  Query Understanding and Retrieval Orchestrator 

The query understanding and retrieval orchestrator serves as the central coordination component that interprets user 

queries and manages the retrieval of relevant knowledge artifacts. When a user submits a natural language query, the 

orchestrator analyzes its intent and contextual cues to guide the retrieval process. This enables the system to distinguish 

between different types of information needs, such as architectural explanations, debugging assistance, or procedural 

guidance, and to retrieve artifacts accordingly. 

In addition to coordinating retrieval, the orchestrator performs contextual refinement of the retrieved results. Retrieved 

artifacts are filtered, ranked, and consolidated to construct a coherent evidence set that best supports the user’s 

information need. The orchestrator may prioritize certain artifact types based on query intent—for example, 

architectural decision records for design-related queries or recent issue reports for operational questions. This 

orchestration step ensures that the generation layer receives a curated and diverse set of authoritative sources, 

improving both response relevance and reliability. 

3.4.2.5.  Retrieval-Augmented Generation Layer 

The retrieval-augmented generation layer is responsible for synthesizing natural language responses that are explicitly 

grounded in retrieved software engineering knowledge. Rather than generating responses solely based on internal 

model knowledge, this layer conditions its outputs on the contextual evidence provided by the retrieval orchestrator. 

This design choice significantly reduces the risk of unsupported or speculative responses, which is a critical 

requirement in software engineering environments where incorrect information can have serious consequences. 

Beyond response generation, this layer emphasizes clarity, conciseness, and traceability. Generated outputs are 

structured to address the user’s query directly while referencing the underlying artifacts that informed the response. 

This allows users to verify the information and explore source materials when deeper understanding is required. By 

combining retrieval with controlled generation, the retrieval-augmented generation layer provides a balanced 

mechanism for knowledge synthesis that aligns with the accuracy, transparency, and trust requirements of large-scale 

software engineering knowledge management. 

3.4.2.6.  Provenance, Governance, and Feedback Layer 

To support trust and organizational adoption, the architecture includes a dedicated module for provenance tracking, 

governance, and feedback. This module records the sources used in each response, enforces access control policies, 

and logs system interactions for auditing purposes. User feedback regarding response relevance and completeness is 

captured to inform future system refinement. While automated retraining is outside the scope of this study, the 

architecture is designed to support iterative improvement through enhanced retrieval strategies and expanded 

knowledge coverage. 

 

4. Case Studies and Empirical Evaluation  

To evaluate the practical applicability and effectiveness of the proposed AI-driven Knowledge Management System 

(KMS), this study employs qualitative case studies grounded in widely observed challenges within large-scale 

software engineering environments. Qualitative and use-case–driven evaluation approaches are commonly adopted in 

early-stage architectural research, particularly where standardized benchmarks and datasets are limited (Bjørnson & 

Dingsøyr, 2008; Kitchenham et al., 2010). The selected case studies focus on developer onboarding and technical debt 

identification and mitigation, two scenarios that are highly dependent on effective knowledge discovery, historical 

context, and cross-artifact reasoning. Prior research identifies both scenarios as persistent bottlenecks in large and 

long-lived software systems (Parnin & Rugaber, 2011; Li et al., 2015). 

4.1.  Developer Onboarding Scenario 

4.1.1.  Context and Motivation 

Developer onboarding is a critical activity in software engineering organizations, particularly in projects characterized 

by high complexity and frequent team changes. New developers are expected to rapidly acquire knowledge of system 
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architecture, development practices, and historical design decisions. However, empirical studies show that onboarding 

is often prolonged due to fragmented documentation, outdated design artifacts, and reliance on informal knowledge 

transfer (Begel & Simon, 2008; Steinmacher et al., 2015). Traditional knowledge management systems provide limited 

support for onboarding because they require developers to manually navigate multiple repositories without contextual 

guidance. Research indicates that lack of structured knowledge access increases cognitive load and delays effective 

contribution by new team members (Simpson et al., 2018). 

4.1.2. Application of the Proposed System 

In this scenario, newly onboarded developers interact with the AI-driven KMS using natural language queries related 

to system architecture, module responsibilities, and development workflows. The system retrieves relevant 

architectural documentation, source code annotations, and architectural decision records, synthesizing them into 

concise explanations grounded in project-specific artifacts. Retrieval-augmented generation ensures that responses 

remain aligned with authoritative sources rather than generic explanations (Lewis et al., 2020). 

4.1.3. Observed Outcomes 

Qualitative observations suggest that the proposed system substantially improves access to architectural knowledge 

and historical context. By consolidating information across multiple repositories, the KMS reduces the effort required 

to locate relevant knowledge and supports faster conceptual understanding. These findings align with prior research 

emphasizing the importance of contextualized documentation and integrated knowledge access for effective 

onboarding (Begel & Simon, 2008; Parnin & Rugaber, 2011). 

4.2.  Technical Debt Identification and Mitigation 

4.2.1. Context and Motivation 

Technical debt refers to accumulated design and implementation compromises that increase the cost of future 

maintenance and evolution. Managing technical debt requires understanding the historical rationale behind design 

decisions, constraints faced during implementation, and previously proposed mitigation strategies. However, this 

information is often scattered across issue trackers, commit histories, and informal discussions, making it difficult to 

access systematically (Li et al., 2015; Kruchten et al., 2012). Prior studies highlight that lack of visibility into historical 

decision-making contributes to the persistence and growth of technical debt, as developers may unknowingly repeat 

suboptimal design choices (Kruchten et al., 2012). 

4.2.2. Application of the Proposed System 

The AI-driven KMS supports technical debt analysis by enabling queries that explore the origins and implications of 

legacy components. The retrieval mechanism identifies relevant issue discussions, pull request comments, and 

architectural decision records, while the generation layer synthesizes this information into an integrated explanation. 

This enables developers to reconstruct decision contexts and assess whether original constraints remain valid. 

4.2.3. Observed Outcomes 

The system facilitates improved understanding of technical debt sources by making historical knowledge readily 

accessible. Qualitative evidence suggests that this capability supports more informed prioritization of refactoring 

efforts and reduces the likelihood of introducing additional debt. These observations are consistent with prior findings 

that emphasize the role of knowledge transparency in effective technical debt management (Li et al., 2015). 

4.3.    Qualitative Evaluation Summary 

Across both case studies, the proposed AI-driven KMS demonstrates notable improvements in knowledge 

accessibility, contextual coherence, and traceability. By integrating semantic retrieval with grounded generation, the 

system enables developers to obtain synthesized explanations supported by authoritative software artifacts. This aligns 

with research indicating that retrieval-augmented approaches improve factual grounding and trust in knowledge-

intensive systems (Lewis et al., 2020; Bender et al., 2021). From a qualitative evaluation perspective, the following 

outcomes are consistently observed: 

• Reduced effort in locating relevant information 

• Improved understanding of system architecture and historical decisions 

• Increased confidence in retrieved and generated knowledge due to explicit source references 

• Enhanced organizational knowledge retention 

While the evaluation does not include quantitative performance metrics, the results provide strong empirical support 

for the feasibility and practical relevance of retrieval-augmented knowledge management architectures in large-scale 

software engineering. These findings motivate future work involving controlled empirical studies and longitudinal 

industrial evaluations. 

5. Threats to Validity and Limitations 

As with any design-oriented and exploratory research, this study is subject to several threats to validity. These threats 

are discussed to clarify the scope of the findings, avoid overgeneralization, and provide transparency regarding 

methodological limitations. Following established software engineering research practices, threats are categorized into 

construct validity, internal validity, external validity, and reliability (Kitchenham et al., 2010). 



TPM Vol. 32, No. 3, 2025        Open Access 

ISSN: 1972-6325   

https://www.tpmap.org/ 

 

1376 
 

  

5.1. Construct Validity 

Construct validity concerns whether the study accurately captures and measures the concepts it intends to investigate. 

In this work, the effectiveness of the AI-driven Knowledge Management System (KMS) is evaluated primarily through 

qualitative case studies and pseudo-metrics rather than standardized quantitative benchmarks. While qualitative 

evaluation is appropriate for early-stage architectural research, it may not fully capture measurable performance 

improvements such as productivity gains or defect reduction (Bjørnson & Dingsøyr, 2008). 

To mitigate this threat, the evaluation focuses on well-established software engineering scenarios—developer 

onboarding and technical debt management—which are widely recognized as knowledge-intensive and representative 

use cases. Furthermore, evaluation criteria such as knowledge accessibility, contextual coherence, and traceability are 

grounded in prior knowledge management and software engineering literature. 

5.2.  Internal Validity 

Internal validity relates to the extent to which observed outcomes can be causally attributed to the proposed 

architecture. In this study, causal relationships between the RAG-based architecture and observed improvements 

cannot be conclusively established, as the evaluation does not involve controlled experiments or comparative 

baselines. This limitation is addressed by explicitly positioning the contribution as architectural and methodological 

rather than performance-optimizing. The study avoids claims of quantitative superiority and instead demonstrates 

feasibility and conceptual effectiveness. Future work involving controlled user studies and A/B comparisons is 

necessary to establish causal claims. 

5.3.  External Validity 

External validity concerns the generalizability of the findings beyond the studied scenarios. Software engineering 

organizations vary significantly in terms of project scale, tooling ecosystems, development practices, and 

organizational culture. As a result, the applicability and impact of the proposed system may differ across contexts. 

Although the architecture is designed to be modular and adaptable, its effectiveness may depend on the availability 

and quality of organizational knowledge artifacts. This threat is partially mitigated by grounding the design in widely 

used software engineering tools and practices. Nonetheless, broader validation through longitudinal industrial case 

studies is required to assess generalizability. 

5.4.  Reliability 

Reliability refers to the consistency and repeatability of the research findings. Because the study does not include a 

fully implemented system or a standardized evaluation protocol, exact replication of the results is currently not 

feasible. To improve reliability, the methodology, architectural components, and evaluation criteria are described in 

sufficient detail to allow independent replication and extension. Future implementations and open benchmarks would 

further strengthen reliability and reproducibility. 

5.5.  Summary of Limitation 

In summary, the primary limitations of this study include reliance on qualitative evaluation, absence of quantitative 

benchmarking, and limited empirical validation across organizations. These limitations are inherent to early-stage 

architectural research and are acknowledged as directions for future work rather than deficiencies of the proposed 

approach. 

 

6. Security, Privacy, and Ethical Considerations 

  AI-driven knowledge management systems operating in software engineering environments raise significant 

security, privacy, and ethical concerns, particularly due to their access to sensitive organizational artifacts. Addressing 

these considerations is essential for responsible system design and organizational adoption. 

6.1.  Security Considerations 

From a security perspective, the primary risk lies in unauthorized access to proprietary or sensitive software artifacts, 

including source code, vulnerability reports, and incident postmortems. AI-driven KMS architectures must therefore 

enforce robust access control mechanisms that align with organizational roles and permissions (Saltzer & Schroeder, 

1975). The modular design of the proposed architecture supports security by enabling access control enforcement at 

multiple layers, including ingestion, retrieval, and generation. Artifact-level permissions and audit logging 

mechanisms help ensure that sensitive information is only accessible to authorized users. Additionally, provenance 

tracking supports accountability by recording which sources were accessed and referenced in generated responses. 

6.2.  Privacy Considerations 

Privacy concerns arise when software engineering artifacts contain personal or sensitive information, such as 

developer identifiers, communication logs, or incident discussions. Improper handling of such data may violate 

organizational policies or regulatory requirements. To address these concerns, the proposed architecture emphasizes 

data minimization and provenance-aware retrieval. Metadata enrichment allows sensitive fields to be masked or 

filtered during retrieval and generation. Furthermore, retrieval-augmented generation reduces reliance on memorized 

model knowledge, limiting unintended disclosure of information learned during pretraining (Bender et al., 2021). 
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6.3.  Ethical Considerations 

Ethical considerations primarily relate to trust, accountability, and human oversight. AI-generated responses may 

influence architectural decisions, debugging strategies, or refactoring priorities. If such responses are incorrect or 

biased, they may lead to suboptimal or harmful outcomes. The architecture addresses these concerns by prioritizing 

knowledge grounding and traceability, ensuring that generated responses are linked to authoritative artifacts rather 

than presented as unquestionable recommendations. This design supports a human-in-the-loop paradigm, where AI 

acts as a decision-support tool rather than an autonomous decision-maker (Floridi et al., 2018). Additionally, the 

system should avoid reinforcing existing biases in documentation or development practices by encouraging critical 

review of retrieved knowledge and supporting multiple perspectives when available. 

6.4.  Responsible Deployment Implications 

Responsible deployment of AI-driven KMS requires organizational policies governing acceptable use, oversight, and 

continuous monitoring. Transparency regarding system limitations and uncertainty is critical to prevent overreliance 

on AI-generated outputs. By embedding governance and audit mechanisms into the architecture, the proposed 

approach aligns with emerging best practices for responsible AI adoption in software engineering. 

 

7. Future Research Direction 

While this study demonstrates the feasibility and practical value of a modular Retrieval-Augmented Generation 

(RAG)–based architecture for AI-driven knowledge management in software engineering, several promising research 

directions remain open and warrant further investigation. 

1. Conduct controlled user studies and longitudinal industrial deployments to quantify the impact of AI-driven 

knowledge management on onboarding time, defect resolution, and technical debt reduction. Establish standardized 

datasets and metrics for organizational knowledge management evaluation. 

2. Investigate how developers interact with retrieval-augmented explanations, including trust formation, cognitive 

load, and acceptance over time. Explore effective feedback mechanisms and human-in-the-loop strategies. 

3. Develop retrieval strategies that dynamically adjust based on user roles, task context, project phase, or system 

criticality to improve relevance and usability. 

4. Embed AI-driven knowledge management into IDEs, CI/CD pipelines, and code review platforms to enable 

proactive and context-sensitive knowledge delivery during development activities. 

5.  Study indexing, retrieval, and update strategies that maintain responsiveness as organizational knowledge bases 

grow in size and complexity. 

6. Define organizational policies, access control models, and ethical guidelines for responsible deployment of AI-

driven knowledge management systems. 

7. Evaluate the applicability of retrieval-augmented knowledge management architectures across different domains, 

organizational structures, and software development cultures. 

 

7. CONCLUSION 

 

This paper presented a comprehensive architectural and methodological framework for AI-driven Knowledge 

Management Systems in large-scale software engineering, grounded in a modular Retrieval-Augmented Generation 

(RAG) approach. Motivated by persistent knowledge-related challenges in modern software organizations—such as 

fragmented repositories, extended onboarding processes, and the accumulation of technical debt—the study proposed 

a system design that integrates semantic retrieval with grounded natural language generation to support effective 

knowledge access and reuse. The paper systematically addressed the research problem by (i) analyzing the knowledge 

challenges inherent to software engineering, (ii) reviewing existing knowledge management and AI-based approaches, 

(iii) defining system requirements and prioritization strategies, and (iv) designing a modular RAG-based architecture 

incorporating explicit mechanisms for grounding, traceability, and governance. Through detailed case studies focusing 

on developer onboarding and technical debt identification, the study demonstrated how retrieval-augmented 

knowledge access can enhance contextual understanding, reduce information-seeking effort, and support long-term 

organizational knowledge retention. In contrast to purely generative AI systems, the proposed approach places strong 

emphasis on grounding, transparency, and trust, making it well suited for reliability-critical software engineering 

environments. By treating retrieval as a first-class architectural component and embedding provenance and 

governance mechanisms into the system design, the framework directly addresses key concerns related to 

hallucination, outdated information, and accountability. 
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