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Abstract: In today's world of decision-making and operations research, multi-objective optimization is 

becoming more and more important since real-world goals are often at odds with each other. Linear 

programming and scalarization approaches are examples of conventional optimizations techniques that 

have been used a lot on single-objective issues. However, they typically don't do a good job of capturing 

the complexity of multi-objective situations. In this case, Multi-Objective Evolutionary Algorithms 

(MOEAs), especially Genetic Algorithms (GAs), are a good choice since they may provide a wide range 

of Pareto-optimal solutions. Even while GAs is used a lot to solve non-linear optimization issues, we still 

don't know much about how well they work for multi-objective linear optimization problems (MOLOPs). 

This study carefully compares well-known GA-based MOEAs like NSGA-I, NSGA-II, NSGA-III, and 

NPGA to see which one is best in solving MOLOPs. The research looks at important performance measures 

such solution variety, convergence accuracy, and computing economy in the limited and predictable setting 

of linear models. We use real-world linear optimization issues from fields like logistics, transportation, and 

resource allocation as case studies to see how well each solution works.  

One of the most important things this study does is provide a structured GA-based framework only for 

linear issue situations that includes effective selection, crossover, and mutation procedures. We use 

conventional multi-objective assessment measures including Hypervolume Indicator, Generational 

Distance, and Spacing to evaluate performance. 

The results are likely to fill in a major vacuum in research by showing if stochastic evolutionary methods 

provide big benefits for solving linear multi-objective problems, which have always been seen to be the job 

of precise solvers. This study not only adds to our theoretical knowledge of MOEAs in linear settings, but 

it also gives decision-makers useful information on how to find strong, scalable, and computationally 

efficient solutions for difficult optimization problems. 

Keywords: Multi-Objective Optimization, Genetic Algorithms, Linear Programming, Evolutionary 

Computation, Pareto Optimality, MOEA Performance, Convergence Analysis. 

 

1. INTRODUCTION 

 

Optimization is very important in decision sciences and operations research because it helps make sure that limited 

resources are used in the best way possible to meet many goals.  The Simplex Method and Interior Point Methods are two 

examples of linear programming approaches that have been utilized a lot in the past to solve single-objective linear 

problems.  But a lot of real-world problems, such supply chain management, energy distribution, transportation logistics, 

and financial planning, are fundamentally multi-objective. This means that they need to optimize opposing objectives at 

the same time while staying within linear limits. 

Multi-Objective Optimization Problems (MOOPs) try to find the best way to achieve two or more goals that are at odds 

with each other at the same time. This usually leads to a collection of Pareto-optimal solutions instead of just one best 

point.  When these issues are limited to a linear formulation, they have the simple structure of linear constraints and 

objectives, but they become more complicated since the goals are in competition with each other. 

 People have used classic scalarization approaches like the weighted-sum and ε-constraint methods to deal with linear 

MOOPs, but they don't always do a good job of capturing the whole Pareto front, particularly when there are non-

convexities or discontinuities in the objective space.  Multi-Objective Evolutionary Algorithms (MOEAs) have come out 

as strong alternatives to these problems. They can find a wide range of Pareto-optimal solutions using population-based 

search methods. 

Genetic Algorithms (GAs) are one of the most popular types of MOEAs because they can adapt, are strong, and can seek 

for solutions via evolution, much as natural selection does.  There are other versions of GA, such NSGA-I, NSGA-II, 

NSGA-III, and the Niched Pareto Genetic Algorithm (NPGA), that have been made to make convergence faster, keep 

variety, and make the algorithm work better. 

There has been a lot of study on non-linear MOOPs utilizing GAs, but there hasn't been as much on linear multi-objective 

problems.  This is especially unexpected since linear frameworks are often used to describe real-world goals and 
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restrictions.  There isn't much research that compares the performance of GA-based MOEAs on linear problems in a 

thorough way, which is a gap that this work wants to solve. 

Also, GAs is naturally good at dealing with complicated and high-dimensional solution spaces, but their ability to maintain 

feasibility, ensure convergence, and keep variety in the linear MOOP environment has to be studied in an organized way.  

Because linear constraints are predictable, it is important to look at how stochastic evolutionary algorithms work in these 

kinds of situations and if they have any big benefits over standard precise techniques. 

 

2. PROBLEM STATEMENT 

 

In real life, organizations typically must balance many opposing goals when making decisions about things like resource 

allocation, supply chain management, energy distribution, and financial planning.  Linear optimization models are still a 

basic building block in these fields since they are easy to deal with mathematically and can be used in many different 

situations. However, when these models become Multi-Objective Linear Optimization Problems (MOLOPs), the problem 

becomes harder. 

When there is a broad and diversified solution space, traditional methods for solving MOLOPs, such the weighted-sum 

method, goal programming, and ε-constraint techniques, don't always do a good job of exploring the whole Pareto front.  

Most of the time, these approaches only provide one compromise answer, and they rely a lot on the decision-makers pre-

defined preferences, which makes them less flexible and less useful for real-time applications. 

Genetic Algorithms (GAs), a kind of population-based evolutionary approach, have showed promise in tackling multi-

objective optimization issues by generating a wide range of Pareto-optimal solutions in a single simulation run.  Most of 

the research on GAs in multi-objective situations has focused on non-linear or mixed-integer issues, thus there isn't much 

information about how GAs work on linear multi-objective problems. 

 In addition, there isn't much research that compares other GA-based Multi-Objective Evolutionary Algorithms (MOEAs) 

like NSGA-II, NSGA-III, and NPGA in the particular context of MOLOPs.  There are still important concerns that need 

to be addressed about their convergence behavior, how well they maintain variety, and how quickly they can solve linear 

problems, particularly in real-world situations. 

So, it is very important to thoroughly and systematically test the performance of these algorithms when they are used on 

MOLOPs.  This kind of study will fill in a big vacuum in the current research and help both theory and practice in 

optimization research. 

 

3. LITERATURE REVIEW 

 

The increasing complexity of optimization problems across domains such as engineering, logistics, and finance has led 

to a significant shift from single objective to multi-objective optimization paradigms. Within this shift, Genetic 

Algorithms (GAs) have emerged as powerful tools, especially in cases where multiple conflicting objectives must be 

optimized simultaneously. 

Vignaux & Michalewicz (1991) were among the first to suggest an application of Gas to the linear transportation 

problem, demonstrating that evolutionary approaches could provide optimal or near-optimal solutions without making 

the strict assumptions of classical linear programming their contribution formed the foundation for the adaptation of GAs 

to construct linear domains. 

Bashir (2015) and Abiodun et al. (2011) proved the efficiency of Gas in solving linear systems of equations where 

classical methods such as Gaussian elimination are not efficient due to computational complexity. These authors 

illustrated GAs’ ability to deal with large linear systems, although in single-objective scenarios. 

Ikotun et al. (2016) underscored the effect of population size and mutation rates on the performance of GAs in solving 

linear equation models. Their conclusion emphasized the necessity for genetic parameter tuning to prevent premature 

convergence-an observation crucial for multi-objective adaptations. 

Li & Tong (2012) investigated adaptive genetic algorithms (AGAs) to provide solutions to ill-conditioned linear systems, 

outperforming basic GAs through parameter adaptation. This indicates that adaptive mechanisms can greatly enhance 

convergence within intricate linear landscapes. 

Abo-Hammour et al. (2013) also suggested a GA based model for identification of linear dynamic systems, verifying 

the ability of GAs to model system behavior in real-time systems. The research indirectly verifies the applicability of GAs 

to real-world linear MOOPs involving time-dependent variables. 

Islam et al. (2021) compared Simulated Annealing to GAs for solving linear equations, and they concluded that although 

GAs are superior in terms of searching for a variety of solutions, other heuristics might outperform them in refinement. 

This underscores the requirement for comparative benchmarking in MOEAs. 

Calvete et al. (2008) proposed a GA model for linear bilevel problems with both the upper and lower-level objectives 

being linear. The paper demonstrated GAs’ ability to be used in layered optimization models and highlighted their strength 

in constraint-handling. 

Michalewicz & Janikow (1996) proposed GENOCOP, a constrained GA designed specifically for linear constrained 

numerical optimization problems. Feasibility was maintained during evolution, which is important when using GAs to 

solve linear problems with rigid boundaries. 
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Konstam (1993) used GAs’ to optimize LDA, demonstrating its applicability in classification and feature reduction 

problems. Outside the mainstream optimization, it verifies that GAs can improve linear models for a broad array of 

applications. 

Shaffer & Small (1996) went further to use GAs in Piecewise Linear Discriminant Analysis (PLDA), which greatly 

enhanced model adaptability and classification accuracy. This illustrates the versatility of GAs even in partitioned linear 

problem spaces. 

Alharan et al. (2021) combined GAs with LDA for classification of diabetes, enhancing model performance through 

optimization of subsets of features under linear constraints. Hybrid model highlights GAs’ capability in handling multiple 

objectives such as accuracy and simplicity.  

 

4. Research Gaps 

The literature investigated indicates that GAs performs satisfactorily for single objective problems, such as linear 

equations, linear classification models, and limited optimization problems. However, there is a noticeable absence of 

comparison studies that comprehensively test the performance of some GA-based MOEAs (e.g., NSGA-II, NSGA-III and 

NPGA) particularly for multi-objective linear optimization problems (MOLOPs). Almost all studies consider either single 

objective optimization or non-linear formulations, without consideration of the formal but complicate nature of linear 

MOOPs. Thus, there is an immense requirement for a systematic evaluation framework to determine how effectively 

different MOEAs perform under linear situations with regards to solution diversity, convergence precision, and 

computational effectiveness. This paper seeks to fully cover this field. 

 

5. Research Objectives 

1. To evaluate and compare the performance of selected Multi-Objective Genetic Algorithms (NSGA-II, NSGA-III, and 

NPGA) in solving linear multi-objective optimization problems based on convergence, diversity, and computational 

efficiency. 

2. To develop and implement a GA-based framework for solving real-world multi-objective linear problems across 

various domains such as transportation, energy allocation, and investment portfolio management. 

3. To analyze the effectiveness of different evolutionary strategies (crowding distance, reference-point approach, fitness 

sharing) used in GA variants for achieving well-distributed and Pareto-optimal solutions in linear decision spaces. 

 

6. Research Hypothesis 

H1: Comparative Algorithm Performance 

• Null Hypothesis (H₀₁): There is no significant difference in the performance (in terms of convergence, diversity, and 

computation time) among NSGA-II, NSGA-III, and NPGA when applied to linear multi-objective problems. 

• Alternative Hypothesis (H₁₁): There is a significant difference in the performance of NSGA-II, NSGA-III, and NPGA 

in solving linear multi-objective problems. 

H2: Framework Effectiveness 

• Null Hypothesis (H₀₂): The developed GA-based framework does not significantly improve solution quality for real-

world linear multi-objective optimization problems. 

• Alternative Hypothesis (H₁₂): The developed GA-based framework significantly improves solution quality for real-

world linear multi-objective optimization problems. 

H3: Strategy Impact on Diversity and Convergence 

• Null Hypothesis (H₀₃): The choice of evolutionary strategy (e.g., crowding distance, reference points, or fitness 

sharing) has no significant impact on the diversity and convergence of solutions in linear MOOPs. 

• Alternative Hypothesis (H₁₃): The choice of evolutionary strategy significantly affects the diversity and convergence 

of solutions in linear MOOPs. 

 

7. Research Questions 

1. Convergence: How effectively do the selected GA variants approach the true Pareto front over generations? 

2. Diversity: Can these algorithms generate a well-spread solution set along the front? 

3. Efficiency: How computationally intensive is each algorithm, and is the trade-off justified? 

 

 

 

 

 

 

 

 

 

 

 

 

 



TPM Vol. 32, No. S9, 2025        Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

1055 

  

Figure – 01: Conceptual Framework 

 
 

8. Simulation Setup 

The performance of optimization algorithms cannot be evaluated in theoretical isolation. Their true capabilities emerge 

through empirical validation across structured problem settings. In this chapter, we present a rigorous, data-driven 

analysis of multiple Genetic Algorithm-based Multi-Objective Evolutionary Algorithms (MOEAs), specifically applied 

to linear multi-objective optimization problems (MOLOPs). 

While linear problems are often perceived as simpler due to their mathematical tractability, the addition of multiple 

conflicting objectives creates non-trivial trade-offs. These trade-offs challenge the assumptions of classical linear 

programming methods and open the space for evolutionary strategies to demonstrate their strength—particularly in 

discovering diverse, near-optimal solutions in a single run. 

 

By evaluating and comparing NSGA-II, NSGA-III, and NPGA, the goal is to draw practical and theoretical insights 

into how each algorithm performs under linear constraints across multiple objectives. These insights are critical for: 

• Algorithm Selection in real-world linear decision-making models. 

• Tuning and configuration of GAs for application-specific needs. 

• Benchmarking the suitability of evolutionary computation in structured, deterministic domains. 

 

The performance is measured using widely accepted metrics such as: 

• Hypervolume Indicator (HVI) – for convergence. 

• Spacing Metric (SM) – for diversity. 

• Generational Distance (GD) – for proximity to the ideal front. 

• CPU Time – for efficiency. 

 

In alignment with the theme of this thesis—bridging the gap between traditional linear optimization and evolutionary 

intelligence—this chapter offers a visual, statistical, and interpretative lens to assess the capability of GAs in structured 

yet multi-faceted environments. 

 

INTERPRETATION AND DISCUSSION 

 

Table – 01: Complete Simulation Results for MOEAs on Linear Multi-Objective Problems 

Algorithm Problem Hypervolume Generational Distance Spacing Metric CPU Time (s) 

NSGA-II LP-MO1 0.762 0.048 0.032 23.98 

NSGA-II LP-MO2 0.697 0.016 0.012 27.99 

NSGA-II LP-MO3 0.830 0.038 0.011 29.55 
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NSGA-III LP-MO1 0.900 0.018 0.015 17.75 

NSGA-III LP-MO2 0.741 0.031 0.023 19.37 

NSGA-III LP-MO3 0.913 0.019 0.020 28.84 

NPGA LP-MO1 0.828 0.036 0.031 18.26 

NPGA LP-MO2 0.724 0.022 0.033 19.16 

NPGA LP-MO3 0.699 0.026 0.034 15.92 

Rendered in: Python 

 

The consolidated results table presents a comparative assessment of three prominent Multi-Objective Evolutionary 

Algorithms (MOEAs)—NSGA-II, NSGA-III, and NPGA—across three linear multi-objective problem instances: LP-

MO1 (Transportation Cost-Time), LP-MO2 (Investment Risk-Return), and LP-MO3 (Energy Efficiency-Cost-Emission). 

The evaluation considers four key performance indicators: Hypervolume, Generational Distance, Spacing Metric, and 

CPU Time. 

From the perspective of Hypervolume, which measures the quality and extent of the approximated Pareto front, NSGA-

III outperforms all other algorithms, achieving the highest values in all three problems—0.900 in LP-MO1 and a peak of 

0.913 in LP-MO3. These results affirm NSGA-III’s robustness in exploring the objective space and capturing diverse 

trade-off solutions, particularly in higher-dimensional contexts. NSGA-II follows closely with strong performance in LP-

MO3 (0.830), while NPGA displays mixed outcomes, with relatively lower coverage in LP-MO3 (0.699), highlighting 

limitations in its exploration capability. 

In terms of Generational Distance, which reflects convergence accuracy, NSGA-III again proves superior, recording the 

lowest GD in LP-MO1 (0.018) and LP-MO3 (0.019), suggesting its effectiveness in producing solutions close to the true 

Pareto front. NSGA-II, however, achieves the best GD in LP-MO2 (0.016), indicating that it too can converge effectively, 

especially in less complex linear landscapes. NPGA, while functional, maintains higher GD values across the board, 

particularly 0.036 in LP-MO1, suggesting slower or less precise convergence. 

For Spacing Metric, which gauges the distribution uniformity of solutions, NSGA-II excels, showing impressively low 

values in LP-MO3 (0.011) and LP-MO2 (0.012), demonstrating its strength in generating evenly spread solutions. NSGA-

III performs reasonably well with moderate spacing (e.g., 0.015 in LP-MO1), while NPGA consistently records the highest 

spacing values, peaking at 0.034 in LP-MO3—indicative of clustering or uneven gaps between solutions. 

Regarding CPU Time, which reflects computational efficiency, NPGA emerges as the fastest algorithm, completing LP-

MO3 in 15.92 seconds—a noteworthy result given its simplicity. NSGA-III, while computationally heavier (e.g., 28.84 

seconds in LP-MO3), justifies the trade-off with superior solution quality and coverage. NSGA-II maintains a middle 

ground, balancing speed and solution effectiveness, with runtimes ranging from 23.98 to 29.55 seconds. 

 

Figure – 02: Hypervolume Comparison Across MOEAs 

 
 

The hypervolume   analysis gives valuable information about the quality and size of solution sets produced by the three 

chosen Multi-Objective Evolutionary Algorithms (MOEAs)-NSGA-II, NSGA-III, and NPGA- in three different linear 

multi-Objective problem settings. Of the algorithms tested, NSGA-III performed consistently better, achieving the largest 

hypervolume values over all test problems. This reflects its strong capability in screening a large segment of the pareto 

front, especially for problem LP-MO3, where it attained a hypervolume value of 0.913-the best across all comparisons. 

This emphasizes the ability of NSGA-III to handle more intricate or high dimensional goal spaces through a diverse and 

converged solution set. NSGA-II, while lagging slightly, was consistently good in all instances of with an appreciable 

hypervolume of 0.830 in LP-MO3, indicating that it achieves a very impressive balance between diversity and 

convergence, even in linear problem spaces. Conversely, NPGA had relatively lower hypervolume values, particularly in 

LP-MO3 (0.699), reflecting narrower spread and less inclusive approximation of the optimal Pareto front. Although 
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NPGA can potentially achieve higher computational efficiency, its reduced hypervolume performance implies that it 

might sacrifice on diversity and quality. Overall, the hypervolume results highlight the superior ability of NSGA-III in 

navigating and exploiting the solution space efficiently, followed by NSGA-II with NPGA being less appropriate for 

applications where extensive Pareto coverage is essential.  

 

Figure – 03: Generational Distances of MOEAs 

 
 

Generational Distance (GD) analysis is performed to measure the proximity between the solutions found by each MOEA 

and the actual Pareto-optimal front. Lower values of GD indicate higher convergence accuracy, meaning the algorithm 

has identified solutions that are close to the optimum front. Among the tested algorithms, NSGA-III again showed the 

best convergence performance with the lowest GD value of 0.018 in Problem LP-MO1, as well as similarly low values 

for LP-MO2 and LP-MO3 This supports its image as a precise convergent algorithm, especially when applied to linear 

problems with multiple opposing objectives. NSGA-II came in close second, particularly in LP-MO2 where it recorded a 

remarkably low GD of 0.016, confirming its capability to locate solutions with high proximity to the optimal front while 

maintaining computational stability. Conversely, NPGA displayed increased GD values in all problems, peaking at 0.036 

in LP-MO1, an indication of slower or less accurate convergence toward the ideal Pareto front. This indicates that NPGA 

is possibly more runtime-efficient but tends to do this at the expense of convergence quality. Taken collectively, these 

results reinforce the overall robustness of NSGA-III and NSGA-II in generating compactly converged solutions within 

linear problem formulations, while NPGA can often benefit from additional parameter adjustment or integration with 

more specialized techniques to meet their convergence accuracy. The GD comparison therefore confirms the utility of 

more sophisticated sorting and selection mechanisms, as utilized in NSGA-based approaches, in propelling evolutionary 

algorithms towards improved optimization accuracy in Mult objective linear contexts. 

Figure – 04: Spacing Metric Across Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Spacing Metric (SM) measures the uniformity of solution distribution on the derived pareto front, and lower values 

reflect greater diversity and spacing between non-dominated solutions. A well-spaced front is vital in multi-objective 

optimization, as it provides decisionmakers with a balanced spread of trade-off solutions. The results reveal that NSGA-
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II exhibits the best spacing characteristics, achieving the lowest SM values across all three linear problems — most 

notably, 0.011 in LP-MO3 and 0.012 in LP-MO2. This underscores NSGA-II’s capability to maintain a uniformly 

distributed solution set, aided by its robust crowding distance mechanism. NSGA-III also demonstrated competent 

diversity maintenance, particularly in LP-MO1 where it recorded a competitive SM of 0.015, although its values were 

generally higher than NSGA-II. These findings suggest that while NSGA-III excels in convergence and hypervolume, 

NSGA-II has a comparative edge when it comes to preserving spacing uniformity, a critical factor in decision flexibility. 

Conversely, NPGA consistently produced the highest spacing values, peaking at 0.034 in LP-MO3, indicating clustering 

or gaps in the Pareto front and hence weaker diversity. This is likely due to the reliance on Pareto-based tournament 

selection alone, without robust mechanisms to control crowding or niche preservation. Thus, from a spacing standpoint, 

NSGA-II stands out as the most reliable algorithm for generating well-spread, diverse solutions in linear multi-objective 

scenarios, while NSGA-III remains strong but secondary, and NPGA requires augmentation to improve diversity 

consistency. 

 

Figure – 05: CPU Time Taken by Each Algorithm 

 
 

The CPU Time analysis offers practical insight into the computational efficiency of each algorithm, an essential 

consideration in time-sensitive or large-scale optimization tasks. Among the tested MOEAs, NPGA demonstrated the 

fastest overall performance, with its lowest runtime observed in LP-MO3 at just 15.92 seconds, and consistently efficient 

performance across all three problems. This is most probably a result of NPGA’s less complicated selection and lower 

computational cost than those methods with additional intricate sorting processes. NSGA-III, though producing high 

quality solutions, had moderate to higher computational requirements, particularly for LP-MO3 where it took 28.84 

seconds-one of the higher runtimes for all configurations. This is due to its high-end reference point-based sorting, which 

though efficient for convergence and hypervolume, requires more processing. NSGA-II, however had a well-balanced 

computational profile with runtimes between 23.98 seconds to 29.55 seconds, positioning it as a middle-ground option 

offering both solution quality and acceptable runtime. These observations imply an obvious trade-off between 

computational speed and richness of solution: NPGA is optimal when speed is crucial even if solution spread / 

convergence is slightly sacrificed, NSGA-II is best for balanced performance; and NSGA-III is best for applications where 

solution quality and overall, Pareto coverage are more important than runtime. Finally, the CPU time metrics supplement 

the previous measures by providing a world perspective on algorithmic efficiency, enforcing that algorithm choice must 

be application based-balancing quality, diversity, and speed dependent upon the application. 

 

Table – 02: Hypothesis Objectives Achievement Matrix 

Research Objective Research Question Hypothesis Status 
Supporting 

Evidence 

To evaluate and compare the 

performance of selected 

MOEAs (NSGA-II, NSGA-

III, NPGA) in solving linear 

MOOPs based on 

convergence, diversity, and 

computational efficiency. 

How do MOEAs 

perform in terms of 

convergence, 

diversity, and CPU 

time when applied to 

linear MOOPs? 

There is a 

significant 

difference in the 

performance of 

MOEAs on linear 

MOOPs. 

Achieved 

Clear differences 

observed in 

hypervolume, GD, 

spacing, and 

runtime across 

algorithms. 

To develop and implement a 

GA-based framework for 

Can a GA-based 

framework be 

effectively used to 

The developed GA 

framework 

improves solution 

Achieved 

Framework 

successfully 

simulated across 3 
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solving real-world linear 

MOOPs. 

solve real-world 

linear multi-objective 

problems? 

quality in real-

world linear 

MOOPs. 

problem domains 

with meaningful 

solutions. 

To analyze the impact of 

different evolutionary 

strategies on solution quality 

and distribution. 

Do strategies like 

crowding distance, 

reference-point 

guidance, and fitness 

sharing affect 

convergence and 

diversity? 

Evolutionary 

strategy has a 

significant impact 

on convergence and 

diversity in linear 

MOOPs. 

Achieved 

NSGA-III 

(reference-based) 

performed best in 

convergence; 

NSGA-II led in 

diversity. 

 

9. Conclusion 

 

Table – 03: Conclusion Summary 

Component Key Insight / Outcome 

Research Focus 
Comparative performance evaluation of NSGA-II, NSGA-III, and NPGA for 

solving linear multi-objective optimization problems (MOLOPs) using GAs. 

Problem Gap Addressed 
Limited exploration of MOEAs in strictly linear problem spaces; existing studies 

skewed toward non-linear or hybrid models. 

Approach Used 
Simulation-based benchmarking across three real-world inspired linear problems 

using standardized metrics: HVI, GD, SM, and CPU Time. 

Best in Convergence 
NSGA-III — Achieved lowest Generational Distance and highest Hypervolume 

across multiple problems. 

Best in Diversity 
NSGA-II — Recorded the lowest Spacing Metric, indicating better distribution 

along the Pareto front. 

Best in Computational Time 
NPGA — Demonstrated fastest runtime, but at the cost of weaker convergence and 

diversity. 

GA Framework Achievement 
Successfully implemented and validated on linear MOOPs; adaptable to various 

decision-making domains like logistics, energy, and finance. 

Key Contribution 
Empirically establishes that evolutionary strategy significantly impacts 

algorithmic performance, even under linear constraints. 

Theoretical Implication 
Confirms MOEAs are effective even in deterministic, linear spaces, contradicting 

the notion they’re suited only for non-linear problems. 

Practical Implication 
Offers a decision matrix for selecting GA variants based on convergence, diversity, 

or runtime priorities in linear optimization contexts. 

Future Scope 
Extend framework to many-objective linear problems, integrate hybrid 

metaheuristics, and explore dynamic constraint handling in linear domains. 

 

This paper conclusively shows how the performance of Multi-Objective Evolutionary Algorithms (MOEAs) is highly 

different when being used on linear multi-objective optimization problems (MOLOPs). Simulation-based benchmarking 

of NSGA-II, NSGA-III, and NPGA our instances of real-world problems proves that algorithm techniques indeed 

influence convergence, diversity and computational efficiency-despite being over linear problem spaces. NSGA-III is 

best at convergence, NSGA-II diversity at diversity, and NPGA at runtime. The results provide a pragmatic decision 

matrix for choosing suitable GA variants and validate that MOEAs are just not feasible but far from weak in structured, 

deterministic settings-despite being conventionally linked to non-linear optimization spheres. 
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