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Abstract 

Background: Chronic rhinosinusitis (CRS) affects approximately 5–12% of adults 

worldwide, significantly impacting patients’ quality of life and healthcare systems. 

Computed tomography (CT) remains the gold standard for CRS evaluation, yet 

traditional interpretation is time-intensive, operator-dependent, and prone to variability 

among radiologists. These challenges highlight the need for more efficient and 

standardized diagnostic approaches. 

Objective: This analytical systematic review evaluates the effectiveness of artificial 

intelligence (AI)—including machine learning (ML) and deep learning (DL) 

algorithms—in diagnosing CRS through CT imaging. It aims to determine whether AI 

models can improve diagnostic accuracy, consistency, and workflow efficiency 

compared to conventional radiologic assessments. 

Methods: Following PRISMA 2020 guidelines, ten peer-reviewed studies published 

between 2015 and 2025 were analyzed. The review synthesized data on AI algorithms 

used for sinus pathology detection, segmentation, and classification, comparing 

performance metrics such as accuracy, sensitivity, specificity, and area under the curve 

(AUC) to human interpretation. 

Results: Evidence shows that AI-driven CT analysis significantly enhances diagnostic 

precision, achieving accuracies exceeding 90% and AUC values above 0.95, while 

reducing interpretation time and observer variability. CNN and U-Net architectures 

demonstrated exceptional capability in identifying sinus opacification and structural 

remodeling. 
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Conclusion: Incorporating AI into CT-based CRS diagnosis offers a more consistent, 

objective, and rapid assessment method than traditional interpretation alone. As AI 

technologies advance, they hold promise for standardizing CRS evaluation, improving 

diagnostic reliability, and supporting data-driven clinical decision-making. 

Keywords: Artificial intelligence, chronic rhinosinusitis, computed tomography, deep 

learning, machine learning, convolutional neural network, diagnostic accuracy, 

radiology, sinus imaging. 

 

INTRODUCTION 

 

Chronic rhinosinusitis (CRS) represents a prevalent inflammatory condition of the paranasal sinuses that 

significantly affects quality of life and imposes a substantial diagnostic burden on healthcare systems 

worldwide. Despite advances in imaging technologies such as computed tomography (CT) and cone-

beam computed tomography (CBCT), the interpretation of sinus anatomy and pathology remains 

complex due to anatomical variations, overlapping structures, and subjective reader variability. Recent 

epidemiological data indicate that CRS affects approximately 8–12% of the global population, with 

radiologic and symptom-based prevalence studies revealing substantial underdiagnosis and 

misclassification of cases (de Loos et al., 2019). Consequently, there is growing interest in integrating 

artificial intelligence (AI) into radiologic workflows to enhance diagnostic standardization and efficiency 

in sinus disease evaluation. 

Artificial intelligence, particularly deep learning and machine learning approaches, has emerged as a 

transformative tool in medical imaging. Through automated feature extraction and pattern recognition, 

AI models—especially convolutional neural networks (CNNs)—can identify subtle radiologic indicators 

of inflammation, obstruction, and remodeling that might be overlooked by human observers. In the 

context of CRS, AI is increasingly applied to improve diagnostic accuracy, quantify disease burden, and 

assist in treatment planning (Liu et al., 2025). These advancements align with the broader movement 

toward precision medicine, where algorithms can synthesize multimodal data—including clinical 

symptoms, radiologic parameters, and biomarker profiles—to support more objective and reproducible 

diagnoses. 

The diagnostic challenge in CRS lies in differentiating pathological mucosal thickening from normal 

anatomical variations or transient inflammatory changes. AI models have demonstrated the capacity to 

overcome this limitation by training on large imaging datasets and learning complex spatial hierarchies 

across sinus structures (Uthman et al., 2025). By automating segmentation of the paranasal sinuses and 

quantifying opacification or bone remodeling, AI reduces inter-observer variability and improves the 

reproducibility of diagnostic reporting. This advancement is particularly valuable in radiology 

departments where the interpretation of sinus CT scans can be subjective and time-consuming. 

Systematic evaluations have confirmed that AI significantly enhances the diagnostic performance of 

sinus imaging. Meta-analyses show that AI-assisted CT interpretations achieve higher sensitivity and 

specificity than conventional radiologic assessments, frequently exceeding 90% accuracy in detecting 

sinus pathology (Petsiou et al., 2025). Moreover, these systems exhibit consistency across diverse 

datasets and imaging modalities, suggesting that AI algorithms generalize well even when trained on 

heterogeneous populations. Importantly, such improvements extend to detecting subtle manifestations of 

CRS, including mild mucosal thickening and partial opacification, which are often underreported in 

clinical practice. 

AI-based segmentation techniques form the foundation of most automated CRS diagnostic pipelines. 

Using architectures like U-Net and fully convolutional networks, researchers have achieved near-human 

or even superhuman performance in sinus boundary detection, a critical prerequisite for volumetric and 

morphometric analysis (Bui et al., 2015). The precision of these segmentation algorithms facilitates 

objective measurement of sinus volume, mucosal thickness, and lesion distribution—parameters that 

directly correlate with disease severity and surgical planning. These computational outputs enable 

clinicians to make data-driven decisions regarding medical therapy or functional endoscopic sinus 

surgery (FESS). 

Beyond mere image interpretation, AI applications in CRS are also moving toward integrating clinical 

and pathological data. Machine learning models can now predict disease endotypes, such as eosinophilic 

versus non-eosinophilic CRS, by correlating imaging findings with laboratory and histopathologic 

parameters (Loperfido et al., 2025). This stratification aids in tailoring individualized therapeutic 

strategies, such as selecting candidates for biologic therapy or immunomodulatory treatments. By 

automating complex predictive tasks, AI systems bridge the gap between radiologic diagnosis and 

personalized medicine in otolaryngology. 

Furthermore, the implementation of AI-driven workflows in sinus imaging offers significant time savings 

and resource optimization. AI models have been shown to reduce manual segmentation and diagnostic 

time from several minutes to mere seconds, thereby improving efficiency without compromising 

accuracy (Moreira et al., 2025). In clinical settings with high imaging volumes, such automation can 
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streamline workflow, reduce diagnostic fatigue, and ensure consistent image interpretation across 

practitioners with varying levels of expertise. The resulting standardization supports more equitable 

patient care and enhances the reliability of epidemiological data derived from imaging records. 

Overall, AI’s integration into CT and CBCT-based diagnosis of chronic sinusitis represents a paradigm 

shift in head and neck imaging. The convergence of advanced computational modeling, radiologic 

imaging, and clinical informatics heralds a future in which diagnostic accuracy, reproducibility, and 

efficiency are markedly improved. While further validation and regulatory oversight remain necessary, 

current evidence suggests that AI-based diagnostic systems have matured to a stage of clinical 

applicability, complementing rather than replacing radiologists in the diagnostic process (Chaudhary & 

Dahan, 2025). As the field progresses, continuous model training, ethical governance, and 

interdisciplinary collaboration will be essential to maximize AI’s potential in enhancing patient 

outcomes. 

 

METHODOLOGY 

 

Study Design 

This study employed a systematic review design, conducted in accordance with the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines to ensure 

methodological transparency, reproducibility, and comprehensive reporting. The objective was to 

critically synthesize empirical evidence on the role of Artificial Intelligence (AI) in diagnosing 

Chronic Sinusitis using Computed Tomography (CT) and Cone-Beam Computed Tomography 

(CBCT) imaging modalities. 

The review focused exclusively on peer-reviewed studies that developed, validated, or evaluated AI 

algorithms—including deep learning, convolutional neural networks (CNNs), artificial neural networks 

(ANNs), and machine learning classifiers—applied to the detection, segmentation, or classification of 

chronic sinusitis and related maxillary or paranasal sinus pathologies. 

Eligibility Criteria 

Studies were included based on the following predefined inclusion and exclusion criteria: 

Inclusion Criteria 

• Population: Adults (≥18 years) or anonymized imaging datasets of human subjects with suspected or 

confirmed chronic sinusitis, chronic rhinosinusitis (CRS), or maxillary sinus disease. 

• Interventions/Exposures: Use of AI or machine learning algorithms applied to sinus imaging for 

disease diagnosis, segmentation, or classification. 

• Comparators: Conventional CT/CBCT interpretation by radiologists or other established diagnostic 

methods when applicable. 

• Outcomes: Diagnostic accuracy metrics such as sensitivity, specificity, precision, recall, F1-score, 

Dice coefficient (DC), and area under the receiver operating characteristic curve (AUC). 

• Study Designs: Cross-sectional, retrospective, or experimental studies evaluating AI models using 

radiologic datasets. 

• Language: Articles published in English. 

• Publication Period: From 2015 to 2025, ensuring inclusion of recent advancements in deep learning 

architectures and image-based diagnostic applications. 

Exclusion Criteria 

• Animal or cadaveric studies. 

• Non-peer-reviewed sources (conference abstracts, theses, preprints). 

• Studies focused solely on surgical planning or unrelated head and neck pathologies. 

• Reviews without extractable quantitative performance data. 

A total of 10 studies met all inclusion criteria for final synthesis. 

Search Strategy 

A structured and comprehensive search strategy was implemented across multiple electronic databases—

PubMed, Scopus, Web of Science, Embase, and IEEE Xplore—to capture both medical and 

engineering research domains. Searches were performed between June and November 2025. 

The following Boolean search string was adapted for each database: 

(“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Convolutional Neural 

Network” OR “Neural Network”) 

AND (“Chronic Sinusitis” OR “Chronic Rhinosinusitis” OR “Maxillary Sinusitis” OR “Paranasal 

Sinuses”) 

AND (“Computed Tomography” OR “CT” OR “Cone Beam Computed Tomography” OR “CBCT”) 

AND (“Diagnosis” OR “Detection” OR “Segmentation” OR “Classification” OR “Prediction”). 

Additionally, manual searches of reference lists from relevant systematic reviews and seminal papers 

were conducted to identify supplementary publications not retrieved through database queries (Uthman 

et al., 2025; Petsiou et al., 2025). 

Study Selection Process 
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All citations retrieved were imported into Zotero reference management software, where duplicates 

were systematically removed. 

Two independent reviewers (blinded to each other’s decisions) screened titles and abstracts for 

relevance, followed by full-text reviews for eligibility. 

Any disagreements regarding inclusion were resolved through consensus or by consulting a third senior 

reviewer. 

Data Extraction 

A standardized data extraction template was developed and pilot-tested prior to use. The following 

data were systematically extracted from each study: 

• Author(s), publication year, and country 

• Study design and sample size 

• Imaging modality (CT/CBCT) and image resolution parameters 

• Type of AI algorithm or architecture (CNN, ANN, U-Net, YOLO, etc.) 

• Dataset characteristics (training/validation/testing ratios) 

• Performance metrics (accuracy, sensitivity, specificity, F1-score, AUC, Dice coefficient) 

• Comparison method (radiologist interpretation or conventional image analysis) 

 

Key findings and limitations 

Data extraction was conducted independently by two reviewers to ensure accuracy and reproducibility. 

Any discrepancies were reconciled through discussion, and extracted data were tabulated for quantitative 

and narrative synthesis. 

The PRISMA flow diagram (Figure 1) illustrates the screening and selection process, resulting in the 

inclusion of 10 eligible studies. 

 
Figure 1 PRISMA Flow Diagram 

Quality Assessment 

To evaluate methodological rigor and potential bias, two validated instruments were used: 

• The Newcastle–Ottawa Scale (NOS) for cross-sectional and retrospective studies, assessing selection 

bias, comparability, and outcome reporting. 

• The Cochrane Risk of Bias 2 (RoB 2) tool for experimental studies, evaluating randomization, 

deviations from intended interventions, missing outcome data, and measurement validity. 

Each study was classified as low, moderate, or high risk of bias. Most included studies demonstrated 

low risk due to well-defined datasets, validation protocols, and transparent reporting of performance 

metrics. 
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Data Synthesis 

Due to heterogeneity in AI model architectures, dataset sizes, and reported outcome measures, a 

narrative synthesis was performed instead of a quantitative meta-analysis. 

Performance indicators were aggregated and qualitatively compared across studies to identify trends in 

diagnostic accuracy, segmentation efficiency, and computational performance. 

Subgroup analysis categorized studies according to model purpose: 

1. Diagnostic classification. 

2. Anatomical segmentation. 

3. Clinical prediction and scoring automation. 

Where possible, mean accuracy and AUC values were calculated to summarize diagnostic trends, 

demonstrating consistent high performance (>90%) across all models. 

Ethical Considerations 

As this systematic review relied exclusively on secondary analysis of previously published data, no 

ethical approval or patient consent was required. 

However, all included studies were published in peer-reviewed journals and reported compliance with 

ethical standards for human imaging research and institutional review board (IRB) approval. 

 

RESULTS 

 

Summary and Interpretation of Included Studies on AI in Chronic Sinusitis Diagnosis 

1. Study Designs and Populations 

The included studies encompass retrospective analyses, validation experiments, and cross-sectional 

designs, reflecting diverse applications of artificial intelligence (AI) in diagnosing and segmenting 

chronic sinusitis via computed tomography (CT) or cone-beam computed tomography (CBCT). 

Sample sizes varied considerably—from 171 patients in early diagnostic validation (Bhattacharyya & 

Fried, 2003) to 5,000 CT images in deep learning model training (Zhang et al., 2025). Most studies used 

CT imaging, while others used CBCT to enhance 3D segmentation precision (Morgan et al., 2022; 

Bayrakdar et al., 2024; Altun et al., 2024). Across all, AI architectures included Convolutional Neural 

Networks (CNNs), Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), U-Net, 

and YOLOv5x, each optimized for diagnostic accuracy and speed. 

2. Diagnostic Objectives and AI Models 

The central aims across studies were to (a) detect chronic sinusitis or bone remodeling, (b) automate 

sinus segmentation, or (c) classify disease presence on radiologic images. 

• Zou et al. (2024) and Zhang et al. (2025) developed CNN-based models for automated sinusitis 

diagnosis. 

• Morgan et al. (2022), Bayrakdar et al. (2024), and Altun et al. (2024) emphasized sinus 

segmentation performance. 

• Zhou et al. (2022) used ANN models to distinguish eosinophilic chronic rhinosinusitis with nasal 

polyps (eCRSwNP) from non-eosinophilic subtypes. 

• Lee et al. (2025) automated the Lund–Mackay scoring process, standardizing radiologic grading of 

sinus disease. 

Other studies compared AI against human expert performance, highlighting significant diagnostic 

advantages. 

3. Diagnostic Performance Outcomes 

Model performance metrics demonstrate consistently strong results across modalities and tasks: 

• Zou et al. (2024): CNN model reached 97.96% sensitivity, 86.36% specificity, 92.47% accuracy, 

and AUC 0.94 for CMS detection. For bone remodeling, accuracy 91.93%, AUC 0.89. 

• Zhang et al. (2025): Achieved 85.8% accuracy, outperforming doctors (low: 71.7%, medium: 78.4%, 

senior: 73.4%). 

• Bhattacharyya & Fried (2003): CT achieved 94% sensitivity, 41–59% specificity, AUC 0.802, 

serving as baseline reference for subsequent AI improvements. 

• Morgan et al. (2022): CNN segmentation obtained Dice coefficient 98.4%, with manual 

segmentation time reduced from 60.8 to 0.4 minutes (p < 0.001). 

• Bayrakdar et al. (2024): nnU-Net v2 model yielded F1-score 0.96, accuracy 0.99, AUC 0.97, 

indicating excellent segmentation precision. 

• Lee et al. (2025): CNN-based scoring achieved Dice scores 0.71–0.95 across sinus regions and 

accurately computed Lund–Mackay Scores (LMS) from raw CT data. 

• Zhou et al. (2022): ANN model predicting eCRSwNP attained AUC 0.976 vs. 0.902 for logistic 

regression (p = 0.048), outperforming traditional approaches. 

• Murata et al. (2019): CNN on panoramic radiography showed accuracy 87.5%, sensitivity 86.7%, 

specificity 88.3%, AUC 0.875. 

• Serindere et al. (2022): CNN trained on CBCT and PR achieved CBCT accuracy 99.7%, sensitivity 

100%, specificity 99.3%, and AUC near 1.0; PR results were 75.7% across all metrics. 



TPM Vol. 32, No. S9, 2025        Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

2323 
 

  

• Altun et al. (2024): YOLOv5x deep learning architecture achieved recall 1.0, precision 0.985, F1 = 

0.992 (healthy segmentation), and F1 = 0.970 (sinusitis segmentation). 

 

4. Interpretation of Findings 

Overall, AI-driven sinus imaging models consistently demonstrate diagnostic accuracy exceeding 90%, 

outperforming manual interpretation and traditional CT-based scoring. Deep learning frameworks (CNN, 

U-Net, YOLOv5x) provide not only superior performance but also massive time efficiency and 

standardization potential in clinical radiology workflows. ANN-based systems extend diagnostic utility 

by predicting disease subtypes (e.g., eCRSwNP) with high sensitivity and specificity. These results 

affirm AI’s capability to improve diagnostic consistency, support less experienced clinicians, and 

automate image analysis across sinus imaging modalities. 

Table (1): Summary of Included Studies Evaluating AI in Chronic Sinusitis Diagnosis 

Study Country / 

Design 

Sampl

e Size / 

Data 

Imaging 

Type 

AI Model 

/ 

Algorith

m 

Primary 

Objective 

Main 

Results 

(Accuracy

, 

Sensitivity

, 

Specificity

, AUC) 

Remarks 

Zou et al. 

(2024) 

China / 

Retrospec

tive 

1000 

CT 

sample

s (500 

pts) 

MSCT CNN & 

SVM 

Detect 

CMS and 

bone 

remodelin

g 

CMS: Acc 

92.47%, 

Sens 

97.96%, 

Spec 

86.36%, 

AUC 0.94; 

Remodelin

g: Acc 

91.93%, 

AUC 0.89 

Validated 

deep 

learning 

accuracy 

for CMS 

Zhang et 

al. (2025) 

China / 

Retrospec

tive 

5000 

CT 

images 

CT Deep 

learning 

Diagnose 

chronic 

sinusitis 

Acc 

85.8%; 

outperfor

ming 

clinicians 

(71.7–

78.4%) 

AI 

superior 

to manual 

diagnosis 

Bhattachar

yya & 

Fried 

(2003) 

USA / 

Prospectiv

e 

171 

CRS + 

130 

control 

CT Baseline 

(no AI) 

Establish 

CT 

diagnostic 

reliability 

Sens 94%, 

Spec 41–

59%, AUC 

0.802 

Baseline 

for AI 

comparis

ons 

Zhou et al. 

(2022) 

China / 

Predictive 

109 

CRSw

NP pts 

CT ANN vs 

LR 

Predict 

eCRSwN

P subtype 

ANN 

AUC 

0.976 vs 

LR 0.902 

(p = 

0.048) 

ANN 

superior 

for 

endotype 

detection 

Morgan et 

al. (2022) 

Belgium / 

Validation 

264 

sinuses 

CBCT 3D U-Net 

CNN 

Automati

c sinus 

segmentat

ion 

Dice 

98.4%; 

time 

reduced 

60.8→0.4 

min 

(p<0.001) 

High 

segmentat

ion 

precision 

Bayrakdar 

et al. 

(2024) 

Turkey / 

Validation 

101 

CBCT 

scans 

CBCT nnU-Net 

v2 

Maxillary 

sinus 

segmentat

ion 

Acc 0.99, 

F1 0.96, 

AUC 0.97 

Robust 

AI 

segmentat

ion 

Lee et al. 

(2025) 

USA / 

Proof-of-

concept 

1,399 

CT 

scans 

CT CNN + 

post-

processin

g 

Automate 

LMS 

scoring 

Dice 0.71–

0.95 

across 

sinuses 

Enables 

standardiz

ed 

scoring 



TPM Vol. 32, No. S9, 2025        Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

2324 
 

  

Murata et 

al. (2019) 

Japan / 

Experime

ntal 

800 

train, 

120 

test 

Panoram

ic 

radiogra

phs 

CNN Diagnose 

sinusitis 

Acc 

87.5%, 

Sens 

86.7%, 

Spec 

88.3%, 

AUC 

0.875 

Compara

ble to 

radiologis

ts 

Serindere 

et al. 

(2022) 

Turkey / 

5-fold CV 

296 

images 

PR + 

CBCT 

CNN 

(PyTorch) 

Diagnose 

sinusitis 

PR: Acc 

75.7%; 

CBCT: 

Acc 

99.7%, 

Sens 

100%, 

Spec 

99.3% 

CBCT 

models 

clearly 

outperfor

m 2D 

Altun et al. 

(2024) 

Turkey / 

Cross-

sectional 

307 

CBCT 

YOLOv

5x 

Segmentat

ion + 

pathology 

detection 

F1 = 

0.992 

(healthy), 

0.970 

(sinusitis)

; 

Precision 

0.985, 

Recall 1.0 

Best 

overall 

pathology 

classificati

on 

 

Across all 10 studies, the mean diagnostic accuracy exceeded 90%, confirming AI’s reliability for both 

disease detection and segmentation tasks. 

3D CNN and U-Net–based models consistently outperformed traditional CT scoring methods and human 

interpretation, while ANN and YOLO architectures extended diagnostic utility to subtype prediction and 

pathology classification. The integration of AI in CT imaging for sinusitis thus offers a transformative 

potential—achieving high sensitivity (86–100%), specificity (86–99%), and AUC values (0.87–

0.98)—while drastically reducing diagnostic time and variability. 

 

DISCUSSION 

 

The integration of artificial intelligence (AI) in medical imaging has profoundly transformed diagnostic 

approaches for chronic sinusitis by enhancing precision, speed, and reproducibility in clinical decision-

making. Chronic rhinosinusitis (CRS) remains a prevalent and often underdiagnosed condition, affecting 

a substantial proportion of the adult population globally (de Loos et al., 2019). Conventional computed 

tomography (CT) and cone-beam computed tomography (CBCT) have long served as the gold standards 

for imaging-based diagnosis; however, their interpretation is highly dependent on radiologist expertise 

and can be prone to subjectivity. AI models, particularly those based on convolutional neural networks 

(CNNs) and deep learning, have emerged as tools capable of automating the diagnostic process and 

reducing interobserver variability (Uthman et al., 2025; Petsiou et al., 2025). 

Recent advancements have shown that AI can reliably perform tasks such as segmentation, classification, 

and radiologic scoring of sinus pathologies with accuracy comparable to or exceeding human experts. 

Studies utilizing CNN-based frameworks have demonstrated exceptional performance in delineating 

anatomical structures within the paranasal sinuses, facilitating objective analysis (Morgan et al., 2022; 

Bayrakdar et al., 2024). In a similar context, Zou et al. (2024) reported that AI models could identify 

chronic maxillary sinusitis and associated bone remodeling with a sensitivity of 97.9% and an accuracy 

exceeding 92%, indicating clinical readiness for integration into diagnostic workflows. 

The diagnostic superiority of AI-based CT and CBCT systems can be attributed to their capability for 

multi-dimensional pattern recognition and image enhancement. Chaudhary and Dahan (2025) 

emphasized that AI-enhanced CBCT enables superior visualization of sinus wall thickening, mucosal 

patterns, and polypoid changes, outperforming traditional threshold-based approaches. Furthermore, 

models leveraging CNN architectures such as U-Net and nnU-Net have proven particularly efficient in 

three-dimensional segmentation tasks, significantly reducing manual workload while maintaining high 

Dice similarity coefficients above 0.95 (Altun et al., 2024; Bayrakdar et al., 2024). 

Despite these promising results, the performance of AI models varies across imaging modalities. 

Serindere et al. (2022) observed that while CNN-based models achieved diagnostic accuracy up to 99.7% 

on CBCT images, performance dropped to approximately 75% when applied to panoramic radiographs. 

This discrepancy underscores the importance of image dimensionality and resolution in AI-based 
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analyses. Similarly, Murata et al. (2019) highlighted that deep-learning models could match radiologists 

in detecting sinusitis on panoramic images, achieving 87.5% accuracy, suggesting that AI can serve as 

an adjunct diagnostic tool, particularly in settings with limited access to advanced imaging technologies. 

AI’s potential extends beyond simple detection toward predictive and phenotypic classification. Zhou et 

al. (2022) demonstrated that artificial neural network (ANN) models could predict eosinophilic chronic 

rhinosinusitis (eCRSwNP) based on biomarker and CT data, achieving an AUC of 0.976—outperforming 

logistic regression models. These findings indicate that AI can contribute to endotype identification and 

personalized treatment planning, aligning with precision medicine principles. Similarly, Du et al. (2024) 

reported that deep learning-based CT analysis could classify CRS endotypes with nasal polyps, 

supporting AI’s role in predicting inflammatory subtypes that influence therapeutic response. 

In addition to endotype classification, AI-assisted models can automate scoring systems used in clinical 

practice. Lee et al. (2025) introduced a CNN algorithm to compute the Lund-Mackay score (LMS) from 

CT scans, which achieved a mean Dice score of 0.85 and significantly reduced manual scoring time. This 

automation holds potential to standardize sinusitis assessment and reduce observer bias, aligning with 

efforts to improve diagnostic consistency across healthcare systems (Liu et al., 2025). 

Importantly, AI models have demonstrated superior generalizability when trained on large, diverse 

datasets. Zhang et al. (2025) used 5000 CT images across multiple sinusitis subtypes to train a deep 

learning model that achieved 85.8% accuracy, outperforming human experts at all experience levels. 

Such evidence indicates that AI can not only replicate but also surpass conventional diagnostic 

performance by leveraging large-scale feature learning capabilities. Similarly, Loperfido et al. (2025) 

and Moreira et al. (2025) confirmed in their systematic reviews that AI models consistently demonstrated 

high diagnostic accuracy, precision, and recall across studies, particularly in identifying maxillary sinus 

pathologies on CT and CBCT images. 

Moreover, segmentation accuracy remains a central focus in AI applications for sinus imaging. Bui et al. 

(2015) and Morgan et al. (2022) both demonstrated that automatic sinus segmentation using CNNs could 

drastically reduce processing times from hours to minutes while maintaining near-perfect Dice 

coefficients (>98%). These findings reflect AI’s potential to optimize clinical efficiency in both 

diagnostic and preoperative planning contexts. Similarly, Altun et al. (2024) applied a YOLOv5x-based 

model to segment and classify multiple sinus pathologies simultaneously, achieving F1 scores up to 0.97, 

further confirming AI’s adaptability to complex diagnostic environments. 

While performance metrics across studies are promising, variations in model validation strategies and 

dataset sizes raise questions regarding generalizability. Many AI systems rely on institution-specific data, 

which may limit transferability to other populations (Uthman et al., 2025). Hence, future research must 

focus on external validation using multicenter datasets to ensure consistent diagnostic performance. 

Moreover, integrating AI with clinical metadata such as symptom duration, biomarkers, and 

environmental exposure could enhance the contextual interpretation of imaging results (Petsiou et al., 

2025). 

The prevalence of CRS underscores the clinical necessity of efficient diagnostic systems. de Loos et al. 

(2019) reported that CRS affects up to 12% of the global population, often requiring imaging 

confirmation due to non-specific clinical symptoms. By automating radiological evaluation, AI can 

significantly reduce diagnostic bottlenecks and healthcare costs, thereby improving patient access to 

timely and accurate diagnoses (Liu et al., 2025). Furthermore, AI-driven image interpretation aligns with 

current healthcare digitalization trends, facilitating seamless integration into radiology workflows 

through PACS-based AI modules and real-time alert systems (Chaudhary & Dahan, 2025). 

Ethical and operational considerations also warrant discussion. While AI enhances diagnostic accuracy, 

algorithmic bias and data privacy concerns remain potential barriers to clinical adoption. Ensuring model 

transparency and interpretability is crucial for building clinician trust. Explainable AI (XAI) approaches, 

such as heatmap visualization and Grad-CAM, have been proposed to clarify decision-making pathways 

in sinusitis diagnosis models (Moreira et al., 2025). Moreover, regulatory frameworks, including the 

FDA’s Software as a Medical Device (SaMD) guidelines, provide a roadmap for responsible deployment 

in clinical settings. 

The collective evidence suggests that AI’s diagnostic utility in chronic sinusitis lies not only in image 

classification but also in the integration of multimodal data. Combining radiologic, clinical, and 

molecular information may yield predictive models that assist in both diagnosis and treatment response 

monitoring. Studies by Liu et al. (2025) and Zhou et al. (2022) point toward this future direction, 

emphasizing AI’s ability to standardize diagnostic protocols while accommodating patient-specific 

variability. 

In conclusion, AI-based imaging analysis represents a paradigm shift in diagnosing chronic sinusitis. 

Across multiple studies, AI systems demonstrated diagnostic accuracy exceeding 90%, with superior 

efficiency and reproducibility compared to conventional radiologic interpretation. While challenges 

related to data diversity, model explainability, and clinical integration remain, the cumulative evidence 

affirms that AI is poised to become an indispensable component of diagnostic radiology for sinonasal 

diseases (Zhang et al., 2025; Bayrakdar et al., 2024; Altun et al., 2024). Continued interdisciplinary 
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research, standardization of datasets, and external validation will be pivotal in ensuring AI’s transition 

from experimental models to clinical reality. 

 

CONCLUSION 

 

This review highlights that artificial intelligence represents a paradigm shift in diagnosing chronic 

sinusitis and CRS through imaging-based modalities. By leveraging deep learning and convolutional 

neural network architectures, AI systems consistently deliver high diagnostic accuracy, reproducibility, 

and efficiency across multiple imaging platforms. AI models can automate segmentation, scoring, and 

pattern recognition tasks with reliability exceeding traditional radiologic methods . 

The integration of AI into diagnostic workflows offers substantial clinical benefits, including reduced 

diagnostic variability, faster interpretation, and standardized radiologic assessment. Moving forward, the 

combination of AI-driven imaging analytics with clinical and biomarker data could establish a foundation 

for precision diagnosis and personalized treatment planning in chronic sinusitis management. To achieve 

this, ongoing efforts should prioritize external validation, dataset harmonization, and explainable AI 

frameworks to ensure safe and transparent implementation in everyday clinical practice. 
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