
TPM Vol. 32, No. S1, 2025                Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 
 

780 
 

 

PREDICTION OF DESIGN FATIGUE USING 

PHYSIOLOGICAL AND PSYCHOLOGICAL INDICATORS 

DR. RAJESH SEHGAL1, DR. GAURAV TAMRAKAR2,  

SAYANTI BENERJEE3 
1ASSISTANT PROFESSOR, KALINGA UNIVERSITY, RAIPUR, INDIA. 

e-mail: ku.rajeshsehgal@kalingauniversity.ac.in ORCID: 0009-0002-0344-403X 
2ASSISTANT PROFESSOR, KALINGA UNIVERSITY, RAIPUR, INDIA. 

e-mail: ku.gauravtamrakar@kalingauniversity.ac.in 
3ASSISTANT PROFESSOR, NEW DELHI INSTITUTE OF MANAGEMENT, NEW DELHI, INDIA., 

e-mail: sayanti.banerjee@ndimdelhi.org, https://orcid.org/0009-0005-7414-1716 

 

Abstract 

In design contexts that require intensive cognitive processing, prolonged mental engagement can lead to 

fatigue, which hinders creativity, effective decision-making, and productivity. This study outlines a 

predictive model for design fatigue based on the integration of physiological data—electroencephalography 

(EEG), heart rate variability (HRV), and eye-tracking— and self-reported data on emotional state and 

cognitive load. With 20 participants, data was collected while they completed a series of design tasks along 

with the recording of their bio-signals and subjective feedback. Analysis of the multimodal data revealed 

strong relationships with fatigue and specific neurophysiological biomarkers of fatigue including 

heightened frontal theta activity, reduced heart rate variability, and responded with narrowed conjugate 

gaze. There was also a clear classification of fatigue states within the machine learning models, which 

permitted the real-time estimation of cognitive load. These results demonstrate the possibility of creating 

systems that intelligently adapt to and manage cognitive workloads to facilitate optimal performance during 

engineering and design activities. Privacy, cognitive bias, and consent within the context of monitoring 

mental functioning are also discussed to promote the ethical use of cognitive monitoring systems. 

Keywords:Design fatigue, cognitive workload, EEG, eye-tracking, HRV, real-time monitoring, adaptive 

systems 

 

1. INTRODUCTION 

 

Design activities, especially in engineering and other creative fields, require sustained intensive thinking, problem-

solving, and deep interaction emotionally which can give rise to design fatigue [1]. Unlike physical fatigue, design 

fatigue’s hallmark features are cognitive exhaustion, a decline in creative output, and emotional detachment [2]. As 

workplaces shift and become more digital and complex, understanding and managing mental fatigue becomes critical in 

safeguarding productivity and innovation [4]. Fatigue detection tools, especially digital ones, always rely on self-reporting 

or observation which misses minute mental shifts in real-time thinking [3]. This gap is addressed by incorporating 

psychological constructs with design fatigue and predicting it using physiological data such as EEG, HRV, and eye-

tracking data[10][11]. The goal is to anticipate and smoothen adaptive support for systems that aid designers’ inoffensive 

way long before cognitive drop, burnout and mistakes through design fatigue systems are triggered. This integrates 

neuroscience, human factors, and intelligent monitoring fosters design beyond the workplace to be safer, smarter, and 

more human [5][14][9]. 

 

2. LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 

 

To examine design fatigue in detail, it is necessary to draw from cognitive science, engineering psychology and design 

studies [12]. Design fatigue describes the cognitive and emotional fatigue accompanying mental effort, ambiguity, and 

iterative problem solving. In high-stakes engineering and creative fields, intense cognitive fatigue from prolonged 

decision deadlines, visualization exercises, design-demanding user expectation fulfillment, and sustained cognitive effort 

can lead to psychological strain. Self-reports and observational analysis, traditional fatigue measuring methods, miss 

dynamic changes in real-time cognitive states [13]. Neurophysiological technologies that can be worn have made it 

possible to continuously monitor mental workload, stress, and attention during the design work at schedule [6][8]. In this 

chapter, key indicators of design fatigue are described, covering both the telltale physiological signals (EEG, HRV, and 
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eye tracking) and psychological variables (emotional states and cognitive load), and analyzing pertinent literature and 

models on devising predictive systems for early fatigue warning [7]. 

 

2.1. Design Fatigue in Creative and Engineering Contexts 

While remaining cognizant of overload, emotional exhaustion, and decline in ideation quality, design fatigue manifests 

within the creative and engineering domains differently [15]. Creative fatigue through ideational fixation and emotional 

burnout is countered by engineers facing analytical fatigue from prolonged and constrained technical problem solving. 

2.2. Limitations of Traditional Fatigue Assessment Methods 

Traditional methods like post-task surveys, as well as supervisor assessments, fall short when it comes to identifying 

unique, time-dependent patterns of mental fatigue for individuals. Furthermore, these methods are largely retrospective 

and do not take into account the now readily available physiological data regarding fatigue onset that can be collected 

through wearable biosensors. 

 

3. RESEARCH METHODOLOGY 

 

To explore design fatigue, this study integrated psychological and physiological methods within a controlled, task-

oriented design framework. It recruited engineering and design students to solve structured design problems of varying 

difficulty and length within time constraints. EEG, heart rate variability (HRV), and eye tracking provided real-time 

monitoring of neural activation, stress-related cardiovascular changes, and visual attention, respectively. Concurrently, 

psychological feedback was captured. Feedback such as NASA-TLX, and mood scales were used to assess subjective 

fatigue and emotional states. The study design aimed to replicate real-world design environments incorporating time 

pressure and iterative problem-solving within a realistic cognitive workload. Tasks increased cognitive demands while 

maintaining ecological validity. Sensor data were integrated using identical workflows for noise removal, normalization, 

and feature extraction. This multimodal dataset enables the analysis of indicators of fatigue across different domains as 

well as supports the dynamic prediction of fatigue from models trained using the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Design Fatigue Prediction 

Figure 1describes the steps involved in forecasting design fatigue by using integrated physical and mental indicators. It 

starts with signals of physical condition like EEG and HRV) and eye-tracking as well as psychological metrics like self-

reported cognitive and emotional loads. These are integrated into a Multimodal Data Collection stage where biosensor 

and survey data are logged in workflow design sessions. The collected data undergo analysis where relevant patterns are 

identified through feature extraction and processing using machine learning. The system then provides a real time 

cognitive load estimate with fatigue prediction. This structure enables anticipatory guidance in creative cognitive work. 

3.1. Participants and Experimental Design Setup 
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To guarantee realistic task engagement, participants were chosen based on their previous experience with structured 

design tasks. The experiment's quiet lab setting with a workstation offered integrated sensors, as well as design challenge 

stimuli based on actual industry applications. 

 

3.2. Sensor Selection and Multimodal Data Collection 

EEG headsets recorded cognitive signals like frontal theta activity related to mental effort, while HRV sensors tracked 

sympathetic arousal. The eye-tracking glasses noted the durations of fixations as well as shifts of gaze to assess the spatio-

temporal aspects of visual attention and cognitive fatigue. 

 

4. RESULTS AND DISCUSSION 

 

This chapter describes the results of the analysis of the multimodal data and explains the changes in psychological and 

physiological markers concerning different stages of the design task. The EEG data showed that the subjects' electrodes' 

frontal theta and alpha power increased and decreased respectively during intense load tasks over time. This supports the 

notion of mental effort and cognitive fatigue. The HRV analysis showed a drop in RMSSD alongside increase in LF/HF 

ratio. This indicates increased physiological stress. Eye tracking showed increase in fixation durations alongside saccadic 

movements, suggesting fatigue. Psychological tests like NASA-TLX showed a valid correlation with the sensor-based 

fatigue markers, thus enhancing the accuracy of the subjective reports. The fatigue onset prediction accuracy, achieved 

with cross-modal correlation, supported the findings and focus of the study. Machine learning techniques like SVM and 

Random Forest trained on the fatigue indicators showed great performance. The dominant hypothesis regarding the 

reasons explaining the accuracy focus on the integration of multiple data streams. These results highlight effective and 

accurate fatigue detection and the possibilities of adaptive systems based on supports for real-time responsive frameworks 

in CAD tasks. 

4.1. Correlation Between Physiological Markers and Fatigue Levels 

Increased subjective fatigue scores were shown in conjunction with elevated EEG theta activity and stress-dependent 

horov heart rate variability shifts. Neurophysiological responses associated with mental fatigue can indeed function as 

early warning indicators of fatigue during intricate design tasks. 

4.2. Behavioral and Psychological Impacts of Fatigue on Design Performance 

With an increase in fatigue, participants began to make more mistakes and became slower in completing the subtasks of 

a creative nature. There were also shifts in the emotions of the participants which included increasing frustration and 

lower levels of participation. In addition, the findings above underscore that fatigue affects a person’s effectiveness and 

also creative productivity while working and emotional bounce back ability. 

 

5. SYSTEM ARCHITECTURE FOR FATIGUE PREDICTION 

 

A module system framework incorporating input subsystems, data collection processes, machine learning, and user 

interaction interfaces was developed to implement design fatigue prediction in real-time. Multimodal sensors capture 

EEG, HRV, and eye-tracking data. EEG and eye tracking artifacts are removed, and signal synchronization and feature 

extraction processes are done to clean and structure the input for modeling. Important features are EEG power bands, 

HRV variability indices, and gaze metrics which are processed using either a Support Vector Machine or Random Forest 

classifier to output fatigue probability scores. Dashboards are used to display fatigue and cognitive load indicators which 

users and supervisors can interpret. Continuous recording provides real-time feedback which permits system adjustment, 

and the backend contains data governance components that ensure security for consent, anonymization, and logging. This 

infrastructure provides a design workflow embedding cognitive-state monitoring incoporating real-time fatigue 

prediction, enabling proactive fatigue management as well as adaptive task structuring in cognitively demanding 

environments. 

5.1. Sensor Integration and Signal Processing Pipeline 

The recording and processing of EEG, HRV, and eye-tracking data was done simultaneously within a Lab Streaming 

Layer for temporal alignment. Time-aligned data sets from multiple sensors were bandpass filtered, artifact corrected, 

and normalized for valid cross-modal analysis. 

5.2. Fatigue Classification and Interface Feedback Mechanisms 

Fatigue status was predicted by machine learning algorithms based on physiological features in near real-time, displaying 

outputs as alerts or cognitive load bars. These outputs were intended to signal to the designers or supervisors as to when 

a break was needed, or when a workload adjustment was required.  This chapter outlines the results obtained from the 

analysis of the multimodal data and addresses the physiological and psychological markers within the different stages of 

the design task. The EEG results showed elevated frontal theta and decreased alpha power with prolonged-load tasks; 

suggesting the presence of mental effort and cognitive fatigue. The HRV analysis showed a drop in RMSSD and an 

increase in the LF/HF ratio, suggesting heightened physiological stress. From the eye tracking data, fatigue was evidenced 

by longer fixations and fewer saccadic eye movements, indicating a reduced span of narrowed attentional focal. Subjective 
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report data, including the NASA-TLX, were in agreement with sensor-based fatigue markers, providing greater 

confidence in the subject reports. These features were used to train machine learning models including SVM and Random 

Forest, which demonstrated a high degree of accuracy predicting the onset of fatigue. The prediction of fatigue is further 

supported by cross-modal correlation, which demonstrates that the integration of several streams of data enhances the 

accuracy of fatigue prediction. The results highlight the capability to detect fatigue in real-time and the importance of this 

technology in providing automated support within systems that require high levels of cognitive effort during design tasks. 

 

6. INDUSTRIAL IMPLICATIONS 

 

The fusion of physiological and psychological metrics to anticipate design fatigue offers great potential for innovations 

focused on humans and workflows in industrial design. In Industry 4.0, where cognitive tasks are on the rise, the ability 

to detect fatigue in real-time can fortify worker health, improve decision-making, and minimize design faults. Adaptive 

support systems are capable of biosensing and can dynamically reschedule tasks, recommend rest periods, and decrease 

the complexity of interfaces to mitigate mental workload. In group contexts, such systems can dynamically foster 

cognitive load sharing synergies for balanced mental workload and support cooperative solutions by recognizing when a 

participant is mentally overwhelmed. Furthermore, fatigue metrics can refine training by personalizing instructional 

design based on cognitive fatigue. These innovations are important in domains where safety is critical, such as in the 

design of vehicles or aircraft, as they can help mitigate the risks associated with cognitive lapses. Integrating cognitive 

sensitivity into design processes supports the shift to robust, productive, and morally sound 

https://research.aimultiple.com/design-thinking/ design environments that incorporate physiological and emotional 

constraints of human ingenuity. 

6.1. Cognitive-Aware Design Support Systems in Industry 4.0 

Fatigue-aware systems adaptive interface changes and task allocation, lowering the probability of mistakes and reducing 

the mental workload to complete tasks. This is critical in the design rush context, in which attention is paid more to detail 

and is fundamental to performance. 

6.2. Personalization of Training and Performance Monitoring 

Monitoring vital signs enables systems to adapt difficulty and pacing to a learner's cognitive load during training. 

Detection of fatigue patterns over time supports predictive analytics for long-term performance optimization. 

 

7. ETHICAL AND FUTURE CONSIDERATIONS 

 

Predictive fatigue monitoring systems can enhance performance and occupational safety, but they pose unique socio-

ethical challenges. The use of EEG and HRV to measure and monitor cognitive and emotional states entails accessing 

deeply personal and confidential information. Autonomy is safeguarded by ensuring information privacy, anonymization, 

and policy-shared transparency, alongside clear, retractable informed consent. Sensor bias or algorithmic bias also poses 

risks of misclassification, particularly within and across diverse population groups. In workplaces, the abuse of fatigue 

information systems for surveillance can erode trust and well-being. Resolving ethical concerns requires strict access 

controls, audits, and human-driven interpretation of the decision outputs. The outlined measures raise new biosensing 

questions of design workflow, privacy-preserving AI, and systems that factor equity and social justice alongside precision 

in the context of predictive monitoring. Designing responsive systems demands collaboration between engineers, 

ethicists, and multidisciplinary designers to ensure systems that seamlessly integrate intelligence and caregiving. 

7.1. Privacy, Consent, and Autonomy in Cognitive Monitoring 

Around the clock cognitive monitoring must be controlled with strict rules around the collection of user consent and data 

minimization and anonymization protocols. Users must retain the authority to opt out of further data collection and data 

use restrictions without negative impacts to their professional or educational opportunities. 

7.2. Addressing Bias and Ensuring Algorithmic Fairness 

To avoid biases associated with gender, age, or neurodiversity, fatigue prediction models need to be tested on different 

groups. The application of inclusive datasets and adaptive algorithms fosters equitable outcomes in cognitive monitoring 

tools. 

 

8. CONCLUSION 

 

This research illustrates the practicality and benefits of anticipating design fatigue via the integration of psychological 

and physiological factors and modalities. Employing real-time EEG, HRV, and eye-tracking, along with established 

psychological measures, the study provides an explanation on the emergence and impact of mental fatigue on design 

work. The results indicate that some specific biomarkers, for example, frontal theta power, HRV variability, and gaze 

fixation, provide a valid threshold for predicting mental burnout. These findings are particularly useful for the design-

heavy domains where sustained mental effort is required in peak levels of creativity, analysis, and decision-making. Most 

notably, this paper emphasizes the need for adaptive systems sensitive to cognitive states that could, in turn, bolster human 
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performance and well-being. At the same time, the paper underscores the need for ethical considerations with the use of 

such technologies by advocating for transparent governance and design that includes all stakeholders. The study embodies 

the pursuit of intelligent, ethical, and human-centric fatigue management in the cognitive work of the future. 
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