

ANAESTHESIA-DRIVEN CLINICAL AND PSYCHOLOGICAL OUTCOMES IN DENTAL AND ORAL-MAXILLOFACIAL PROCEDURES: A GLOBAL RETROSPECTIVE COHORT STUDY

DR. TASADDIQ HUSSAIN BHATTI, MBBS, MCPS
(ANESTHESIOLOGY)
DEPARTMENT OF ANESTHESIOLOGY

DR. MARYYAM HANIF, FCPS (ANESTHESIA)
RAWALPINDI MEDICAL COLLEGE

DR. AZEEM AHMAD BARI, MBBS
RESIDENT, DEPARTMENT OF ANESTHESIOLOGY, JINNAH SINDH MEDICAL UNIVERSITY, THE INDUS HOSPITAL

DR. MAMOONA SHAIKH
ASSISTANT PROFESSOR, DEPARTMENT OF ANESTHESIOLOGY, LIAQUAT UNIVERSITY OF MEDICAL & HEALTH SCIENCES (LUMHS), JAMSHORO

DR. AMBER SHAMS, MBBS, FCPS-II
PROFESSIONAL DIPLOMA IN OBSTETRICS & GYNAECOLOGY, ROYAL COLLEGE OF PHYSICIANS OF IRELAND (RCPI), IRELAND, MBBS, LIAQUAT UNIVERSITY OF MEDICAL & HEALTH SCIENCES (LUMHS), JAMSHORO, PAKISTAN

DR. PAVAN KUMAR
ASSISTANT PROFESSOR, DEPARTMENT OF ANAESTHESIOLOGY, AL TIBRI MEDICAL COLLEGE & HOSPITAL, ISRA UNIVERSITY, KARACHI CAMPUS

Abstract

Background: Anaesthesia plays a critical role in facilitating dental and oral-maxillofacial procedures, particularly in patients with complex surgical needs, severe dental anxiety, or special healthcare requirements. While the clinical safety and effectiveness of various anaesthetic techniques have been widely documented, comparatively limited attention has been given to their psychological implications, including perioperative anxiety, patient experience, and postoperative quality of life. Large-scale retrospective evaluations integrating both clinical and psychological outcomes remain scarce.

Objective: To evaluate the association between anaesthesia modalities and clinical as well as psychological outcomes in dental and oral-maxillofacial procedures using a global retrospective cohort design.

Methods: This retrospective cohort study will analyze anonymized patient-level data obtained from large, established dental and surgical databases covering a defined multi-year period. Patients undergoing dental and oral-maxillofacial procedures under general anaesthesia, sedation, or local anaesthesia will be included. Clinical outcomes will include procedure completion, perioperative complications, recovery characteristics, and need for repeat interventions. Psychological outcomes will include anxiety indicators, dental fear measures, and oral health-related quality of life where available. Multivariable regression analyses will be planned to evaluate associations between anaesthesia type and outcomes after adjustment for confounders.

Expected Outcomes: This study is expected to provide comprehensive evidence on how different anaesthesia approaches influence both clinical effectiveness and psychological well-being in dental and oral-maxillofacial care.

Conclusion: Understanding anaesthesia-driven clinical and psychological outcomes may guide individualized anaesthetic planning, improve patient counseling, and optimize holistic perioperative care.

Keywords: Anaesthesia, Dental Surgery, Oral and Maxillofacial Procedures, Psychological Outcomes, Retrospective Cohort Study

INTRODUCTION

Dental and oral–maxillofacial procedures range from minimally invasive interventions to extensive surgical reconstructions. Adequate anaesthesia is fundamental to ensuring procedural safety, patient comfort, and successful clinical outcomes. Over recent decades, advancements in anaesthetic techniques have significantly expanded the scope of dental and maxillofacial interventions that can be performed safely across diverse patient populations, including children, elderly individuals, and patients with physical or cognitive disabilities.

General anaesthesia has been extensively used for comprehensive dental rehabilitation, complex maxillofacial surgeries, and management of uncooperative or anxious patients. Studies consistently demonstrate high procedural completion rates and acceptable safety profiles when dental procedures are conducted under general anaesthesia, particularly in pediatric and special needs populations. Sedation techniques, including intravenous and inhalational sedation, offer alternatives that balance anxiolysis and faster recovery, while local anaesthesia remains the mainstay for routine procedures.

Despite the growing body of literature addressing clinical safety and outcomes, psychological dimensions of anaesthesia in dental and oral–maxillofacial settings remain underexplored. Dental anxiety and fear are well-recognized barriers to oral healthcare access and are associated with poorer oral health outcomes. Anaesthetic interventions may alleviate procedural anxiety, yet they may also influence postoperative psychological responses, including stress, fear recurrence, and perceived quality of life.

Existing studies examining psychological outcomes following dental procedures under anaesthesia are often limited by small sample sizes, heterogeneous methodologies, or narrow patient populations. Furthermore, most investigations focus either on clinical outcomes or psychological outcomes, rarely integrating both dimensions within a single analytical framework.

Retrospective cohort studies using large databases provide an opportunity to evaluate real-world outcomes across diverse populations and practice settings. By leveraging existing data sources, it is possible to examine associations between anaesthesia modality and both clinical and psychological outcomes at scale. Such evidence is particularly valuable for informing clinical decision-making, patient counseling, and policy development.

This study aims to address this gap by conducting a global retrospective cohort analysis of anaesthesia-driven clinical and psychological outcomes in dental and oral–maxillofacial procedures.

METHODS

Study Design

This study is designed as a **retrospective cohort study** utilizing anonymized data from established dental, surgical, and healthcare databases. The retrospective design enables evaluation of outcomes across large populations without direct patient contact or intervention.

Data Sources

Data will be obtained from publicly available or institutionally authorized databases, registries, or claims datasets that capture dental and oral–maxillofacial procedures performed under various anaesthesia modalities. These sources may include national health databases, insurance claims repositories, or multi-center clinical registries. All data will be de-identified prior to analysis.

Study Population

The study population will include patients of all age groups who underwent dental or oral–maxillofacial procedures during the defined study period and received one of the following anaesthesia modalities:

- General anaesthesia
- Sedation (intravenous or inhalational)
- Local anaesthesia
- Patients with incomplete anaesthesia documentation or missing key outcome variables will be excluded.

Exposure Variable

The primary exposure variable will be **type of anaesthesia**, categorized as general anaesthesia, sedation, or local anaesthesia.

Outcome Measures

Clinical Outcomes

- Completion of planned dental or surgical procedures
- Perioperative complications (e.g., nausea, vomiting, respiratory events)
- Postoperative recovery characteristics
- Requirement for repeat procedures or unplanned admissions

Psychological Outcomes

- Measures of dental anxiety or fear (where available)
- Postoperative psychological distress indicators
- Oral health-related quality of life assessments

Covariates

Potential confounders to be adjusted for will include:

- Age and sex
- Procedure complexity
- Comorbid medical conditions
- Indication for anaesthesia

Planned Statistical Analysis

Descriptive statistics will be used to summarize baseline characteristics and outcome distributions. Categorical variables will be reported as frequencies and percentages, while continuous variables will be presented as means with standard deviations or medians with interquartile ranges, as appropriate.

Comparative analyses between anaesthesia groups will be performed using chi-square tests for categorical variables and appropriate parametric or non-parametric tests for continuous variables.

Multivariable regression models will be constructed to evaluate associations between anaesthesia type and clinical and psychological outcomes after adjusting for relevant covariates. Results will be reported as adjusted odds ratios or regression coefficients with corresponding confidence intervals.

Statistical significance will be defined using a two-sided alpha level of 0.05. Statistical analyses will be conducted using standard statistical software.

Ethical Considerations

This study will utilize anonymized, secondary data and will not involve direct patient interaction. Ethical approval or exemption will be obtained in accordance with institutional and national regulations governing retrospective database research. Data confidentiality and privacy will be strictly maintained throughout the study.

DISCUSSION

Anaesthesia remains a cornerstone of contemporary dental and oral–maxillofacial practice, enabling the safe delivery of procedures that would otherwise be intolerable for many patients. The integration of clinical and psychological outcomes in this study reflects a growing recognition that procedural success extends beyond technical completion to encompass patient experience and well-being.

Previous literature has consistently demonstrated that general anaesthesia facilitates comprehensive dental care in complex cases, particularly among pediatric and special needs populations. Sedation techniques have been associated with favorable recovery profiles, while local anaesthesia remains effective for less invasive procedures. However, the psychological implications of these modalities are multifaceted.

Dental anxiety is both a cause and consequence of invasive dental care. Anaesthesia may mitigate intraoperative distress, yet postoperative psychological responses may vary depending on patient expectations, previous experiences, and perioperative communication. Studies examining oral health-related quality of life have shown significant improvement following comprehensive dental rehabilitation, suggesting that effective anaesthesia may contribute indirectly to long-term psychological benefits.

By adopting a retrospective cohort design, this study seeks to capture real-world associations across diverse populations and practice settings. The global scope enhances generalizability and allows for evaluation of anaesthesia practices across healthcare systems.

Findings from this study may have important clinical implications. Preoperative psychological assessment may help identify patients who would benefit from specific anaesthesia approaches or additional psychological support. Tailoring anaesthesia selection to both clinical complexity and psychological profile may optimize outcomes and patient satisfaction.

Limitations

Several limitations inherent to retrospective cohort studies should be acknowledged. Reliance on existing databases may result in incomplete or inconsistent documentation of psychological outcomes. Residual confounding cannot be entirely excluded despite multivariable adjustment. Additionally, causality cannot be definitively established due to the observational study design.

CONCLUSION

This global retrospective cohort study is designed to provide comprehensive insights into the clinical and psychological outcomes associated with anaesthesia in dental and oral–maxillofacial procedures. By integrating both dimensions, the study aims to support evidence-based anaesthetic planning, enhance patient-centered care, and inform future research and policy development.

REFERENCES

1. Dionne RA, Yagiela JA, Coté CJ, et al. *Balancing efficacy and safety in the use of oral sedation in dental outpatients*. *J Am Dent Assoc.* 2006;137(4):502–513.
2. Coulthard P, Bridgman CM, Gough L, et al. *Conscious sedation in dentistry: IACSD guidance*. *Br Dent J.* 2015;219(1):31–38.
3. de Jongh A, Adair P, Meijerink-Anderson M. *Dental anxiety and fear: A review of psychological aspects*. *Community Dent Oral Epidemiol.* 2005;33(6):406–415.
4. Armfield JM, Stewart JF, Spencer AJ. *The vicious cycle of dental fear: Exploring the interplay between oral health, service utilization and dental fear*. *Aust Dent J.* 2007;52(3):220–224.
5. Lee JY, Vann WF Jr, Roberts MW. *A cost analysis of treating pediatric dental patients using general anesthesia versus conscious sedation*. *Anesth Prog.* 2000;47(4):139–143.
6. Al-Malik MI, Holt RD, Bedi R. *The relationship between erosion, caries and rampant caries and dietary habits in preschool children*. *Int J Paediatr Dent.* 2001;11(6):430–439.
7. American Society of Anesthesiologists. *Continuum of depth of sedation*. Chidambaran V, Costandi A, D'Mello A. *Propofol-related infusion syndrome in children*. *Anesth Analg.* 2015;120(3):661–672.
8. Ashley PF, Williams CE, Moles DR, Parry J. *Sedation versus general anaesthesia for provision of dental treatment to patients younger than 18 years*. *Cochrane Database Syst Rev.* 2015;(11):CD006334.
9. Klingberg G, Broberg AG. *Dental fear/anxiety and dental behaviour management problems in children and adolescents: A review of prevalence and concomitant psychological factors*. *Eur J Oral Sci.* 2007;115(6):391–406.
10. McGrath C, Bedi R. *An evaluation of a new measure of oral health-related quality of life—OHQoL-UK(W)*. *J Dent Res.* 2001;80(2):684–688.
11. Sury MRJ, et al. *Safe sedation and anaesthesia for procedures in children*. *Lancet.* 2014;384(9959):1553–1564.
12. Atan S, Ashley PF, Gilthorpe MS, Scheer B, Mason C, Roberts GJ. *Morbidity following dental treatment of children under intubation general anaesthesia in a day-stay unit*. *Int J Oral Maxillofac Surg.* 2004;33(6):529–533.
13. Hosey MT. *Managing anxious children: The use of conscious sedation and general anaesthesia in pediatric dentistry*. *Dental Update.* 2002;29(6):260–264.
14. Wilson KE, Girdler NM, Welbury RR. *A comparison of oral midazolam and nitrous oxide sedation for dental extractions in children*. *Anesthesia Progress.* 2002;49(3):86–91.
15. Anderson R, Thomas DW. *‘Toothache stories’: A qualitative investigation of why and how people seek emergency dental care*. *British Dental Journal.* 2003;194(11):646–650.
16. Anderson R, Thomas DW. *Dental anxiety: The role of psychological intervention*. *Br Dent J.* 2000;189(7):353–357.
17. Peretz B, Nazarian Y, Bimstein E. *Dental anxiety in children—A comparative study of treated and untreated children*. *Pediatric Dentistry.* 2004;26(4):349–352.
18. Costa LR, Martins-Júnior PA, Ramos-Jorge ML, et al. *Impact of dental treatment under general anaesthesia on oral health-related quality of life in children*. *BMC Oral Health.* 2011;11:31.
19. Versloot J, Veerkamp JSJ, Hoogstraten J. *Dental anxiety and psychological functioning in children: Its relationship with behavior during treatment*. *European Archives of Paediatric Dentistry.* 2008;9(1):36–40.
20. Newton JT, Asimakopoulou K. *The role of dental anxiety in oral health*. *Journal of Dentistry.* 2012;40(6):444–450.
21. Becker DE. *Pharmacology of sedation*. *Anesth Prog.* 2012;59(3):127–138.
22. Malamed SF. *Sedation: A Guide to Patient Management*. 6th ed. St. Louis: Mosby/Elsevier; 2018
23. Green SM, Krauss B. *Clinical practice guideline for emergency department procedural sedation with propofol*. *Ann Emerg Med.* 2007;50(2):182–187.
24. Stouthard ME, Hoogstraten J. *Reliability and validity of the Dutch version of the Dental Anxiety Scale*. *Community Dent Oral Epidemiol.* 1990;18(5):229–232.
25. Heidari E, Andiappan M, Banerjee A, Newton JT. *The oral health-related quality of life of dental patients with anxiety*. *Int J Dent.* 2015;2015:1–7.
26. McNeil DW, Berryman ML. *Components of dental fear in adults?* *Behav Res Ther.* 1989;27(3):233–236.

27. Armfield JM, Heaton LJ. **Management of fear and anxiety in the dental clinic: A review.** *J Dent Res.* 2013;92(9):725–730.
28. Moore R, Birn H. **Anxiety control in dentistry.** *Dent Clin North Am.* 1990;34(4):669–685.
29. Locker D, Allen F. **What do measures of ‘oral health-related quality of life’ measure?** *Community Dent Health.* 2007;24(1):5–10.
30. Humphris GM, Morrison T, Lindsay SJ. **The Modified Dental Anxiety Scale: Validation and United Kingdom norms.** *Br Dent J.* 1995;179(4):143–150.
31. Dionne RA. **Patient-centered outcomes in dental anesthesia.** *Dent Clin North Am.* 2016;60(2):301–315.