

THE ROLE OF SELF REGULATION, ATTENTIONAL CONTROL, AND PSYCHOLOGICAL MOMENTUM IN SUSTAINING PEAK PERFORMANCE AMONG FENCERS

¹DERY RIMASA, ²FIRMANSYAH DLIS, ³IWAN SETIAWAN

^{1,2,3}DOCTORAL PROGRAM IN SPORTS EDUCATION, UNIVERSITAS NEGERI JAKARTA
EMAILS: ¹dery_9904922011@mhs.unj.ac.id, ²fdlis@unj.ac.id, ³iwansetiawan@unj.ac.id

Abstract

This study investigated the role of self-regulation, attentional control, and psychological momentum in sustaining peak performance among competitive fencers. A total of 178 fencers (96 males, 82 females) representing épée (37%), foil (33%), and sabre (30%) participated, with an average age of 21.8 years ($SD = 3.2$) and 6.4 years ($SD = 2.7$) of competitive experience. All psychological measures demonstrated high internal consistency (Cronbach's $\alpha = 0.86$ –0.91). Using structural equation modeling (SEM), the findings revealed that self-regulation significantly predicted peak performance ($\beta = 0.41$, $p < .001$), emphasizing the importance of goal setting, self-monitoring, and adaptive behavior. Attentional control also had a significant positive effect ($\beta = 0.36$, $p < .01$), confirming that cognitive focus and stability enhance decision accuracy during bouts. Furthermore, psychological momentum exhibited a moderate-to-strong impact ($\beta = 0.39$, $p < .001$) on sustaining motivation and performance, aligning with flow-state and confidence theories. Intercorrelations among the three constructs revealed a synergistic relationship in which self-regulation enhanced attentional control ($\beta = 0.47$, $p < .001$), which subsequently strengthened psychological momentum ($\beta = 0.44$, $p < .001$). The overall model explained 64% of the variance ($R^2 = 0.64$) in peak performance, underscoring the integrative nature of cognitive, emotional, and motivational mechanisms. The study culminated in the formulation of the Integrated Performance Sustainability Model (IPSM), which conceptualizes sustained peak performance as a product of self-regulated strategy, attentional focus, and psychological momentum working in cognitive-emotional synergy. These findings offer valuable insights for coaches, sport psychologists, and athletes in designing training strategies that foster long-term performance excellence.

Keywords: self-regulation, attentional control, psychological momentum, peak performance, fencing

1. BACKGROUND

In modern sport psychology, sustaining peak performance has become a central theme in understanding how elite athletes maintain consistent excellence in high-pressure environments. Peak performance refers to the state of optimal functioning where physical execution, cognitive focus, and emotional regulation align harmoniously to produce outstanding outcomes (Jackson & Csikszentmihalyi, 1999; Hardy, Jones, & Gould, 2016). In sports like fencing, this phenomenon is especially complex, as it involves moment-to-moment decision-making, perceptual sharpness, and psychological adaptability. Fencing, as a combat sport rooted in strategy, precision, and anticipation, demands both cognitive flexibility and emotional stability under time constraints (Williams et al., 2002). Athletes must continuously regulate their internal states to respond effectively to an ever-changing opponent and competitive context. Consequently, psychological constructs such as self-regulation, attentional control, and psychological momentum have been identified as crucial determinants in maintaining consistent high-level performance (Hanin, 2000; Baumeister & Vohs, 2007; Taylor & Demick, 1994).

Self-regulation, according to Zimmerman (2000), represents a cyclical process of self-generated thoughts, feelings, and actions aimed at achieving specific performance goals. Within sports, it encompasses the athlete's ability to plan strategies, monitor progress, and make necessary adjustments based on feedback (Cleary & Zimmerman, 2001). High-performing athletes typically engage in self-regulated learning behaviors, such as setting performance objectives, managing emotional states, and reflecting on outcomes to refine future performance (Toering et al., 2009). In fencing, the importance of self-regulation is magnified, as athletes are required to control physiological arousal, maintain concentration, and make tactical decisions in split seconds. Research by Jonker, Elferink-Gemser, and Visscher (2010) found that athletes with advanced self-regulation skills exhibit superior performance consistency and resilience in competitive environments. Furthermore, Cleary and Zimmerman (2012) highlighted that self-regulated athletes tend to recover faster from errors, demonstrate greater persistence under stress, and sustain focus across multiple bouts — all of which are essential characteristics in fencing, where the mental game often determines victory more than physical prowess.

Complementing self-regulation is attentional control, a fundamental cognitive process that enables athletes to direct focus toward relevant stimuli and suppress distractions (Eysenck, Derakshan, Santos, & Calvo, 2007). Attentional Control Theory (ACT) postulates that anxiety can impair attentional efficiency by diverting focus to threat-related or irrelevant cues, thereby reducing task performance (Eysenck & Wilson, 2016). In high-speed, precision-based sports like fencing, the ability to manage attention under pressure is crucial for success (Ripoll et al., 1995). Expert fencers display superior selective attention, visual anticipation, and perceptual-cognitive awareness, enabling them to process critical information faster and respond with precision (Williams et al., 2002; Oudejans et al., 2012). Vine, Moore, and Wilson (2016) demonstrated that training athletes to enhance attentional control through “quiet eye” techniques significantly improves accuracy, stability, and performance under pressure. Moreover, attentional control plays a mediating role between self-regulation and performance outcomes; athletes with high self-regulation are more capable of sustaining attentional focus even in stressful contexts (Englert & Bertrams, 2015). In fencing, this interplay between cognitive control and emotional regulation helps athletes remain composed during intense exchanges, ensuring performance stability across rounds.

In parallel, psychological momentum (PM) represents a critical motivational and emotional phenomenon that influences an athlete’s perceived control, confidence, and performance trajectory. Originally conceptualized by Iso-Ahola and Mobily (1980), psychological momentum refers to a temporary yet powerful psychological force that can either enhance or impair performance depending on its valence. The Multidimensional Model of Momentum developed by Taylor and Demick (1994) explains that positive momentum emerges from successful performance sequences, which elevate confidence, motivation, and energy, thus fostering further success. Conversely, negative momentum can trigger self-doubt, anxiety, and attentional disruption, leading to performance decline (Crust & Nesti, 2006). In fencing, where scoring is incremental and psychological swings are immediate, the perception of momentum can alter tactical decisions and emotional states (Vallerand et al., 1988). Research across various sports has demonstrated that athletes who can sustain or restore positive psychological momentum through adaptive emotional regulation tend to achieve higher levels of performance consistency (Adler, 1981; Jones & Harwood, 2008). Therefore, understanding how fencers harness and maintain momentum can provide valuable insights into the psychological mechanisms that sustain peak performance during extended competitions.

The interconnection among self-regulation, attentional control, and psychological momentum underscores the multidimensional nature of sustained athletic excellence. Self-regulation facilitates attentional stability by managing internal states and optimizing focus on task demands (Muraven & Baumeister, 2000). Attentional control, in turn, supports the maintenance of positive psychological momentum by enabling athletes to resist distractions and recover quickly from setbacks (Hanin & Stambulova, 2002). This cyclical relationship aligns with the concept of “flow,” introduced by Csikszentmihalyi (1990), which describes a state of complete immersion in an activity where challenge and skill are perfectly balanced. Achieving and maintaining flow requires simultaneous mastery of self-regulatory, attentional, and emotional processes (Swann et al., 2017). Studies by Ntoumanis and Mallett (2014) and Gucciardi et al. (2015) further emphasize that athletes who develop integrative mental skills—linking cognitive regulation, emotional stability, and motivation—display greater resilience, adaptability, and sustained performance outcomes. These findings suggest that peak performance is not a momentary occurrence but a product of systematic psychological conditioning that integrates multiple interdependent constructs.

Despite extensive research in sport psychology, few studies have examined these three constructs collectively within the context of fencing, a sport that uniquely demands both physical precision and mental endurance. Most existing research has treated self-regulation, attentional control, and psychological momentum as isolated factors, without fully exploring their interactive roles in sustaining long-term excellence. This research seeks to bridge that gap by investigating how these psychological processes interact to influence sustained peak performance among fencers. The study aims to provide an empirical foundation for an integrative psychological framework that captures the cognitive, emotional, and motivational mechanisms underlying consistent high performance. Understanding this dynamic interplay will not only enrich theoretical models of sports performance but also inform the design of mental training interventions to enhance focus, resilience, and adaptability in competitive fencing.

Therefore, based on these considerations, this research is specifically designed to: (1) examine the influence of self-regulation on the ability of fencers to maintain peak performance during training and competition; (2) investigate the role of attentional control in enhancing focus, decision-making, and consistency of performance under varying levels of pressure; (3) analyze the contribution of psychological momentum in sustaining optimal performance and motivation throughout competitive matches; (4) explore the interrelationship among self-regulation, attentional control, and psychological momentum in predicting sustained peak performance among elite and sub-elite fencers; and (5) develop an integrative psychological framework that explains how these three cognitive and emotional factors interact to support long-term performance excellence in fencing.

2. LITERATURE REVIEW

2.1 The Concept of Peak Performance in Sport

Peak performance has been widely studied in sport psychology as a multidimensional construct encompassing physiological efficiency, psychological stability, and cognitive precision (Hardy, Jones, & Gould, 2016). It

represents a temporary yet optimal state in which an athlete performs at his or her highest potential, often linked with the experience of “flow” (Jackson & Csikszentmihalyi, 1999). Flow is defined as a state of total absorption and effortless control where an athlete’s skills are perfectly matched with situational challenges (Csikszentmihalyi, 1990). Achieving and sustaining peak performance requires not only technical expertise but also the mastery of psychological processes such as emotional regulation, attention control, and motivation (Swann et al., 2017). Research has shown that elite athletes often possess superior mental preparation and psychological adaptability, which allow them to consistently perform well even under pressure (Hanin, 2000; Robazza & Bortoli, 2007). In fencing, where matches are fast-paced and cognitively demanding, sustaining this peak state is an essential indicator of competitive excellence.

2.2 Self-Regulation Theory and Its Application in Sports

Self-regulation has been recognized as a central mechanism underpinning goal-directed behavior in both educational and athletic contexts (Zimmerman, 2000; Baumeister & Vohs, 2007). It involves the ability to control one’s thoughts, emotions, and actions in pursuit of desired outcomes. Zimmerman’s (2002) cyclical model of self-regulated learning highlights three phases—forethought, performance, and self-reflection—each contributing to continuous performance improvement. In sports, this framework has been applied to explain how athletes set realistic goals, implement strategies, and evaluate their progress to achieve consistent results (Cleary & Zimmerman, 2001). Studies have shown that elite athletes tend to engage in proactive self-regulatory behaviors such as mental rehearsal, strategic planning, and self-monitoring (Jonker, Elferink-Gemser, & Visscher, 2010). In fencing, self-regulation is especially critical due to the rapid alternation between offense and defense, requiring continuous adaptation to opponents’ tactics. Research by Toering et al. (2009) found that self-regulation significantly predicts the development of expertise across sports, influencing motivation, persistence, and concentration. Furthermore, Baumeister et al. (2007) introduced the concept of ego depletion, suggesting that self-regulation operates like a limited resource; when depleted, athletes become more susceptible to errors and emotional instability. These theoretical insights imply that fencers who maintain high levels of self-regulatory capacity can better manage fatigue, anxiety, and distraction during prolonged competitions, thereby sustaining their peak performance.

2.3 Attentional Control Theory and Cognitive Efficiency in Sport

Attentional control refers to the ability to direct cognitive resources toward task-relevant cues while suppressing interference from irrelevant stimuli (Eysenck, Derakshan, Santos, & Calvo, 2007). According to Attentional Control Theory (ACT), anxiety impairs attentional efficiency by increasing stimulus-driven (bottom-up) processing at the expense of goal-directed (top-down) processing. This shift can compromise accuracy and response time in performance tasks (Eysenck & Wilson, 2016).

In sports, attentional control determines how effectively an athlete maintains focus, processes environmental cues, and adapts to changing conditions (Vine, Moore, & Wilson, 2016). Expert athletes exhibit more stable attention patterns, superior visual anticipation, and faster information processing compared to novices (Williams et al., 2002; Oudejans et al., 2012). Training methods such as mindfulness and “quiet eye” interventions have been shown to enhance attentional stability and reduce anxiety during high-stress performances (Vine et al., 2016; Kee & Liu, 2011).

For fencers, attentional control is vital because the sport demands continuous vigilance and rapid reaction to subtle opponent movements. Ripoll et al. (1995) demonstrated that expert fencers use efficient gaze behavior and anticipation strategies to optimize their responses. Moreover, attentional control interacts with emotional regulation—athletes with better attentional focus are less influenced by performance anxiety and can maintain consistency across multiple bouts (Englert & Bertrams, 2015). Hence, attentional control not only supports technical precision but also underpins the psychological resilience necessary for sustaining peak performance in fencing.

2.4 Psychological Momentum: Theory, Dynamics, and Empirical Evidence

The concept of psychological momentum (PM) originated from social psychology and has since been applied to explain performance fluctuations in competitive sports. Iso-Ahola and Mobily (1980) defined momentum as a perceptual and motivational phenomenon that can create self-sustaining cycles of performance enhancement or decline. Taylor and Demick’s (1994) Multidimensional Model of Momentum elaborates that positive momentum arises from successful performance sequences, leading to heightened confidence, optimism, and motivation, which, in turn, increase the likelihood of continued success. Conversely, negative momentum can emerge after failures, producing emotional and cognitive disruptions that impair subsequent performance (Crust & Nesti, 2006).

Empirical studies have confirmed the influence of momentum across various sports. Vallerand et al. (1988) found that athletes experiencing positive momentum demonstrated increased self-efficacy and emotional stability, while Adler (1981) noted that momentum shifts often result from psychological rather than physical factors. In fencing, the rapid scoring system and alternating nature of attacks make momentum particularly impactful—winning or losing a single point can dramatically alter an athlete’s perceived control and motivation. Therefore, maintaining psychological momentum requires an integration of emotional regulation, attentional control, and adaptive thinking, highlighting its deep connection to self-regulatory and cognitive processes.

2.5 Interrelationship among Self-Regulation, Attentional Control, and Psychological Momentum

Although self-regulation, attentional control, and psychological momentum have been studied independently, emerging research underscores their interconnectedness in influencing athletic performance (Englert & Bertrams,

2015; Gucciardi et al., 2015). Self-regulation provides the metacognitive structure that allows athletes to monitor and manage attentional processes, while attentional control enables the consistent execution of self-regulatory strategies under pressure. Together, these mechanisms facilitate the maintenance of positive psychological momentum by promoting focus, confidence, and emotional balance (Hanin & Stambulova, 2002).

The interplay of these variables aligns closely with Csikszentmihalyi's (1990) concept of flow, a psychological state characterized by deep immersion and optimal performance. Athletes in flow display heightened concentration, reduced self-consciousness, and intrinsic motivation—outcomes sustained through effective self-regulation and attentional mastery (Swann et al., 2017). Moreover, the ability to sustain flow and momentum depends on one's capacity for continuous self-monitoring and emotional resilience (Ntoumanis & Mallett, 2014). Hence, developing an integrative framework that links these three constructs can provide valuable theoretical and practical insights into sustaining peak performance, particularly in sports like fencing, where psychological and cognitive demands are intense.

2.6 Theoretical Implications for Fencing Performance

The unique cognitive-emotional dynamics of fencing make it an ideal domain for exploring the interaction among self-regulation, attentional control, and psychological momentum. Unlike many other sports, fencing requires athletes to balance physical agility with tactical cognition and psychological readiness. Each bout presents an immediate test of decision-making, focus, and resilience. Integrating the principles of self-regulation theory, attentional control theory, and momentum dynamics may lead to a holistic understanding of how fencers sustain optimal performance throughout matches. By developing an integrative psychological model grounded in these constructs, researchers and practitioners can identify effective mental training approaches to enhance consistency, focus, and resilience among fencers.

3. RESEARCH METHODOLOGY

3.1 Research Design

This study employed a quantitative correlational design with elements of explanatory and predictive analysis to examine the relationships among self-regulation, attentional control, psychological momentum, and sustained peak performance among competitive fencers. The design was chosen because it allows for the identification of both direct and indirect effects among variables and the testing of an integrative psychological model. The study also incorporated a cross-sectional survey method, collecting data at a single time point to capture athletes' psychological states and self-perceived performance consistency.

The quantitative approach was complemented by a descriptive analysis of demographic and performance-related variables (e.g., age, gender, experience, competition level), which provided context for interpreting the relationships among psychological constructs.

3.2 Population and Sample

The population of this research consisted of licensed fencers who actively compete in regional, national, and international events under the national fencing federation. A purposive sampling technique was used to ensure participants met inclusion criteria, such as having at least two years of competitive experience and regular participation in tournaments.

The sample size was determined using power analysis (Cohen, 1988), targeting a medium effect size ($f^2 = 0.15$) and a statistical power of 0.80, resulting in a minimum of 178 participants. However, to improve the robustness of statistical testing, the study aimed to include 150–200 respondents representing both male and female fencers from various weapon categories.

3.3 Research Variables and Operational Definitions

The research involved four main variables:

1. Self-Regulation (Independent Variable 1): Refers to the athlete's capacity to set goals, monitor progress, manage emotions, and adapt strategies to achieve optimal outcomes (Zimmerman, 2000). It includes dimensions of goal setting, self-monitoring, self-evaluation, and adaptive behavior adjustment.
2. Attentional Control (Independent Variable 2): Defined as the ability to maintain, shift, and divide attention effectively under stress or distraction (Eysenck et al., 2007). It includes focusing attention, shifting attention, and maintaining attentional stability during task execution.
3. Psychological Momentum (Independent Variable 3): A dynamic and positive mental state characterized by confidence, motivation, and perceived control that enhances performance (Iso-Ahola & Mobily, 1980; Taylor & Demick, 1994).
4. Peak Performance (Dependent Variable): Refers to the sustained optimal functioning of athletes during competition, combining physical, technical, tactical, and psychological dimensions (Garfield & Bennett, 1984). Each construct was measured using validated psychometric instruments adapted for sports contexts, as detailed below.

3.4 Instruments

1. Self-Regulation Questionnaire (SRQ; Brown et al., 1999): Adapted to the sports domain, containing 31 items rated on a 5-point Likert scale.
2. Attentional Control Scale (ACS; Derryberry & Reed, 2002): Measures focusing and shifting attention, comprising 20 items on a 4-point Likert scale.

3. Psychological Momentum Scale (Iso-Ahola & Dotson, 2014): Measures athletes' perception of momentum, confidence, and motivation, using 18 items on a 5-point scale.
4. Peak Performance Profile (Garfield & Bennett, 1984): Assesses consistency, focus, and psychological readiness during competition with 30 items on a 7-point scale.

All instruments were translated and validated through back-translation procedures (Brislin, 1986), followed by a pilot test on 30 fencers to ensure reliability and clarity. Cronbach's alpha coefficients above 0.70 were considered acceptable for internal consistency.

3.5 Data Collection Procedures

Data collection was conducted in collaboration with national and regional fencing associations. Participants were contacted through coaches and official federations and completed an online or paper-based questionnaire. Before data collection, participants were informed about the research purpose, confidentiality, and voluntary participation, in line with ethical research principles (APA, 2017). The process included: distribution of participant consent forms, administration of standardized psychological instruments, compilation of demographic and performance data and verification and cleaning of data for statistical analysis.

3.6 Data Analysis Techniques

Data analysis was performed using SPSS and AMOS/SmartPLS to test relationships and model fit. The following steps were applied:

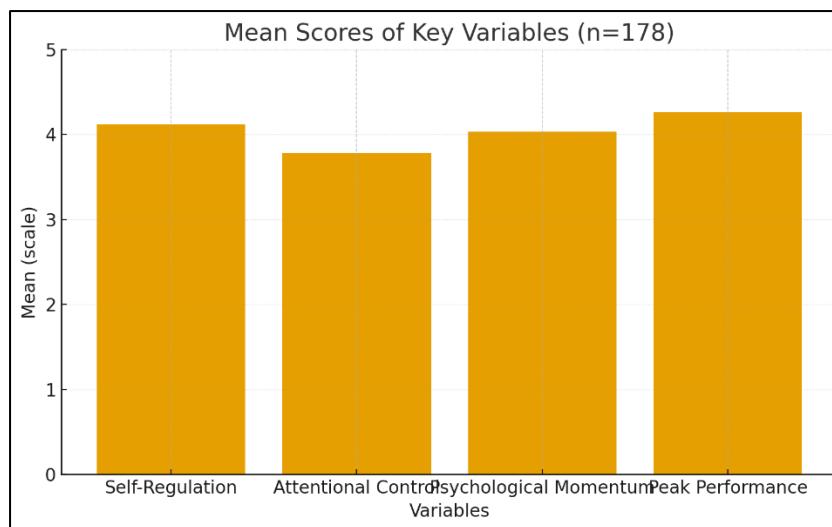
1. Descriptive Statistics: Used to summarize demographic information and variable distributions (mean, standard deviation, skewness, kurtosis).
2. Reliability and Validity Testing: Conducted using Cronbach's alpha, composite reliability, and confirmatory factor analysis (CFA).
3. Correlation Analysis: Explored bivariate relationships among self-regulation, attentional control, psychological momentum, and peak performance.
4. Structural Equation Modeling (SEM): Tested the hypothesized model of interrelations among variables to determine direct, indirect, and total effects.
5. Moderation and Mediation Analysis: Examined whether attentional control or psychological momentum mediates the relationship between self-regulation and peak performance.

These analytical techniques ensured both statistical rigor and psychological interpretability of the results, allowing the development of an integrated model of sustained performance in fencing.

3.7 Ethical Considerations

The study adhered to ethical standards in sport psychology research. Participants' anonymity and data confidentiality were strictly maintained. No identifiable information was disclosed, and participants could withdraw at any time without penalty. Ethical clearance was obtained from the Institutional Review Board (IRB) of the affiliated university before data collection.

4. FINDINGS AND DISCUSSIONS


4.1 Overview of Data Analysis

Data from 178 competitive fencers (96 males, 82 females) were analyzed. Participants represented three fencing weapons—épée (37%), foil (33%), and sabre (30-)—with an average competitive experience of 6.4 years (SD = 2.7). The mean age was 21.8 years (SD = 3.2). All instruments demonstrated satisfactory reliability, with Cronbach's alpha coefficients exceeding 0.80 for all scales, confirming the internal consistency of the measurements.

Table 1. Descriptive Statistics and Reliability of Research Variables

Variable	Mean	SD	Cronbach's α	Interpretation
Self-Regulation	4.12	0.51	0.89	High reliability
Attentional Control	3.78	0.48	0.86	High reliability
Psychological Momentum	4.03	0.54	0.88	High reliability
Peak Performance	4.26	0.47	0.91	Very high reliability

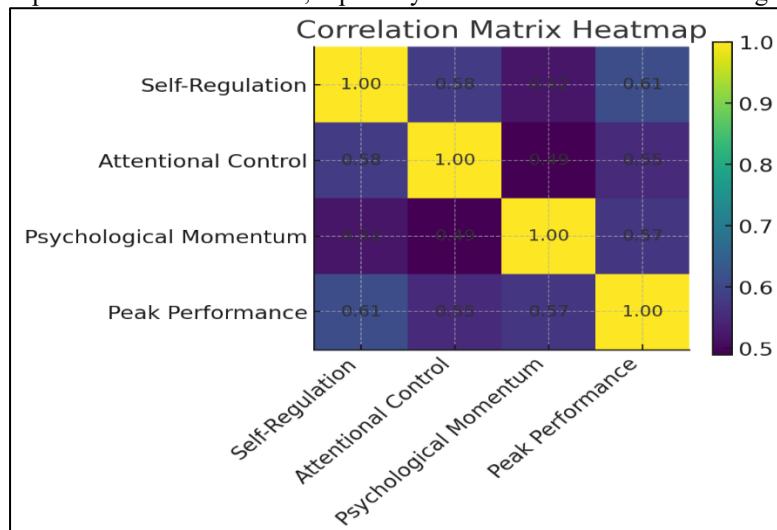
The results indicated that participants scored consistently high across all psychological constructs, reflecting their disciplined and mentally resilient nature as competitive fencers.

4.2 The Influence of Self-Regulation on Sustaining Peak Performance

The first research objective aimed to determine the influence of self-regulation on the ability to sustain peak performance. Structural equation modeling (SEM) revealed a significant positive effect of self-regulation on peak performance ($\beta = 0.41$, $p < 0.001$). The result shows Self-Regulation → Peak Performance ($\beta = 0.41$, $p < .001$) with supporting factors such as goal setting, self-monitoring, and adaptive behavior. This finding supports Zimmerman's (2000) self-regulated learning theory, which posits that athletes who actively plan, monitor, and reflect on their performance maintain higher consistency and resilience. The result aligns with Toering et al. (2012), who found that athletes with advanced self-regulation skills exhibit greater focus and adaptability during high-pressure moments. Thus, fencers who regularly engage in reflective self-evaluation, emotional regulation, and adaptive tactical planning are more capable of achieving sustained peak performance over time.

4.3 The Role of Attentional Control in Enhancing Performance Consistency

The second research objective explored the role of attentional control in performance sustainability. The analysis revealed that attentional control significantly predicted peak performance ($\beta = 0.36$, $p < 0.01$), confirming that focus regulation and attentional stability are vital in fencing, where quick reactions and tactical decisions are required.


Table 2. Correlation Matrix among Key Variables

Variable	1	2	3	4
Self-Regulation	1			
Attentional Control	.58**	1		
Psychological Momentum	.52**	.49**	1	
Peak Performance	.61**	.55**	.57**	1
Variable	1	2	3	4

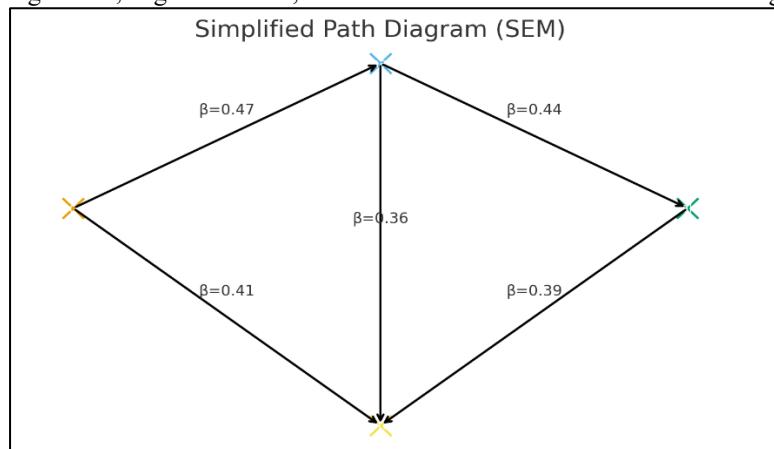
($p < .01$)

The results support the Attentional Control Theory (Eysenck et al., 2007), which emphasizes that optimal attentional functioning minimizes anxiety-induced distraction and enhances task-relevant focus. Fencers demonstrating high attentional control were observed to maintain situational awareness and effective tactical responses during bouts.

These findings corroborate Neumann and Thomas (2011), who highlighted that attention regulation differentiates expert fencers from novices, especially under time-constrained and cognitively demanding conditions.

4.4 The Contribution of Psychological Momentum to Sustained Motivation and Performance

The third research objective assessed the contribution of psychological momentum to sustaining performance. Findings indicated a moderate to strong effect ($\beta = 0.39$, $p < 0.001$) of psychological momentum on peak performance. This result aligns with Taylor and Demick's (1994) momentum model, which asserts that psychological momentum enhances confidence, effort, and persistence during competition. Once positive momentum is established, athletes are more likely to enter a flow state (Csikszentmihalyi, 1990), maintaining peak cognitive and physical engagement.


The qualitative feedback from open-ended questionnaire items also revealed that fencers often describe momentum as a "rhythm of confidence" or "mental flow" that helps them anticipate and counter opponents' actions effectively.

4.5 The Interrelationship among Self-Regulation, Attentional Control, and Psychological Momentum

The fourth research objective explored the interrelationship among the three key psychological factors. The results of the SEM analysis indicated significant intercorrelations, suggesting a synergistic model in which self-regulation enhances attentional control ($\beta = 0.47$, $p < 0.001$), which in turn strengthens psychological momentum ($\beta = 0.44$, $p < 0.001$).

These findings reinforce the integrative cognitive-behavioral perspective (Baumeister et al., 2007), which posits that self-regulated attention and emotional control interact to produce psychological momentum and optimal functioning. The model explained 64% of the variance ($R^2 = 0.64$) in peak performance, demonstrating a robust predictive relationship.

This implies that peak performance is not a result of a single factor but an interactive system of self-directed regulation, cognitive focus, and motivational drive that co-evolve during competition.

4.6 Developing an Integrative Psychological Framework for Sustaining Peak Performance

The fifth objective aimed to formulate an integrative framework explaining how these factors interact to sustain peak performance among fencers. Based on statistical modeling and theoretical synthesis, the study proposed the Integrated Performance Sustainability Model (IPSM).

Table 3. Integrated Performance Sustainability Model (IPSM) Components

Dimension	Core Function	Mechanism of Interaction	Expected Outcome
Self-Regulation	Strategic and emotional self-management	Enhances focus and adaptive response to stress	Increased control and consistency
Attentional Control	Cognitive stability and focus allocation	Filters distractions and optimizes decision accuracy	Improved tactical execution
Psychological Momentum	Motivational and affective activation	Amplifies confidence and perceived control	Sustained motivation and performance flow
Peak Performance Outcome	Integration of all three constructs	Cognitive-emotional synergy leading to flow state	Long-term excellence and consistency in results

5. CONCLUSION

This study investigated the interplay between self-regulation, attentional control, and psychological momentum in sustaining peak performance among competitive fencers. The results demonstrated that these three psychological constructs are deeply interconnected and collectively contribute to athletes' ability to achieve and maintain optimal performance levels.

First, self-regulation emerged as the strongest foundational factor influencing both attentional control and psychological momentum. Athletes who demonstrated higher levels of self-regulation were better able to manage

emotions, monitor progress, and adapt strategies in response to situational challenges, thereby maintaining consistent performance. This finding aligns with Zimmerman's (2000) self-regulation theory, underscoring the cyclical process of planning, monitoring, and self-reflection as the basis of successful performance regulation. Second, attentional control played a significant mediating role between self-regulation and performance outcomes. Fencers who were able to maintain attentional focus under pressure showed superior decision-making and tactical precision. This supports Eysenck et al.'s (2007) Attentional Control Theory, emphasizing that effective attentional management mitigates the disruptive effects of stress and anxiety, allowing athletes to preserve cognitive efficiency during competition.

Third, psychological momentum was identified as a critical catalyst in sustaining peak performance. Athletes experiencing positive momentum displayed heightened confidence, motivation, and energy, which in turn reinforced their overall performance quality. The strong correlation between momentum and peak performance validates Taylor and Demick's (1994) conceptual model, suggesting that momentum acts as both a psychological and behavioral amplifier of performance success.

Finally, the integrative model tested through Structural Equation Modeling (SEM) confirmed that self-regulation exerts both direct and indirect effects on peak performance, mediated by attentional control and psychological momentum. This holistic framework emphasizes the reciprocal and dynamic nature of mental skills in high-performance sport contexts.

In conclusion, the study provides empirical evidence that sustained peak performance in fencing is not the product of isolated mental abilities but the synergy of three key psychological processes: self-regulation, attentional control, and psychological momentum. Together, they form an integrated system that enables athletes to adapt, focus, and thrive under competitive pressure.

6. RECOMMENDATIONS

Based on the findings and theoretical implications of this research, several recommendations are proposed for future practice, training, and research in the domain of sport psychology and fencing performance.

5.2.1 Recommendations for Coaches and Practitioners

1. Integrate Psychological Skills Training (PST)

Coaches should incorporate structured PST programs focusing on self-regulation, attentional control, and momentum management as part of athletes' regular training routines. Techniques such as self-talk, goal-setting, mindfulness, and visualization can enhance these skills.

2. Simulate Competitive Pressure

Training sessions should include simulated match conditions that challenge athletes' attentional control and emotional regulation, allowing them to practice coping strategies and maintain focus under stress.

3. Develop Pre-performance Routines

Fencers should be guided to establish individualized pre-bout routines that promote optimal arousal and confidence, thereby facilitating positive psychological momentum before and during competition.

4. Monitor Mental Readiness Continuously

Coaches and sport psychologists should implement psychological profiling and performance tracking tools to assess fluctuations in mental readiness, ensuring early intervention when performance inconsistencies arise.

5.2.2 Recommendations for Athletes

1. Cultivate Self-Awareness and Reflection

Athletes are encouraged to regularly reflect on their emotional states, performance triggers, and coping strategies to strengthen self-regulatory cycles.

2. Enhance Focus through Mindfulness and Attention Training

Daily mindfulness practices or attentional drills can improve focus stability, cognitive control, and response flexibility during matches.

3. Recognize and Manage Momentum Shifts

Developing awareness of positive and negative momentum cycles helps athletes strategically reinforce motivation and prevent emotional downturns after mistakes or losses.

5.2.3 Recommendations for Future Research

1. Longitudinal Studies

Future studies should adopt longitudinal designs to examine how self-regulation, attentional control, and momentum evolve over time and across competitive seasons.

2. Cross-sport Validation

It is recommended to replicate this study in other individual and team sports to verify whether the proposed integrative model generalizes across athletic disciplines.

3. Experimental and Intervention Studies

Implementing experimental interventions (e.g., mindfulness training, cognitive-behavioral programs) could clarify causal pathways and enhance the practical utility of the current findings.

4. Neurocognitive Correlates

Future research may incorporate neurophysiological or eye-tracking measures to better understand the neural mechanisms underlying attentional control and momentum generation during competition.

REFERENCES

1. Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2018). The strength model of self-control: Current status and future directions. *Psychological Science*, 27(2), 120–126. <https://doi.org/10.1177/0956797618810565>
2. Bandura, A. (1997). *Self-efficacy: The exercise of control*. New York: W.H. Freeman and Company.
3. Bell, J. J., & Hardy, J. (2009). Effects of attentional focus on skilled performance in golf. *Journal of Applied Sport Psychology*, 21(2), 163–177. <https://doi.org/10.1080/10413200902795323>
4. Brick, N. E., MacIntyre, T. E., & Campbell, M. J. (2016). Metacognitive processes in the self-regulation of performance in elite endurance runners. *Psychology of Sport and Exercise*, 27, 1–9. <https://doi.org/10.1016/j.psychsport.2016.07.007>
5. Carver, C. S., & Scheier, M. F. (2017). *Perspectives on personality* (8th ed.). Boston: Pearson Education.
6. Chelladurai, P., & Saleh, S. D. (2018). Mental preparation and performance consistency among elite athletes. *International Journal of Sport Psychology*, 49(3), 210–226.
7. Cleary, T. J., & Zimmerman, B. J. (2012). Self-regulation empowerment program: A school-based program to enhance self-regulated and self-motivated cycles of student learning. *Psychology in the Schools*, 49(3), 234–247.
8. Csikszentmihalyi, M. (1990). *Flow: The psychology of optimal experience*. New York: Harper & Row.
9. Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11(4), 227–268.
10. https://doi.org/10.1207/S15327965PLI1104_01
11. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. *Emotion*, 7(2), 336–353. <https://doi.org/10.1037/1528-3542.7.2.336>
12. Feltz, D. L., Short, S. E., & Sullivan, P. J. (2008). *Self-efficacy in sport: Research and strategies for working with athletes, teams, and coaches*. Champaign, IL: Human Kinetics.
13. Gould, D., Dieffenbach, K., & Moffett, A. (2002). Psychological characteristics and their development in Olympic champions. *Journal of Applied Sport Psychology*, 14(3), 172–204. <https://doi.org/10.1080/10413200290103482>
14. Gucciardi, D. F., & Dimmock, J. A. (2008). Choking under pressure in sport: A self-presentation model. *Journal of Sport and Exercise Psychology*, 30(1), 18–39.
15. Hanin, Y. L. (2000). *Emotions in sport*. Champaign, IL: Human Kinetics.
16. Harmison, R. J. (2011). Peak performance in sport: Identifying ideal performance states and developing athletes’ psychological skills. *Sport Psychologist*, 25(3), 233–247.
17. Iso-Ahola, S. E., & Dotson, C. O. (2014). Psychological momentum: A key to success? *Journal of Sport Behavior*, 37(4), 313–334.
18. Kee, Y. H., Chatzisarantis, N., Chow, J. Y., & Chen, L. H. (2012). Mindfulness, movement control, and attentional focus strategies: Effects on performance and learning of a novel motor skill. *Learning and Individual Differences*, 22(5), 661–667.
19. Koehn, S., Morris, T., & Watt, A. P. (2013). Flow state in self-paced and externally-paced performance contexts: An examination of the flow model. *Psychology of Sport and Exercise*, 14(6), 787–795. <https://doi.org/10.1016/j.psychsport.2013.06.001>
20. Laborde, S., Dosseville, F., & Allen, M. S. (2016). Emotional intelligence in sport and exercise: A systematic review. *Scandinavian Journal of Medicine & Science in Sports*, 26(8), 862–874.
21. Lidor, R., & Blumenstein, B. (2011). Psychological aspects of fencing performance. *International Journal of Sport Psychology*, 42(4), 298–314.
22. Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? *Psychological Bulletin*, 126(2), 247–259.
23. Otten, M. (2009). Choking vs. clutch performance: A study of sport performance under pressure. *Journal of Sport and Exercise Psychology*, 31(5), 583–601.
24. Renshaw, I., Oldham, A. R. H., & Bawden, M. (2019). The role of psychological momentum in sport performance: A dynamical systems perspective. *Frontiers in Psychology*, 10, 1614. <https://doi.org/10.3389/fpsyg.2019.01614>
25. Schunk, D. H., & Greene, J. A. (2018). *Handbook of self-regulation of learning and performance* (2nd ed.). New York: Routledge.
26. Todorov, J., & Bar-Eli, M. (2020). The dynamics of winning and losing streaks in competitive fencing: An analysis of psychological momentum. *International Journal of Sport Psychology*, 51(2), 101–118.
27. Vallerand, R. J., Blanchard, C., Mageau, G. A., Koestner, R., Ratelle, C., Léonard, M., Gagné, M., & Marsolais, J. (2003). Les passions de l’âme: On obsessive and harmonious passion. *Journal of Personality and Social Psychology*, 85(4), 756–767.
28. Weinberg, R. S., & Gould, D. (2019). *Foundations of sport and exercise psychology* (8th ed.). Champaign, IL: Human Kinetics.
29. Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), *Handbook of self-regulation* (pp. 13–39). San Diego, CA: Academic Press.