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Abstract 

The presentation looks at the real-time monitoring of stress of PLC technicians, the advanced PLC workers 

in today industrial automation. PLC technicians have come a need to do systems diagnostics, control logic 

reprogramming, and production-sustaining emergency response in diagnosis control systems within tight 

deadlines. In addition to commanding a high level of professional expertise, these processes require deep 

cognitive and emotional stamina. As an example, performance assessments, productivity evaluations, and 

even subjective self-evaluations do not capture the significant internal, psychological, and physiological 

stress of the high-stakes operations faced by the technicians. 

This methodology gap is addressed by conducting the current research within smart factory simulations 

equipped with wearable biosensing technologies, EEGs, HRVs, and GSRs. These devices monitor and 

record cognitive stress, neural, cardiovascular and electrodermal signals, and emotional arousal. In a 

controlled setting, twenty qualified PLC technicians were given tasks and asked to perform to the best of 

their abilities starting from simple to complex: routine maintenance, fault detection and correction, and 

ending with the most complex - critical error management. Each stage was designed to increase the mental 

workload step by step in terms of focus, memory, decisional analysis, and emotional control. 

The research findings show that there is a noteworthy relationship between the difficulty of the task and 

the physiological signs of stress. High-complexity tasks were marked by heightened EEG beta activity, 

increased GSR conductivity, and lowered HRV. These biofeedback metrics exemplified the effectiveness 

of biosensing in monitoring and evaluating stress in real-time. Besides, the findings highlight the feasibility 

of creating adaptive automation systems that would react to an operator's stress by modifying the task, 

providing cognitive help, or activating safety measures.   

Apart from the technical aspects, the paper tackles critical societal issues regarding the use biometric data, 

such as the use of biometric data and the need for informed consent, data protection, non-bias, and design 

opacity. It argues for the proactive monitoring of stress within the industrial framework to promote the 

enhancement of human well-being, safety, and effectiveness, advocating for the protective stress 

monitoring systems. The research considers real-time cognitive-emotional tracking as an initial element for 

the forthcoming human-focused industrial automation. 

Keywords: Real-Time Data Analysis, Wearable Devices, Employee Stress Evaluation, Automatic 

Behavior Recognition, PLC Techs, HRV, GSR, EEG 

 

1. INTRODUCTION 

 

The introduction recognizes the PLC-related position's specific cognitive workload and the PLC's human interface for 

technicians as the cognitive workload PLCs impose on operators. Continuous attention monitoring, and intricate 

processing such as error debugging, logic rewrites, and responding to failures in the systems within seconds are duties 

handled by human technicians. As the work mechanics evolve towards digital, knowledge-related, and automated 

systems, self-evaluations and productivity logs become obsolete gauges for real-time workload and stress monitoring [1].   

The above challenges can be addressed by the most recent developments in wearable biosensors that allow monitoring of 

stress biomarkers, such as brainwaves, cardiac variability, and skin conductivity [13]. This is to say, the gap is formulated 

by the biosensor technology for real-time stress detection and monitoring, motivating the need for the stress detection 

technology, and providing an analysis of the overlooked gap [7]. Most importantly, it provides the focus and rationale for 

the study concerning the stress biosensors alongside occupational safety, human-machine interaction, cognitive 

ergonomics, and automation. This part of the introduction puts the focus on the need-for and the gap-to-fill, watchdogs 

on the study and its purpose, alongside determining the structure of the paper and objectives on real-time stress detection 

technology impact on data interpretation, task management interface design and automation of responsive systems [5]. 
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1.1 The Evolving Nature of PLC Technician Work 

Today’s PLC technicians work in a fully digitized environment where the integrity of the system depends on swift 

decision-making and real-time logic programming. Their work has shifted to system automation diagnostics from physical 

system automation repairs. The high level of responsibility and the severe consequences of a fault correction escalate 

cognitive overload and emotional stress [8]. Conventional methods of stress evaluation, using checklists or observation, 

are inapplicable and void of real-time responsiveness and objectivity [9]. The high stakes of constant focus and the need 

for awareness within a given timeframe in PLC programmed automation processes create the need for devices such as 

stress wearables to monitor cognitive exhaustion and industrial error fatigue [6]. 

 

2. LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

 

This part focuses on the cognitive workload, wearable technology, and stress indicators physiology related to stress 

measurement in an industrial setting. It outlines the progression from various stress measurement techniques like surveys 

and performance logs to modern monitoring systems which are real-time, sensor-based, non-invasive, and precise [2] [4]. 

Other focus areas include neuroergonomics which is the study of work-related brain functions and the application of 

biosensors, like EEG, HRV, and GSR, in the workplace [15].   

This review also defined unexplored research areas such as: PLC technicians, customizable task monitoring models, and 

stress classification using multi-modality data fusion [3]. It also defined the construct which the research was based on: 

a stress inputs (task complexity, time pressure) to physiological outputs brain, cardiac and skin signals and performance 

metrics (error rate, reaction time) model. This model underpins the creation of adaptive support systems and rationalizes 

the experimental methodology used. 

2.1 Real-Time Biosensing for Stress: A Multimodal Perspective 

Multimodal biosensing integrates EEG, HRV, and GSR for better accuracy in stress detection and identification triggered 

by a specific event [11]. EEG records electrical impulses from the brain associated with concentration and fatigue, HRV 

shows the response of the sympathetic nervous system, and GSR shows the amount of skin conductance related to 

emotions [14]. Together, these sensors enhance understanding of a technician’s stress level [10]. This makes it possible 

to interpret mental processes in real-time during demanding activities like logic programming or emergency response. 

Compared to single sensor systems, multimodal systems provide improved reliability, greater sensitivity to context, and 

stronger signals or feedback,” especially for cognitively-aware automated systems in industrial settings [12]. 

 

3. METHODOLOGY 

 

The described methodology focuses on the experimental setup created to assess the real-time stress levels of PLC 

technicians using wearable biosensors. An Simulated Industrial Control Laboratory was created to mirror the 

environments technicians face during real-time automation system workflows. Participants with basic to intermediate 

experience in PLC settings were recruited to participate in the study. This group of technicians completed well-defined 

control tasks at routine, moderate, and high levels of cognitive demand—control tasks to manage routine processes, and, 

in some cases, emergency faults to manage real-time systems within strict time windows. Throughout the tasks, 

participants’ EEG, heart rate variability (HRV), and galvanic skin response (GSR) were monitored.   

Data acquisition were synchronized with the Lab Streaming Layer (LSL) computation, which guarantees temporal 

alignment across signals in time-series collection. To counterbalance order effects and fatigue, randomization of tasks 

was implemented, and breaks were introduced between block structures. Subjective data were collected immediately after 

completing the tasks using the NASA-TLX, which was analyzed in comparison to biosensor results. The section also 

describes processes of signal denoising, normalization, and feature extraction. Ethical protocols included provision of 

informed consent, data anonymization, and allowing breaks from tasks ensuring the comfort of participants during the 

study. This section demonstrates that the approach was ecologically valid, replicable, and optimally designed to assess 

stress variability within diverse PLC tasks. 

3.1 Task Design Across Cognitive Load Conditions 

Tasks were sorted into three tiers based on intricacy: (1) Low – basic ladder logic step execution, (2) Moderate – real-

time troubleshooting, and, (3) High – fault identification under time constraints. Each tier simulated realistic industrial 

scenarios. For example, sensor misfires, wiring errors, and communication dropouts. To induce progressively more 

intense physiological stress responses, time limits and problem-solving hurdles were added. Stress markers were 

continuously monitored as counterbalanced tasks were performed. This stratified method not only allowed for the 

differentiation of stress load, but also classification with biosensor data, providing essential information for real-time 

stress modeling and adaptive workload strategy in PLC environments. 

 

 

 

4. RESULTS AND DISCUSSION 
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Analyzing multimodal biosensor data showed marked differences in physiological stress markers with different 

complexity levels. EEG data revealed increased frontal theta and suppressed alpha activity during high-stress conditions, 

suggesting higher levels of cognitive engagement and concentration. In the HRV analysis, there was a drop in RMSSD 

with a concurrent increase in LF-HF ratio, suggesting increased sympathetic stress under time pressure. GSR data also 

confirmed emotional arousal with increased skin conductance during fault-handling tasks.   

Findings are consistent with the NASA-TLX ratings provided, thus establishing the credibility of the physiological 

metrics. Integrated sensor data produced with machine learning classifiers SVM and Random Forest achieved above 85% 

accuracy in predicting stress levels. The discussion focuses on the integration of EEG, HRV, and GSR and their paced out 

real-time adaptability and monitoring in precise automation jobs. It also discusses the possible relationship between 

physiological adaptability and the performance of the technician, proposing that these metrics could help develop systems 

with customizable workloads tailored to the individual’s performance capabilities. Overall, the study affirmatively 

validated the developers’ proposition of the stress monitoring device’s wearable application during work hours for PLC 

technicians within the context of optimized performance, recovery of mental and emotional balance, and active emotional 

self-regulation in high-risk industrial environments. 

4.1 Sensor Concordance and Stress Prediction Accuracy 

Cross-modal analysis validated robust interrelations of EEG, HRV, and GSR readings. During intense troubleshooting 

assignments, peak stress moments were in alignment across all sensors. Classification accuracy of stress levels using 

combined features was greater than using individual sensors, which confirms the hypothesis of the need for multimodal 

integration. Participants with higher cognitive adaptability manifested lower stress variability and higher task success. 

These findings confirm the potential of the system for real-time stress classification and profiling technician readiness. 

The insights gleaned from biosensors not only forecast current stress but also enable anticipatory actions, advancing the 

possibility of real-time adaptable automation in PLC-based environments. 

 

5. INDUSTRIAL IMPLICATIONS 

 

The use of real-time stress assessment systems for PLC field service engineers has significant industrial impacts. With 

the increasing and more sophisticated automation of industries, the emotional and mental health of the PLC technician is 

critical for system uptime and safety. This research envisions the stress monitoring system to be integrated with HMIs, 

which will enable HMIs to adapt dynamically as the technician’s stress biometrics change—suggesting automated 

displays, issue “take a break” alerts, or task reassignment of climactic or intricate tasks. For example, if a PLC technician’s 

stress biometrics surpass a certain limit, non-essential notifications could be silenced to allow for recovery. In addition to 

aiding in task prioritization, these data can help in the design of stress management training programs where participants 

who demonstrate high stress from specific task performance receive comprehensive assistance or retraining.   

The data can also enable stress-informed scheduling by not assigning high workload tasks during identified high fatigue 

periods. In addition, performance evaluation of the PLC technician and engineers could be improved with the use of 

biometric indicators in addition to relying solely on performance records. These systems can provide improved safety, 

reduced error rates, and optimized technician retention. However, these systems have to be industrially deployed which 

requires the technician to have full visibility, protective measures, and need to be compliant to labor standards to prevent 

abuse. Following these guidelines. These systems can improve automation productivity, while safeguarding technician 

well-being in complex automated environments. 

5.1 Cognitive-Aware Human-Machine Interface Design 

Real-time stress detection allows for more responsive and secure automation systems. Automation systems equipped with 

stress monitors—through the technician’s EEG or HRV—can temporarily relax automated functions or recommend 

breaks. Such responsiveness enhances the technician’s stress decision-making capability and minimizes costly mistakes 

or omissions. Stress responsive HMIs enhance productivity and mental resilience, and improve safety, especially with 

PLC systems overseeing essential services. This part argues for the application of cognitive ergonomics in interface design 

to create intelligent industrial systems. 

 

6. ETHICAL AND FUTURE CONSIDERATIONS 

 

The use of biosensors like EEG and HRV to monitor industrial workers’ stress levels continuously raises notable ethical 

concerns. Concerns for privacy, consent, data usage, data ownership, and mental infrastructure are at stake. There are 

critical boundaries involving workers’ data and professional risks which must be safeguarded. Additionally, withdrawing 

from participation and maintaining professional autonomy without repercussions must be possible. Basic algorithms to 

remove, encrypt, and restrict access to personal data greatly assist in data safety. Algorithms also need to guarantee 

fairness. Stress predicting algorithms must not be employed for discriminatory practices like biased hiring, evaluation, or 

even task assignments.   
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Training data biased on age, gender, or even neurological divergence is capable of perpetuating biased evaluations for 

measuring performance. Next-gen algorithms for measuring cognitive performance need to cross-audit biases and include 

diverse datasets to eliminate the potential of exclusion. This part highlights the next-gen cognitive sensing platform 

integrating AR, contextual baselining, and federated machine learning. Such advancements are expected to improve 

intrusiveness, personalization, and scalability. Technological advancements require balance. This balance must uphold 

ethical parameters to sustain human dignity alongside technological efficiency. Innovation without trust, inclusiveness, 

and transparency lacks the infrastructure to support cognitive monitoring technologies for 5.0 industrial workplaces. 

6.1 Bias, Privacy, and Algorithmic Governance 

Carefully governed biometric monitoring systems have the potential to introduce or reinforce existing biases. Any 

algorithmic governance based on stress data needs to be explicable, justifiable, and accountable. Mitigating algorithmic 

exclusion challenges within biases can be addressed by training models on more heuristic populations and by engaging 

interdisciplinary ethics boards. Especially within work settings, consent must be revocable, non-coercive, and informed. 

In addition to the above, data can be safeguarded and kept transparent through privacy-enhancing technologies such as 

anonymized data pipelines, blockchain-backed access logs, and federated analytics. Ethical boundaries must be observed 

in the cognitive sensing technology: deployment must balance productivity and workforce control vis a vis technician 

autonomy, equity, and psychological safety in the long-term. 

 

7. CONCLUSION 

 

Wearable biosensors allow for real-time stress detection in PLC technicians. An automated control task in real-world 

frameworks was used to conduct the experiment in the study. EEG, HRV, and GSR measures were monitored and detected 

both workloads and stress during the different levels of workloads. With the aid of subjective experience ratings, stress 

classification for technicians proved to be highly accurate, affirming the hypotheses on stress detection.  

The insight received enhances the possibility of integrating cognitive consideration into feedback mechanisms for 

industrial control systems in the PLC for adaptive and personalized automated assistance. This leads to deterred 

operational error, improved safety, and improved technician health and retention—all contributing to the reduction of 

unnecessary expenditures in the organization. Despite the observed benefits, the study also outlines ethical concerns that 

emerge for PLC systems that employ monitoring systems with regards to privacy, fairness, and worker autonomy. 

Research in this area should work towards creating algorithms that increase inclusiveness and allow for real-time 

feedback, as well as focus on long-term monitoring. While the PLC system aims to streamline processes and increase 

efficiency, automation focused on stress detection provide an opportunity to integrate productivity with mental well-

being, fostering a psychologically safe environment. When coupled with human-centered design, automation technologies 

in workplaces shift from mechanical to nurturing. This will facilitate enduring integration of humans and machines in 

Industry 5.0. 
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