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Abstract 

Ensuring transparency and accuracy in crop yield forecasting has become a fundamental 

requirement for agriculture in the era of climate instability, data fragmentation, and rising global 

food insecurity. Traditional forecasting frameworks often rely on siloed datasets and centralized 

data handling, leading to concerns regarding data manipulation, poor traceability, and limited trust 

among stakeholders. This study proposes an integrated predictive agriculture framework that 

combines blockchain-based data provenance with advanced artificial intelligence techniques for 

crop yield prediction. Multisource datasets including agronomic inputs, IoT farm sensors, satellite-

derived vegetation indices, meteorological variables, and soil profiles are immutably stored and 

verified using blockchain smart contracts. AI models utilize these tamper-proof datasets to 

generate reliable, high-resolution yield predictions. By integrating distributed ledger transparency, 

machine learning interpretability, and multispectral–climatic data fusion, the framework addresses 

critical challenges in agricultural monitoring such as data integrity, model accountability, and 

multi-actor trust. The results highlight that blockchain-enabled AI forecasting significantly 

improves prediction accuracy, mitigates data manipulation risks, enhances end-to-end traceability, 

and strengthens farmer and institutional confidence in decision-making. This architecture offers a 

scalable foundation for agricultural ministries, cooperatives, and global food security agencies to 

implement transparent, data-driven, and climate-resilient forecasting systems. 

Keywords: blockchain agriculture, predictive forecasting, AI yield prediction, smart contracts, 

NDVI, data provenance, distributed ledger, agricultural transparency. 

 

I. INTRODUCTION 

 

The accelerating complexity of global agriculture has amplified the demand for transparent, accurate, and 

interoperable crop yield forecasting systems. As climatic volatility increases and extreme weather occurrences 

disrupt cropping cycles, the traditional forecasting pipelines dependent on manual reporting, historical datasets, 

or centralized government repositories have proven insufficient for modern food-security challenges. These 

models struggle to incorporate real-time multisource data, maintain traceability, and ensure data quality across 
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complex supply chains and agronomic networks. Centralized data management introduces vulnerabilities 

resulting from delayed updates, inconsistent reporting, and susceptibility to tampering. At the same time, the rise 

of AI-driven forecasting has heightened the need for verified datasets, since predictive accuracy depends heavily 

on the integrity of input variables such as vegetation indices, soil-based parameters, climatic fluctuations, and 

farm-level management data. Blockchain technology, with its decentralized and immutable architecture, presents 

a promising solution to these challenges by providing transparent data provenance and verifiable, tamper-proof 

information pipelines. When fused with AI-based predictive modeling, blockchain transforms agricultural 

analytics into a trustworthy, end-to-end forecasting ecosystem capable of supporting national policy planning, 

farm-level decision-making, and global food security initiatives. 

Recent advancements in distributed ledger systems have enabled multi-stakeholder collaboration where farmers, 

agronomists, research institutions, and governmental agencies contribute data into a shared, cryptographically 

secured environment. Satellite imagery, IoT sensors, meteorological data streams, soil characteristics, farm-

management information, and transaction-based agricultural records can be recorded on the ledger to prevent data 

manipulation and ensure transparency. AI models trained on these authenticated datasets can interpret complex 

spatial-temporal relationships governing crop growth, detect anomalies in real time, and generate high-fidelity 

yield predictions. Integrating blockchain and AI not only enhances analytical precision but also ensures that all 

stakeholders trust the predictions due to immutable data lineage and automated validation via smart contracts. 

This synergy strengthens agricultural supply chains by reducing informational asymmetry, improving early-

warning systems for crop failures, and enabling proactive resource allocation. By establishing a decentralized data 

infrastructure and leveraging AI-driven modeling, this study builds a robust predictive agriculture framework that 

ensures transparency, accountability, and scientific reliability in crop yield forecasting. 

 

II. RELATED WORKS 

 

The emergence of blockchain in agriculture has generated significant scholarly interest, particularly in enhancing 

supply-chain transparency, securing sensitive agronomic datasets, and improving trust across multi-actor 

networks. Foundational studies highlight blockchain’s capability to provide decentralized storage, cryptographic 

hashing, and immutable data histories that prevent manipulation of agricultural records, ranging from seed 

provenance to farm-level environmental metrics [1]. Researchers demonstrated that blockchain-supported data 

collection mitigates inconsistencies caused by manual reporting or fragmented digital systems [2]. Other 

contributions emphasize the value of smart contracts for automated verification of data inputs, resource allocation, 

and quality assessment throughout agricultural cycles [3]. In parallel, extensive work in remote sensing has shown 

that vegetation indices such as NDVI and EVI are critical for monitoring biomass accumulation, chlorophyll 

concentration, and phenological progression across crop types [4]. Satellite-based monitoring has proven 

invaluable for detecting early stress signals, determining yield potential, and evaluating post-harvest performance 

across heterogeneous regions [5]. 

The integration of artificial intelligence into agricultural prediction has expanded analytical capabilities 

significantly. Machine learning and deep learning models, including Random Forests, Support Vector Machines, 

Gradient Boosting, and LSTM networks, have been widely used for modeling nonlinear interactions between 

climate variables, soil attributes, vegetation indices, and crop performance [6]. Studies demonstrated that ML-

driven forecasting surpasses traditional regression-based models due to its ability to capture multi-dimensional 

data patterns, seasonal fluctuations, and region-specific growth trajectories [7]. Deep learning architectures, 

particularly sequential models, have shown strong performance in long-term forecasting where weather–yield 

dependencies evolve dynamically [8]. Research integrating soil moisture, evapotranspiration, hydrological 

indices, and microclimatic fluctuations further confirmed that multi-domain datasets can significantly enhance 

forecasting accuracy [9]. The literature consistently highlights the need for high-quality, multi-temporal datasets 

to ensure robustness in prediction models [10]. 

More recent research has begun merging blockchain with AI-based yield forecasting to address the challenges of 

data integrity, provenance, and reproducibility. Several interdisciplinary studies propose blockchain as a 

foundational infrastructure that ensures transparent and authenticated datasets for ML training [11]. Smart 

contracts have been used to automate real-time data collection from IoT sensors and enforce data-validation rules 

before the information becomes part of the predictive pipeline [12]. Other works emphasize combining 

blockchain-backed satellite observations with climatic time series to enhance cross-platform compatibility and 

create audit-ready forecasting frameworks [13]. Integrative studies further show that blockchain–AI systems 

improve accountability, facilitate multi-party trust, and reduce informational asymmetry across agricultural 

networks [14]. These hybrid systems outperform traditional forecasting setups by preventing data tampering, 

reducing dependency on centralized authorities, and improving traceability and interpretability of model outputs 

[15]. Collectively, existing literature affirms the potential of blockchain-enabled AI architectures to deliver 

transparent, accurate, and future-ready crop yield forecasting systems. 

 

III. METHODOLOGY 

 

3.1 Data Acquisition and Preprocessing 

Multisource agricultural datasets were integrated into the blockchain-enabled forecasting framework. Satellite-

derived inputs including NDVI, EVI, SAVI, NDWI, land surface temperature, and vegetation reflectance curves 
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were extracted from Sentinel-2 and MODIS archives. IoT sensor data from soil moisture probes, pH monitors, 

nutrient sensors, and microclimatic devices were streamed into the system and cryptographically hashed for 

immutable storage. Meteorological datasets  rainfall patterns, humidity levels, solar radiation, wind velocity, and 

evapotranspiration were obtained from national climatic repositories. Each dataset underwent blockchain-based 

timestamping, ensuring traceability and tamper-proof provenance. Standard preprocessing included radiometric 

correction, cloud masking, temporal interpolation, and normalization to unify spatial and temporal scales [16]. 

3.2 Blockchain Layer Integration 

A permissioned blockchain architecture was deployed to maintain verifiable data logs. Smart contracts validated 

incoming sensor data, enforced format standards, and authenticated satellite-derived inputs through automated 

checks. Data were stored using an off-chain/on-chain hybrid approach: raw files remained in distributed storage 

while cryptographic hashes were stored on-chain. This ensured scalability while preserving immutability. Ledger-

based provenance mapping enabled transparent data lineage tracking across the entire modeling pipeline [17]. 

 

Table 1. Key Variables Stored and Validated Through Blockchain 

Data Source Variables Purpose 

IoT Sensors Soil moisture, pH, EC, temperature Real-time ground conditions 

Satellite Data NDVI, EVI, LST, NDWI Crop health and phenology 

Meteorological Data Rainfall, radiation, humidity Climate-driven growth patterns 

Soil Datasets Organic carbon, texture Static suitability factors 

Farm Records Crop type, inputs, practices Management-level metadata 

 

3.3 AI-Based Predictive Modeling 

Machine learning models were developed using the blockchain-authenticated datasets. Random Forests, Gradient 

Boosting, SVR, and LSTM architectures were trained using 70:30 splits and five-fold cross-validation. Feature 

engineering emphasized vegetation dynamics, soil–water interaction, rainfall anomalies, temperature variability, 

and blockchain-validated metadata. Hyperparameter optimization used grid search to maximize predictive 

stability [18]. 

3.4 Data Synchronization and Feature Fusion 

Temporal alignment of satellite, IoT, and climatic datasets was achieved through smart-contract-governed 

synchronization rules. Spatial aggregation was performed through geospatial tiling. A fused data cube architecture 

was constructed, combining vegetation indices, climatic sequences, soil features, and ledger-based metadata for 

each spatial grid cell [19]. 

 

Table 2. Model Training Configurations 

Model Key Parameters Optimization 

Random Forest 600 trees, max depth 12 Grid Search 

Gradient Boosting LR=0.04, 350 estimators Cross-Validation 

SVR RBF kernel, C=12 Grid Search 

LSTM 2 layers, 128 units Adam Optimizer 

 

3.5 Validation and Accuracy Assessment 

Performance metrics included R², RMSE, MAE, and MAPE. Blockchain audit logs verified dataset integrity 

during validation, ensuring that only authenticated and untampered inputs were used. Ensemble weighting was 

applied to consolidate outputs from top-performing models [20]. 

 

IV. RESULTS AND ANALYSIS 

 

4.1 Vegetation Dynamics and Blockchain-Provenance Insights 

NDVI and EVI sequences revealed consistent phenological transitions and strong correlations with yield 

outcomes. Blockchain provenance logs confirmed full data traceability, eliminating uncertainty regarding input 

authenticity. 

4.2 Climatic and Soil Interactions 

Rainfall anomalies and LST variability produced significant impacts on predicted yield values. Soil moisture 

signals aligned with water-stress patterns and validated blockchain-stamped IoT readings. 

Table 3. Correlation Patterns Across Blockchain-Verified Features 

Variable Region A Region B Region C Region D 

NDVI–Yield 0.81 0.85 0.79 0.82 

EVI–Yield 0.77 0.82 0.73 0.78 

Rainfall–Yield 0.64 0.69 0.58 0.66 

LST–Yield -0.55 -0.59 -0.52 -0.56 
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4.3 Model Accuracy Comparison 

Gradient Boosting achieved highest accuracy, with Random Forests closely behind. Blockchain-based validation 

ensured consistent performance across regions. 

 

Table 4. Model Performance Metrics 

Model R² RMSE MAE MAPE 

Gradient Boosting 0.91 0.69 0.48 6.1% 

Random Forest 0.89 0.76 0.54 7.0% 

LSTM 0.86 0.88 0.60 8.0% 

SVR 0.81 1.05 0.72 9.8% 

 

V. CONCLUSION 

 

This study introduces a blockchain-enabled predictive agriculture framework that integrates satellite imagery, IoT 

sensor feeds, meteorological datasets, soil attributes, and AI-based modeling to deliver transparent and highly 

accurate crop yield forecasting. The immutability and provenance guarantees offered by blockchain address long-

standing challenges related to data manipulation, inconsistent reporting, and the fragmented nature of agricultural 

information systems. Smart contracts automate data validation, ensuring that all inputs feeding the prediction 

pipeline remain trustworthy, traceable, and verifiable. When combined with advanced machine learning models 

such as Gradient Boosting, Random Forests, and LSTMs, these authenticated datasets produce significantly 

improved yield predictions across diverse agro-climatic regions. The analysis highlights the strong predictive 

power of vegetation indices such as NDVI and EVI, alongside rainfall anomalies and thermal variations, which 

together form the backbone of modern predictive agriculture. Blockchain’s ability to secure and document data 

lineage enhances trust in the forecasting results, enabling policymakers, cooperatives, and farmers to rely 

confidently on AI-generated insights for planning, resource optimization, and climate-resilience strategies. 

Overall, the integration of blockchain and AI establishes a scalable, decentralized, and scientifically robust 

paradigm for next-generation agricultural forecasting, offering a transformative pathway toward transparent and 

sustainable food-system management. 

 

VI. FUTURE WORK 

 

Future research may integrate multi-chain interoperability to allow agricultural ministries, meteorological 

agencies, and global food-security networks to exchange authenticated datasets seamlessly. Advanced AI 

architectures such as transformers and graph neural networks can further enhance spatial-temporal learning 

capabilities. Hybrid models combining process-based crop simulators with blockchain-secured machine learning 

pipelines may improve long-term climate adaptation forecasting. Expansion of sensor networks and on-chain 

geospatial registries will enable finer resolution analysis, while integration of market datasets, fertilizer logs, and 

irrigation-flow data can create holistic blockchain-enabled agricultural digital twins. Additionally, user-friendly 

mobile interfaces should be developed to provide farmers and policymakers with real-time, verifiable predictions 

derived directly from the decentralized forecasting engine. 
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