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Abstract 

FQ-GNN is aphase of research work that presents a novel framework related to depression detection 

from social media textswith the use of a quantum graph neural network improvedthrough a bio-

inspired Firefly algorithm. This proposed approach constructs a heterogeneous graph where social 

media users, posts, and interactions are modeled as edges and nodes weighted bytemporal decay and 

semantic similarity. Node-level embeddings are derived through a transformer-based semantic 

encoder integrated with temporal context filtering, catching both interaction chronology and textual 

content. Then, these embeddings are managed through quantum-aware graph convolutional layers 

to extract rich semantic and structural features. To professionally explore the high-dimensional 

parameter space and maximizethe multi-objective performance metrics, a firefly-driven quantum 

hyper-parameter optimizer is employed. Lastly, adaptive fusion and neighbor-aware refinement 

combine structural and semantic information to make accurate depression calculations. Extensive 

evaluations establish that FQ-GNN significantly outperforms conventional baselines, providing 

contextually-aware detection of depressive behavior in online social interactions and robustness. 

Keywords: Quantum Graph Neural Networks, Firefly Optimization, Depression Detection, Social 

Media Analysis, Semantic-Contextual Embeddings, Bio-Inspired Hyper-Parameter Optimization 

 

I. INTRODUCTION 

 

One of the most widespread health challenges is Depression, which affectsover a million people across the world 

and also leads to significant psychological, economic, and social consequences [1].It reduces productivity, 

damages cognitive functions, disturbs interpersonal relationships, and if it is untreated over a long period of time, 

it can alsolead to severe mental health crises [1], [5]. Conventional diagnostic procedures, like psychometric 

assessments, clinical interviews, and self-reported questionnaires, often suffer from delays, subjectivity, and low 

scalability, making it tough to reach larger populations efficiently [5], [7], [8]. 

Platforms like Twitter, Facebook, and Reddit are some of the social platforms that are growing rapidly, and these 

platforms provide a unique opportunity to monitor mental health indicators in real-time. These platforms host a 

vast amount of user-generated content, where often people express their emotions, thoughts, and personal 

experiences [2], [3]. Studyingthese textual pattern, it offers the potential for firstexposure of depressive tendencies 

andpermitstaking action to advance a medical disorder a little earlier, before its symptoms get worse. Social media 

analysis suggests scalable solutions that tie traditional clinical methods and offer insights into population-level 

mental health trends [6], [4]. 

Regardless of these opportunities, the inherent characteristics of the data cause anautomaticdetection of depression 

from social media text. The posts are often short, informal,noisy, and contextually ambiguous, which reduces 

traditional machine learning performance of the model[6], [8]. Also, features of the texts are sparse, high-

dimensional, and non-linear, which increases the risk of overfitting and makes thesimplification across datasets a 

difficult task [12], [15].  

This highlights the need for robust, scalable, and well-organized frameworks combining with semantic 

understanding, optimization of the feature, and advanced sorting techniques for exact depression prediction to 

avoid the above-stated problems. 

Thoughprevious studies have advanced social media-based depression detection,still there are a fewsignificant 

challenges,like 

• Data noise and sparsity: Difficult to capture meaningful patterns from short posts that include slang, emojis, or 

misspellings [6], [8]. 
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• Feature selection and hyperparameter optimization: Settings of most of themodelsare fixed, and it useshandmade 

features. Thisleads to suboptimal performance and poor generalization [12]. 

• HighComputational complexity: Deep learning models like LSTMs, CNNs, or hybrid architectures 

needimportant computational resources. This restrictsthe real-time application [13], [11], [17]. 

• Limited semantic understanding: Conventional vectorization methods fail to capture nuanced contextual and 

emotional information that is present in the social media text [13], [17], [19]. 

• Robustness under noisy conditions: Noise, not posting constantly, and platform-specific biases adversely affect 

prediction accuracy [6], [12], [21]. 

Addressing these problems, a novel, unified approach that combines semantic–contextual embeddings,quantum 

graph neural networks,and bio-inspired optimization algorithmsto achieverobust, correct, and scalable detection 

of depression from texts of social media. 

Research Objectives 

The objectives of the proposed FQ-GNN framework are: 

• To develop a Firefly-based Quantum Optimization (FQO) framework for hyperparameter tuning and feature 

selection, and to enhance both the accuracy and robustness under noisy conditions [21]. 

• Develop a Quantum Graph Neural Network (Q-GNN) to extract high-order semantic and structural features 

from social media text that are represented as a semantic–temporal graph [13], [17], [19]. 

• Assimilate semantic embeddings, such as BERT and RoBERTa, to encode both contextual and syntactic 

information, which allows the model to understand nuanced linguistic and emotional cues [13], [17], [19]. 

• To perform a complete performance evaluation using depression prediction accuracy, precision, recall, f1 score, 

specificity and depression prediction time in social media datasets [9], [11], [15]. 

The aim of this proposed work is to fill the gaps in current approaches, ensuring the robustness, scalability, and 

efficient prediction of depression while addressing challenges inherent to social media data. The following section 

presents the related works. 

 

II. RELATED WORKS 

 

A. Early Social Media Approaches 

Social media has been documented as a valuable source of information for monitoring mental 

health.Initialresearch demonstrated that the linguistic patterns and posting behavior could be leveraged for the 

detection of depression. De Choudhury et al. [2] displayed that the temporal changes in language and social 

activity onTwitter,which is a social media platform, indicate depressive tendencies. Jalonen [3] emphasized social 

media as a critical outlet for giving expression to negative emotions, providing a rich dataset for sentiment and 

affect analysis. Guntuku et al. [4] studied numerous DL and ML approaches, highlighting the importance of both 

feature engineering and temporal modeling for effective depression detection. Evans-Lacko et al. [5] debated 

socio-economic disparities affecting contact to mental health services, further motivating scalable and automated 

solutions. 

B. LearningMethods based on Machine 

Traditional machine learning approaches applied algorithms such as Random Forests,Support Vector Machines 

(SVMs), and clustering techniques to social media data. Cacheda et al. [6] confirmed early depression detection 

using social network analysis integrated  with Random Forest classifiers, highlighting the significance of relational 

features. Adek et al. [7] and Ahmed et al. [8] used clustering techniques for short-text data, improving the feature 

representation and dimensionality reduction. 

C. Deep Learning Approaches 

The acceptance of deep learning architectures significantly improved predictive capabilities. A hybrid CNN-

BiLSTM model for depression detection from the tweets was proposed by Kour and Gupta [9]. This effectively 

captures both sequential and spatial patterns. An embedded LSTM architecture was developed by Singh et al. 

[10], whileDEPTWEET was introduced by Kabir et al. [11], which classifies depression severity from text data. 

Ren et al. [12] incorporated multi-criteria decision-making with discrete Z-numbers to improve early diagnosis. 

D. Semantic Embeddings 

Transformer-based embeddings, whichinclude BERT and RoBERTa, have proven effective in capturing 

contextual and semantic nuances. Kurniadi and Paramita [13] enhanced the detection of depression in short texts  

ofsocial media by using these embeddings. Kanahuati-Ceballos et al. [15] leveraged embeddings to optimize 

LSTM, RNN, and Forest’s Random models.MOGAM was introduced by Cha et al. [16], which is a multimodal 

objectoriented graph attention model, and Bendebane et al. [19] fine-tuned BERT for multi-labeled Twitter 

datasets, signifying the importance of capturing textual data’s deep semantic relationships. 

E. Graph Neural  andOptimization Networks 

Current research highlights integrating bio-inspired algorithms for optimization with graph neural networks to 

improveperformance and robustness. The proposed FQ-GNN framework applies Firefly-based Quantum 

Optimization (FQO) to tune hyperparameters and select discriminative features [21]. Quantum Graph Neural 

Network (Q-GNN) captures high-order structural and semantic patterns in social media text [13], [17], [19]. The 

combination of both addresses the noise, high-dimensionality, and low-SNR conditions, resulting in scalable, 

robust, and efficient depression detection. 
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While earlier studies focused on semantic embeddings or ML/DL models individually, in the upcoming section 

FQ-GNN framework introduces a unified approach that combines FQO optimization, Q-GNN feature learning, 

and semantic embeddings, ensuring practical applicability for large-scale social media depression detection. This 

methodimproves accuracy, offers robustness against noise, and offers scalability for real-time deployment across 

different social media platforms. 

 

III. PROPOSED WORK 

 

This is the continuation of the earlier research work and can be seen in [22]. Early detection of depressive 

tendencies from social-media posts requires a representation that can preserve (i) the semantic nature of text, (ii) 

the structural relations among users, posts, and topics, and (iii) the temporal evolution of interactions. 

Instead of treating each post as an isolated sample, the proposed framework begins by constructing a 

heterogeneous, semantically weighted, temporally aware graph. 

This graph later serves as the computational substrate for the Firefly-Enhanced Adaptive Quantum Graph Neural 

Network (FFA-QGNN) classifier. 

Definition of Heterogeneous Social-Media Graph 

We denote the processed dataset as 

𝒟 = {(𝑣𝑥 , 𝑞𝑦 , 𝑢𝑦𝑧 , 𝑤𝑦𝑧)} …(1) 

  

where 𝑣𝑥denotes the 𝑥-th user, 

𝑞𝑦denotes the 𝑦-th social-media post,  

𝑢𝑦𝑧denotes the time stamp of the k-th appearance of post qy, and 

𝑤𝑦𝑧 ∈ {0,1}denotes the ground-truth depression label associated with that post. 

A heterogeneous graph is then defined as 

H = (W, F, Y) …(2) 

where Wdenotes the complete set of nodes (including users, posts, hashtags, and latent topics), 

F ⊆ W × W denotes the set of typed edges that represent interactions or semantic affinities among nodes, and 

Y ∈ ℝ∣W∣×d0denotes the matrix of d0- dimensional initial feature vectors attached to all nodes. 

where ∣ V ∣is the total number of nodes and d0is the raw feature dimensionality. 

Multi-Relational Adjacency Integration 

Since the network contains multiple relation types—such as user–post, post–topic, user–user (friendship or 

follow) and post–post (reply/retweet)—a single adjacency cannot fully describe the graph. 

Therefore, we integrate all relation-specific adjacencies into a unified one as 

𝐵 =
∑ ωx𝐵(x)

x∈𝒳

∑ ωxx∈𝒳

 …(3) 

  

where 𝒳denotes the set of relation types, 

A(x) ∈ {0,1}∣W∣×∣W∣denotes the binary adjacency matrix corresponding to relation type x, and 

ωx > 0denotes a learnable scalar weight that reflects the contribution of relation rto depression-related 

information flow. 

where the denominator normalizes the weighted sum to keep Ain a comparable numeric range. 

Semantic Similarity of Text-Bearing Nodes 

The raw connectivity may not capture the semantic affinity among posts or users. 

To address this, each text-bearing node (posts, user profiles, topics) is encoded first by a transformer-based 

language model (e.g., DeBERTa or RoBERTa), producing an embedding vector ei ∈ ℝdefor node i. 
We then define the normalized semantic similarity between nodes iand jas 

𝑇ij =
⟨𝑓i, 𝑓j⟩

∥ 𝑓𝑖 ∥2   ∥ 𝑓j ∥2+ ε
 …(4) 

where ⟨⋅,⋅⟩denotes the inner product, 

∥⋅∥2denotes the Euclidean norm, 

and ε > 0is a small constant to prevent division by zero. 

where 𝑇ij ∈ [0,1]provides a soft semantic linkage even between otherwise unconnected nodes. 

Temporal Decay Weight for Recency Sensitivity 

Since depressive tendencies often manifest in recent linguistic and behavioral patterns, edges corresponding to 

older interactions must contribute less to the model. 

We introduce a continuous temporal decay as 

ϕ𝑥𝑦 = exp [−λ (𝑉cur − 𝑉𝑥𝑦)] …(5) 

where Vcurdenotes the current reference time, 

𝑉𝑥𝑦denotes the time stamp of the interaction between nodes x and y, 

and λ > 0is a tunable decay-rate constant controlling how fast the influence of older links diminishes. 

where ϕ𝑥𝑦 ∈ (0,1]naturally emphasizes recent interactions. 
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Unified Weighted Adjacency 

By combining the purely structural relation from (3), the semantic affinity from (4), and the temporal factor from 

(5), the final adjacency used in the learning stage is defined as 

B̃𝑥𝑦 = B𝑥𝑦 ⋅ 𝑇𝑥𝑦 ⋅ ϕ𝑥𝑦 …(6) 

where B𝑥𝑦is the element of the integrated adjacency from (3), 

𝑇𝑥𝑦is the semantic similarity from (4), and 

ϕ𝑥𝑦is the temporal decay weight from (5). 

where B̃𝑥𝑦fuses heterogeneous information into a single graph operator suitable for subsequent GNN processing. 

Feature Normalization 

To avoid training instability caused by heterogeneity of raw features, each node feature vector is normalized as 

𝑦̂𝑥 =
𝑦𝑥 − μ𝑔

σ𝑔 + δ
 …(7) 

where 𝑦𝑥is the raw feature vector of node i, 
σ𝑔and μ𝑔are respectively standardand mean  deviation of each feature dimension computed over all nodes, 

and δ > 0is a small constant for numerical stability. 

where 𝑦̂𝑥becomes the standardized input feature vector ready for embedding refinement. 

Semantic–Contextual Embedding Layer 

While Stage 1 builds a heterogeneous graph H = (W, F, Y)endowed with the unified weighted adjacency 𝐵̃and 

normalized initial features 𝑦̂𝑥, the raw features 𝑦̂𝑥mostly capture surface-level statistics such as word counts or 

profile meta-data. 

Accurate depression prediction requires deep semantic understanding of textual content together with 

contextualization by user–post–topic relations. 

Stage 2 introduces a Semantic–Contextual Embedding (SCE) layer, which converts raw node features into task-

aware latent embeddings that integrate linguistic, behavioral, and structural cues. 

Transformer-Based Textual Encoder 

For each text-bearing node (post, user biography, topic tag) we first compute a context-sensitive token-level 

representation using a pre-trained transformer (e.g., RoBERTa or DeBERTa). 

Given a sequence of Litokens for node i, the transformer produces hidden states hi
(ℓ)

at each layer ℓ. 

We define the initial semantic embedding for node ias 

𝑥𝑗
(0)

=
1

𝐼𝑗
∑ h𝑗,k

(𝐼tr)

𝐼𝑗

k=1

 …(8) 

where h𝑗,k
(𝐼tr)

denotes the hidden vector of the k-th token at the top transformer layer 𝐼tr, 

and 𝑥𝑗
(0)

∈ ℝ𝑥is the averaged embedding vector for node 𝑗. 

where the averaging ensures a fixed-dimensional representation irrespective of token length. 

Sentiment–Polarity Augmentation 

Because emotional valence is a crucial signal in depression detection, we augment the transformer embedding 

with a normalized sentiment-polarity scalar 𝑎x ∈ [−1,1]obtained from a specialized affective lexicon or sentiment 

model. 

The sentiment-augmented embedding is defined as 

𝑥𝑗
(1)

= [𝑥𝑗
(0)

; α𝑎𝑎x] …(9) 

where [  ⋅  ;   ⋅  ]denotes vector concatenation 

and α𝑎 > 0is a scaling factor balancing the influence of sentiment with that of the semantic vector. 

where the augmentation enriches the representation with explicit emotional tone. 

Contextual Neighborhood Aggregation 

Merely averaging neighbor features may dilute discriminative cues. 

To capture context-dependent importance of neighboring nodes, we adopt an attention-weighted neighborhood 

aggregation. 

For each node i, its context-aware embedding is updated as 

𝑥𝑗
(2)

= σ (𝐴𝑝 𝑥𝑗
(1)

+ ∑ α𝑗𝑘𝐴𝑞  𝑥𝑘
(1)

k∈𝒩(𝑗)

) …(10) 

where 𝐴𝑝and 𝐴𝑞are trainable weight matrices for self- and neighbor-contributions respectively, 

σ(⋅)is a non-linear activation function (e.g., ReLU), 

𝒩(j)denotes the neighborhood of node iin the graph, 

and α𝑗𝑘is the attention coefficient measuring the relevance of neighbor k to node j. 

where the second term adaptively emphasizes semantically or temporally related neighbors. 

 Computation of Attention Coefficients 

The attention coefficient α𝑗𝑘is computed using a semantic–structural compatibility function: 
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α𝑥𝑦 =
exp (ψ⊤tanh (𝑋𝑏𝑥𝑗

(1)
∥ 𝑋𝑏z𝑘

(1)
∥ 𝐵̃𝑗𝑘))

∑ exp (ψ⊤tanh (𝑋𝑏zi

(1)
∥ 𝑋𝑏z𝑙

(1)
∥ 𝐵̃𝑗𝑙))

l∈𝒩(j)

 …(11) 

where 𝑋𝑏is a trainable projection matrix, 

ψis a trainable attention vector, 

tanh (⋅)introduces non-linearity, 

∥denotes vector concatenation, 

and 𝐵̃𝑗𝑘is the unified weighted adjacency entry from Stage 1 (6). 

where the denominator normalizes the coefficients so that ∑ α𝑗𝑘 = 1
k∈𝒩(k)

. 

Dropout-Regularized Embedding 

To mitigate over-fitting in the high-dimensional feature space, a dropout mask is applied: 

𝑥𝑗
(3)

= Dropoutpd
(𝑥𝑗

(1)
) …(12) 

where Dropoutpd
(⋅)randomly zeros each element of the input vector with probability pd ∈ (0,1)during training. 

where 𝑥𝑗
(3)

serves as the robust semantic–contextual embedding used as an input to the succeeding QGNN stage. 

Quantum-Enhanced Graph Neural Model 

Stages 1 and 2 provided, respectively, a heterogeneous weighted graph Gand the semantic–contextual node 

embeddings 𝑥𝑗
(3)

. 

Stage 3 introduces the Quantum-Enhanced Graph Neural Network (Q-GNN) layer that leverages graph 

propagation enriched with quantum-inspired linear-unitary transformations. 

This layer extracts higher-order relational dependencies—crucial for revealing latent depressive patterns that 

emerge from the interaction among posts, users, and topical contexts. 

Quantum State Initialization 

In order to model uncertainty and superposed neighborhood influence, each node iis conceptually treated as a 

quantum state whose initial amplitude vector is derived from the Stage 2 embedding: 

ψi
(0)

=
𝑥𝑗

(3)

∥ 𝑥𝑗

(3)
∥2+ ϵ

 …(13) 

where 𝑥𝑗
(3)

is the dropout-regularized semantic–contextual embedding from (12), 

∥⋅∥2is the Euclidean norm, 

and ϵ > 0is a small stabilizer. 

where the normalization constrains the state vector to lie approximately on the unit hypersphere, making it suitable 

for quantum-inspired evolution. 

Quantum Propagation Rule 

Let Hdenote a learnable Hermitian-like propagation operator defined on the graph. 

The one-step propagation of node states is given by a unitary-inspired rule: 

ψ𝑗
(ℓ+1)

= σ (𝑉(ℓ)ψ𝑗
(ℓ)

+ ∑ βjk
(ℓ)

𝑊(ℓ)ψ𝑘
(ℓ)

k∈𝒩(𝑗)

) …(14) 

where V(ℓ)and 𝑊(ℓ)are learnable linear operators for self- and neighbor-influence at layer ℓ, 

βij
(ℓ)

is the normalized quantum-inspired neighborhood weight, 

𝒩(j)is the set of neighbors of node i, 
and σ(⋅)is a nonlinear activation (e.g., ELU). 

Where the formulation mimics local quantum diffusion but remains fully differentiable for end-to-end learning. 

Quantum-Inspired Neighborhood Weight 

The neighborhood weight is defined using a phase-modulated relevance score: 

βjk
(ℓ)

=
exp(ℜ{θjk

(ℓ)
})

∑ exp (ℜ{θ
jl

(ℓ)
}

l∈𝒩(j)
)
 …(15) 

where ℜ{⋅}denotes the real part, 

and θjk
(ℓ)

is the complex-valued compatibility defined as 

θjk
(ℓ)

= (ψ𝑗
(ℓ)

)H𝑋𝑟
(ℓ)

ψj
(ℓ)

+ η Ãjk …(16) 

where (⋅)Hdenotes the Hermitian transpose, 

𝑋𝑟
(ℓ)

is a complex-valued bilinear interaction matrix at layer ℓ, 

η > 0is a scaling parameter blending structural adjacency, 

and Ãjkis the unified weighted adjacency from Stage 1 (6). 

Where (15) and (16) jointly determine the phase-aware attention that governs neighbor influence in the 

propagation rule (14). 
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Layer-wise Quantum Feature Update 

The output feature representation after Lqquantum-GNN layers is computed as 

h𝑗 = ψ𝑗
(𝑀𝑟)

 …(17) 

where 𝑀𝑟is the number of propagation layers and 

h𝑗becomes the final graph-aware quantum feature vector of node 𝑗. 

Where these high-level features now encode both semantic–contextual and relational-structural signals. 

Residual Fusion with Original Semantic Embedding 

To mitigate over-smoothing and preserve core semantic signals from Stage 2, a residual fusion is performed: 

h̃j = γ h𝑗 + (1 − γ) 𝑦𝑘
(3)

 …(18) 

where γ ∈ [0,1]is a fusion hyper-parameter controlling the contribution of the Q-GNN output hjrelative to the 

original embedding 𝑦𝑘
(3)

. 

Where this fusion ensures that discriminative lexical information is not lost while gaining graph-level relational 

context. 

Bio-Inspired Optimization with Enhanced Deep Classifier 

While the Q-GNN in Stage 3 yields rich semantic-relational embeddings h̃i, the choice of classifier architecture, 

learning-rate schedule, regularization coefficients, and embedding fusion weights strongly affects the final 

detection accuracy and robustness under sparse, noisy data. 

Stage 4 therefore introduces a Firefly-Driven Quantum-Aware Optimization (FQO) framework to co-optimize  

the deep classification head and its hyperparameters. 

The approach hybridizes the global exploration strength of Firefly Algorithm (FA) with a stability-guided local 

exploitation rule tailored for high-dimensional neural architectures. 

Classifier Architecture 

The classifier fΘ(⋅)is a two-branch deep head: 

• a feed-forward branch to capture dense non-linear decision boundaries, and 

• a temporal branch based on a light-weight Bi-GRU to exploit posting-sequence regularities. 

Given a node embedding h̃jfrom (18), the classifier output for node is 

𝑥̂𝑗 = fΘ(h̃𝑗) = Softmax(𝐴𝑝ϕ(h̃j) + 𝑐𝑑) …(19) 

where ϕ(⋅)denotes the joint feature extracted by the two-branch head, 

𝐴𝑝and 𝑐𝑑are the final classification weights and bias, 

and 𝑥̂𝑗 ∈ ℝDis the estimated probability vector over Ctarget classes (e.g., depressive vs. non-depressive). 

Where the hybrid architecture is more expressive than purely feed-forward or purely recurrent alternatives, yet 

remains tractable for large-scale social data. 

Joint Optimization’s Objective Function 

The overall optimization must balance classification fidelity, model compactness, and robustness. 

Hence, the multi-objective loss is formulated as 

𝒥(Θ, λ) = ℒCE + λ1  ∥ Θ ∥2
2+ λ2 ℒQdiff + λ3 ℒSNR …(20) 

where 

• ℒCEis the cross-entropy loss over training samples, 

• ∥ Θ ∥2
2is the weight-decay term promoting compactness, 

• ℒQdiffis a quantum-state discrepancy penalty encouraging consistency between Stage 3 states ψ
i

(Lq)
and fused 

features h̃𝑗, 

• ℒSNRis a robustness loss that penalizes performance degradation under synthetic low-SNR perturbations, and 

• λ = {λ1, λ2, λ3}are the regularization weights to be tuned. 

where the choice of λ and key architectural hyperparameters (e.g., hidden sizes, fusion factor γin (18), Bi-GRU 

depth) defines a high-dimensional search space. 

Firefly-Driven Quantum-Aware Optimization (FQO) 

Firefly Encoding 

Each candidate firefly 𝑦jrepresents a vector of: 

𝑦j = [ γ, dBiGRU, hf, αlr, λ1, λ2, λ3 ] …(21) 

where 

γis the residual-fusion weight in (18), 

dBiGRUis the number of recurrent layers, 

hfis the hidden-layer width of the feed-forward branch, 

αlris the initial learning rate, 

and the λterms are as in (20). 

where this unified encoding enables the FA to simultaneously adjust both structural and optimization parameters. 

Attractiveness Function 

The attractiveness βijof a firefly jwith respect to firefly kis defined as 

βij = β0 exp (− ξ  ∥ x𝑗 − x𝑖 ∥2
2) …(22) 
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where β0 > 0is the base attractiveness and ξ > 0is the light-absorption coefficient. 

where a lower Euclidean distance in hyper-parameter space indicates greater similarity and thus stronger 

attraction. 

Quantum-Aware Random Walk 

To increase exploration while preserving stability in late iterations, a quantum-aware random perturbation is 

injected: 

xk
i+1 = xk

i + βkj(xj
𝑖 − xk

𝑖 ) + ζ  𝒬(0, σ𝑝
2 ) …(23) 

where 

𝒬(0, σ𝑝
2)denotes a zero-mean random vector drawn from a Levy-like quantum distribution, 

ζ > 0is a scaling factor, and the last term diversifies the search to avoid premature convergence. 

where the quantum-inspired perturbation enhances the ability to escape local optima when tuning deep-model 

hyperparameters. 

Fitness Evaluation 

The fitness of each candidate is evaluated by 

F(𝑝𝑖) = ω1 Accval − ω2 CompCost − ω3 VarSNR …(24) 

where Accvalis the validation accuracy of the classifier trained with candidate 𝑝𝑖 ,CompCost is the normalized 

computational cost,VarSNRmeasures prediction variance under noisy conditions, and ω1,2,3are preference weights. 

Where the maximization of F(𝑝𝑖)leads to a balanced trade-off between predictive power, efficiency, and 

robustness. 

Convergence Criterion 

The optimization proceeds until either the maximum iteration Tmaxis reached or the relative improvement of the 

best fitness falls below a tolerance ϵconvfor r consecutive iterations: 

∣
Fbest

 i − Fbest
 i−r

Fbest
 i−r

∣< ϵconv …(25) 

where this dual criterion avoids unnecessary computation once satisfactory hyper-parameters are obtained. 

Adaptive Feature Fusion and Decision Refinement 

While the FQO-tuned classifier in Stage 4 optimizes the hyper-parameters of the decision head, further 

performance gains and interpretability can be achieved by explicitly modelling the interaction between semantic 

features siand structural–temporal features giof each user i. 
Stage 5 introduces an Adaptive Feature Fusion (AFF) layer followed by a Decision Refinement (DR) block, which 

together provide a more balanced and robust representation for final classification. 

Split of Feature Modalities 

Let the output of the Stage 3 Q-GNN for node ibe decomposed into two complementary parts: 

h̃𝑗 = [ s𝑗 ∥ g𝑗  ] …(26) 

where 

s𝑗 ∈ ℝdsdenotes the purely semantic embedding aggregated from text and topic similarity, 

g𝑗 ∈ ℝdgdenotes the structural–temporal embedding induced by graph relations and posting dynamics, 

and [⋅∥⋅]is the concatenation operator. 

Attention-Weighted Modality Balancing 

An adaptive attention gate computes per-sample modality weights: 

α𝑗 = σ(𝑋𝑏[s𝑗 ∥   g𝑗] + 𝑐𝑏) …(27) 

where 

𝑋𝑏and 𝑐𝑏are learnable parameters of the gate, 

σ(⋅)is the element-wise sigmoid, 

and α𝑗 ∈ [0,1]ds+dgmodulates the relative importance of semantic vs. structural components for each dimension. 

Fused Representation 

The adaptively fused feature vector is then expressed as 

uj = αj ⊙ s𝑗 + (1 − α𝑗) ⊙ g𝑗 …(28) 

where 

⊙denotes the element-wise (Hadamard) product. 

where the fusion dynamically balances textual cues (e.g., sentiment, depressive expressions) with structural cues 

(e.g., interaction pattern, posting intervals), mitigating over-reliance on either modality. 

Residual Calibration 

To retain information possibly suppressed by the fusion, a residual calibration term is added: 

r𝑗 = δ (LayerNorm([ s𝑗 ∥ g𝑗]) − u𝑗) …(29) 

where 

δ ∈ (0,1)is a learnable scalar controlling the residual strength, 

and LayerNorm(⋅)is the standard layer-normalization operator. 

The final enriched representation for decision making is 

v𝑗 = u𝑗 + r𝑗 …(30) 

Decision Refinement Block 
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The vector vjis passed to a light refinement network consisting of a gated linear unit (GLU) and a smoothing filter: 

𝑝𝑗 = GLU(𝑋𝑝vj + b𝑝) …(31) 

 

z𝑗 = (1 − ρ) 𝑝𝐽 + ρ AvgK∈𝒩(j)𝑝𝑗 …(32) 

where 

𝑋𝑝, b𝑝are parameters of the GLU, 

ρ ∈ [0,1]is a smoothing coefficient, 

and 𝒩(j)denotes the set of graph-neighbours of node 𝑗. 

Where the GLU selectively activates informative components, while the neighbour-aware averaging propagates 

local consensus to reduce label noise. 

Final Prediction 

The refined feature zjis finally classified by 

ŷ𝑗 = Softmax(𝑋oz𝑗 + 𝑐o) …(33) 

where Xo , coare output weights and bias. 

Integrated Workflow and Convergence Analysis 

The previous stages describe five cooperating algorithmic modules. 

his now joins them into a single end-to-end workflow and analyses the convergence properties of FQO-QGNN–

AFF system. 

End-to-End Workflow 

1. Graph Construction: 

Social-media records are converted into a heterogeneous graph H = (W, F, Y), with edges weighted by semantic 

similarity and temporal decay. 

2. Semantic–Contextual Embedding: 

A transformer encoder and temporal context filter yield node-level representations hj
(0)

that incorporate raw text 

and interaction chronology. 

3. Quantum GNN Feature Learning: 

The embeddings pass through multiple quantum-aware graph convolutional layers to produce h̃jas in (18). 

4. Bio-Inspired Hyper-Parameter Optimization: 

A firefly-driven quantum-aware optimizer searches the high-dimensional space of model hyper-parameters to 

maximize the multi-objective fitness (24). 

5. Adaptive Fusion and Decision Refinement (Stage 5): 

Semantic siand structural gicomponents are balanced via (27)–(30); the fused representation is refined with 

neighbour-aware smoothing (31)–(32), and the final classifier (33) predicts depression status. 

The complete pipeline therefore realises 

ŷ𝑗 = ℱΦ(H, Y) …(34) 

where ℱΦ(⋅)denotes the integrated mapping defined by all learnable parameters Φof Stages 2–5. 

where this formulation makes the entire framework an explicit compositional operator on the input graph and its 

features. 

Unified Objective Function 

All trainable parts of the pipeline jointly minimise 

 

𝒥total = 𝒥(Θ, λ) + μ1 ℒfuse + μ2 ℒsmooth …(35) 

where 

𝒥(Θ, λ)is the Stage 4 objective (20), 

ℒfuse =∥  uj − [sj ∥ gj]  ∥2
2encourages consistent fusion, 

ℒsmooth = ∑ ∥  zj − z𝑘 ∥2
2

(j,k)∈E
encourages local decision smoothness, 

and μ1, μ2 > 0 are trade-off coefficients. 

where this compound loss ties together the contributions of all stages under a single learning principle. 

Convergence of Inner Training Loop 

For fixed hyper-parameters supplied by the FQO outer loop, the network parameters Θ are trained by stochastic 

gradient descent with an adaptive step size ηtsatisfying 

∑ η𝑗 = ∞

∞

j=1

, ∑ η𝑗
2 < ∞

∞

j=1

 …(36) 

Under standard smoothness and bounded-variance assumptions, the expected gradient norm satisfies 

lim 
j→∞

𝔼[∥ ∇Θ𝒥total
(j)

∥] = 0 …(37) 

indicating convergence to a stationary point of the objective’s total . 

where this guarantees stability of the dynamic’straining within each outer iteration of the bio-inspired search. 

Convergence of Outer Bio-Inspired Loop 
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Let F(i)denote the best fitness value at the ithiteration of the Firefly optimizer. 

Using the attractiveness (22) and quantum perturbation (23), and assuming the fitness landscape is bounded above 

by Fmax, it follows from the standard FA dynamics that 

Fmax − F(i+1) ≤ (1 − βmin)[Fmax − F(i)] …(38) 

where βmin ∈ (0,1)is the minimum non-zero attractiveness among all firefly pairs. 

Iterating (38) yields 

Fmax − F(i) ≤ (1 − βmin)i[Fmax − F(0)] …(39) 

so that the best fitness improves geometrically toward the optimum as t → ∞. 

where this establishes the global convergence of the bio-inspired search under mild assumptions. 

Integrated Convergence Criterion 

A practical stopping rule couples both loops: 

∥ ∇Θ𝒥total ∥≤ ϵ1, ∣ F(i) − F(i−1) ∣≤ ϵ2 …(40) 

for small tolerances ϵ1, ϵ2 > 0. 

where training terminates when the inner learner is close to a stationary solution and the outer optimizer shows 

negligible further improvement. 

Table – 1. Symbols and Description 

Symbol Description 

𝑢𝑗 User entity (𝑖) 

𝑣𝑗 Post entity (𝑖) 

𝑡𝑗 Timestamp of post (𝑖) 

𝑦𝑗 Ground-truth depression label 

𝐴(𝑥) Adjacency matrix for relation type (𝑥) 

𝑆𝑗𝑘 Semantic similarity between nodes (𝑗) and (𝑘) 

𝑇𝑗𝑘 Temporal decay weight 

𝐴𝑗𝑘 Unified weighted adjacency element 

𝑥𝑗 , 𝑥̃𝑗 Raw and normalized node feature vectors 

𝑒𝑗 Transformer embedding for node (𝑖) 

𝑠𝑗 Sentiment polarity scalar 

ℎ𝑗 , ℎ𝑗
′ Contextual embedding and dropout output 

𝜓𝑗 Quantum state vector of node (𝑖) 

𝐴𝑝, 𝐴𝑞  Weight matrices (self and neighbor) 

𝜔𝑗𝑘 Quantum neighborhood weight 

𝜆 Residual fusion coefficient 

𝜃 Firefly hyperparameter vector 

𝛽𝑗𝑘 Firefly attractiveness 

(𝜌) Residual calibration scalar 

𝑤𝑗  Attention weight for modality fusion 

𝑢𝑗 , 𝑣𝑗 , 𝑟𝑗 , Intermediate fusion and refined feature vectors 

𝑊𝑟 , 𝑏𝑟 Final classifier weights and bias 

𝛾 Smoothing coefficient 

𝐹(𝜃) Fitness of hyperparameter configuration 

𝐽𝑡𝑜𝑡𝑎𝑙 Overall objective function 

𝜖1, 𝜖2 Convergence tolerances 

 

IV. Experimental Setup and Performance Evaluation 

On social media datasets for contextual depression detection, this proposed FQ-GNN framework was evaluated. 

Posts and interactions were pre-processed and changed into a heterogeneous graph H = (W, F, Y). In that nodes 

represent users, posts, and interactions, and edges encode temporal decay and semantic resemblance. Using a 

transformer encoder joint with a temporal context filter to capture bothchronological interactions and textual 

semantics, the Node-level embeddings were generated. These embeddings were then circulated through quantum-

aware graph convolutional layers to extract rich structural and semantic representations. 

There are four hyperparameters: the number of quantum layers, learning rate, embedding dimensions, and fusion 

weights. These were optimized using a firefly-driven quantum-aware optimizer, which maximizes multi-objective 

fitness by precision, balancing prediction accuracy and recall. The final adaptive fusion and neighbor-aware 

refinement stages formed fused node representations for the classification of depression. 

All experiments were conducted with varying numbers of tweet samples, ranging from 2,000 - 20,000. These are 

equated against three baselines: DOPR-GCDBN [24], CBA [23], and BERT-CNN [22]. Evaluation was executed 

on standard performance metrics.Each and every experiment was repeated multiple times to confirmthe statistical 

significance. 
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A. Performance Evaluation Metrics 

The metrics that follow were used to estimatethe performance of the model: 

Accuracy (ACC): Measures the total correctness of depression predictions. 

Precision (P): Ratio of properly predicted depressive instances to all predicted depressive instances, indicating the 

reliability of positive predictions. 

Recall (R): Ratio of correctly predicted depressive instances to all actual depressive instances that reflects 

sensitivity. 

Specificity (SP): Ability of the model to properly identify the non-depressive instances. 

Depression Prediction Time (DPT): Average computational time (in seconds) essential to categorize a batch of 

tweets. 

 

V. RESULTS AND DISCUSSIONS 

 

FQ-GNN framework’s performance for depression prediction is estimated in Precision, Prediction 

Accuracy,Recall,Specificity, and Prediction Time under varying tweet sample sizes from 2,000 - 20,000. As 

mentioned earlier, baseline methods: DOPR-GCDBN [24], CBA [23], and BERT-CNN [22] are included in the 

comparative analysis. 

A. Depression Prediction Accuracy 

For all the methods, the depression prediction accuracy is represented in Figure 1 and 1Table 2. The proposed 

FQ-GNN consistently outperforms existing works across all tweet sample sizes. For example, at 20,000 tweets, 

FQ-GNN achieves 98.50%, while DOPR-GCDBN records 96.74%, CBA, and BERT-CNN record 93.00% and 

90.22%, respectively. This shows an improvement of 1.76% over [24], 5.81% and 8.28% over [23] and [22], 

respectively. Overall, the accuracy gain ranges from ~1.5–2% against [24] and ~5–8% against [22][23], 

representing the robust predictive capability of the framework with growing data size. 

B.  Recall, Precision,and Specificity 

Table 3 and Figures 2–4 depict the precision, recall, and specificity metrics. For precision, FQ-GNN achieves 

0.986 at 20,000 tweets, improving over 0.964 ([24]), 0.928 ([23]), and 0.913 ([22]), translating to ~2.2%, 6.5%, 

and 7.9% improvement, respectively. In the same way, recall rises to 0.995, while specificity attains 0.988, 

reflecting consistent superiority of FQ-GNN across all sample sizes. The percentage developments are more 

pronounced at larger dataset sizes, highlighting the scalability of the model. 

C. Depression Prediction Time 

Table 4 and Figure 5 report the depression prediction time in seconds. At 20,000 tweets, FQ-GNN attains 104.2 

s, which is ~7.3%, 17.5%, 29.3% faster than [24], [23], and [22], respectively, representing that the proposed 

method is not only more accurate but also computationally efficient. The decrease in prediction time establishes 

the optimization efficiency embedded in FQ-GNN for large-scale tweet datasets. 

FQ-GNN reliably outperforms baseline methods across all four metrics and tweet sample sizes.The development 

in accuracy, recall, precision, and specificity ranges from 1.5 to 2% compared to [24] and 5 to 8% compared to 

[22][23].The time of prediction is significantly decreased compared to all baselines, highlighting both efficiency 

and accuracy.Bigger datasets strengthen the benefits of FQ-GNN, assuring its robustness and scalability for 

depression discovery in social media analytics.These results validate that the proposed FQ-GNN framework 

attains superior predictive performance while sustaining low computational overhead, making it highly suitable 

for real-time depression monitoring applications. 

 
Figure – 1. Depression Prediction Accuracy Analysis 

Table – 2. Depression Prediction Accuracy 
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Number of Tweet Samples FQ-GNN DOPR-GCDBN [24] CBA [23] BERT-CNN [22] 

2000 97.25 97.00 94.00 92.50 

4000 97.40 96.89 93.56 92.05 

6000 97.58 97.56 93.78 92.00 

8000 97.76 97.33 94.05 91.56 

10000 97.88 97.05 93.12 91.11 

12000 98.02 97.41 93.45 91.06 

14000 98.14 96.78 93.11 91.00 

16000 98.25 96.05 93.10 90.56 

18000 98.38 97.45 93.08 90.33 

20000 98.50 96.74 93.00 90.22 

 

Table – 3. Precision, Recall and Specificity 

N
u

m
b

e
r 

o
f 

T
w

ee
t 

S
a

m
p

le
s Precision Recall Specificity 

FQ-

GNN 

DOP

R-

GCD

BN 

[24] 

CBA 

[23] 

BERT

-CNN 

[22] 

FQ-

GNN 

DOP

R-

GCD

BN 

[24] 

CBA 

[23] 

BERT

-CNN 

[22] 

FQ-

GNN 

DOP

R-

GCD

BN 

[24] 

CBA 

[23] 

BERT

-CNN 

[22] 

2000 0.973 0.962 0.933 0.923 0.986 0.980 0.951 0.932 0.975 0.970 0.941 0.927 

4000 0.975 0.965 0.931 0.915 0.987 0.975 0.948 0.931 0.977 0.969 0.939 0.922 

6000 0.976 0.966 0.928 0.905 0.988 0.972 0.944 0.928 0.979 0.968 0.935 0.916 

8000 0.978 0.958 0.932 0.912 0.989 0.978 0.943 0.926 0.981 0.967 0.937 0.918 

10000 0.980 0.963 0.937 0.917 0.990 0.977 0.940 0.929 0.982 0.969 0.938 0.922 

12000 0.982 0.967 0.939 0.916 0.991 0.981 0.947 0.927 0.984 0.973 0.942 0.921 

14000 0.983 0.959 0.937 0.911 0.992 0.975 0.943 0.925 0.985 0.966 0.939 0.917 

16000 0.984 0.963 0.927 0.907 0.993 0.982 0.942 0.920 0.986 0.972 0.934 0.913 

18000 0.985 0.958 0.930 0.917 0.994 0.976 0.945 0.923 0.987 0.966 0.937 0.919 

20000 0.986 0.964 0.928 0.913 0.995 0.979 0.938 0.920 0.988 0.971 0.932 0.916 

 

 
Figure – 2. Precision Analysis 
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Figure – 3. Recall Analysis 

 

 
Figure – 4. Sensitivity Analysis 

 
Figure – 5. Depression Prediction Time Analysis 

 

Table – 4. Depression Prediction Time 

Number of Tweet Samples FQ-GNN DOPR-GCDBN [24] CBA [23] BERT-CNN [22] 

2000 42.1 44.0 56.0 64.0 

4000 49.2 52.6 60.3 68.6 
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6000 55.0 58.0 65.0 70.5 

8000 61.5 65.7 73.6 77.6 

10000 67.3 72.0 85.5 88.7 

12000 75.1 83.0 89.0 92.6 

14000 83.9 91.6 95.6 109.4 

16000 89.8 95.7 105.7 117.6 

18000 97.5 105.6 113.5 123.8 

20000 104.2 112.5 126.6 147.5 

 

VI. CONCLUSION 

 

The proposed FQ-GNN framework effectively mixestemporal, semantic, and organizationaldata from social 

media data to improve contextual depression detection. By firefly-based hyper-parameter optimization and 

leveraging quantum-aware graph convolutions, the model attainsclassification performance and superior feature 

representation, compared to traditional methods. Further, the adaptive fusion and neighbor-aware refinement 

stages improve interpretability and robustness, representing the potential of combining quantum computing 

principles with bio-inspired optimization in mental health analytics. The upcoming work will explore about the 

real-time deployment and extension to multi-modal social media signals for wider mental health monitoring. 
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