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Abstract

Missing data can compromise the validity, reliability, and generalizability of psychometric
assessment results, especially in mainstream school populations. This study examines the impact of
missing data on educational assessments of students in mainstream education schools. A
mathematics achievement test was administered to 275 students, and missing data patterns (MCAR,
MAR, MNAR) were analyzed. Missing data were dealt with different approaches including classical
techniques (mean imputations, listwise deletions), statistical techniques (Bayesian estimations,
multiple imputations), and machine learning approaches (k-nearest neighbors, random forests).
Using root mean square error, bias and recovery of psychometric parameters within IRT frameworks
evaluated the techniques. Bayesian estimation and multiple imputations generally surpassed the
other techniques, on most of the evaluated criteria. The results support the need of making
educational assessments more reliable for underrepresented students and the need of data-informed
decision making for more representative mainstream school populations.

Keywords: Missing Data, Educational Assessment, Multiple Imputation, Machine Learning, Data
Integrity.

INTRODUCTION

Missing information is a prominent problem in educational evaluations, especially in mainstream school
populations where learner differences, fatigue, and attention issues lead to non-responses. Not filling in the gaps
will lead to spurious and untrustworthy interpretations of score results, which in turn will lead to unfair outcomes
in education. The problem of missing data is common in psychometric modeling (Levy & Mislevy, 2017). Current
assessments are based on the assumption that we have structured data on hand to measure not-so-latent traits, such
as cognitive ability, personality characteristics, and a variety of psychological constructs (Epskamp, 2020).
Missing responses can occur in large-scale educational and psychological testing for many reasons, including
questions that may be bypassed, respondents may be fatigued, time limitations may exist, and respondents may
not fully engage in the testing situation (Epskamp et al., 2018). If missing data are not appropriately handled, they
can distort what a psychometric model thinks are the true values of its parameters, lead to false claims about the
validity of the model's scores, and adversely affect decisions made by humans and/or algorithms based on these
scores (Enders, 2022). Because many psychological and educational assessments are associated with high stakes,
it is vitally important to ensure that missing data do not compromise the integrity and fairness of measurement
outcomes. (Wu et al., 2015).

In order to preserve the functionality of psychometric models and avoid drawing erroneous conclusions, we must
deal with and find solutions to missing information (McNeish, 2017a). The field of statistics is governed by certain
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rules and principles and so we cannot avoid missing data. For example, in statistics, the technique of listwise
deletion is widely used and accepted; however, we can end up cutting and trimming too much data, and so we run
the risk of significantly decreasing the statistical power of the data. On the other hand, we might also consider
some rudimentary techniques of imputation such as mean substitution. In such cases, we might see test scores
result in a spike, but they don't really reflect the difference (Kline, 2023). In missing data analysis, there is also
the expectation maximization technique, Bayesian estimating, and possibly the more widely reported technique
of Multiple Imputation which are all centered on providing missing data with answers.

These methods do not just replace missing values with reasonable guesses; they make a series of assumptions
about the data and the missingness mechanism and then use those assumptions to maintain the integrity of the
data structure while imputing or replacing the missing values (Morin et al., 2016). The determination of the most
suitable method for handling missing data depends on several factors. The principal factor is the missing data
mechanism. Is it completely missing at random (MCAR), missing at random (MAR), or missing not at random
(MNAR)? Other factors include the missingness itself and the model's complexity (Lei & Shiverdecker, 2020).
Data that are not abundantly available and contain many missing responses pose special problems for modeling
psychometrics (Dai, 2021). In adaptive testing, large-scale surveys, and longitudinal studies, not all respondents
answered every item, which led to the creation of sparse datasets (Xiao & Bulut, 2020).

Data sparsity disallows the forming of meaningful distinctions between the test takers as the level of confidence
in the estimation of parameters decreases (Huo et al., 2015). Difficulties surrounding model convergence and
stability are exacerbated by sparse data too, particularly when advanced psychometric techniques are employed,
such as item response theory (IRT) and structural equation modeling (SEM) that suffer from lack of statistical
power with small sample sizes (Heine & Tarnai, 2015). Innovation is needed to tackle such challenges as we do
smart data utilization, while accepting to work with some missing data.

We cannot reduce this bias entirely, but we can aim for strategies that optimize what we have obtained, which, in
the context of this paper, are to find techniques that work well when applied to our sparse datasets. Three broad
classes of strategies are available to us; imputation, prediction, and model-based correction (Epskamp et al., 2018).
With these conundrums, the primary aim of this study was to systematically determine the effectiveness of a
variety of missing data handling techniques when they are used in psychometric modeling. The methods being
handled are divided into traditional and advanced varieties. The assessment criteria were ability estimation
accuracy, bias reduction, and overall model performance. This work was conducted in two parts. First, part one
uses empirical simulations to pit traditional and advanced techniques against one another. The next step is to do
applied case studies to determine which techniques, in which situations, meet the best assessment criteria (de
Chiusole et al., 2015).

The real value of this study goes far beyond the contribution to theory. It has value in the psychology and education
assessment field. We live in times where the need for data-informed decision-making is imperative, especially in
the context of talent identification and educational placement, or decisions made in the psychological assessment
field. So the need to estimate, to predict, and also to do that fairly and accurately comes to the fore more than ever
before. And it’s not only about those big, high-stakes decisions that get made and relied on test data. It’s also
about the educational and professional opportunities and treatment of the test takers in the assessment process
(Levy & Mislevy, 2017). When we do not have data for a particular test taker, we cannot estimate the latent trait
that the test was designed to measure as well (or reliably and validly) as we could if we had data for that test taker.
However, we live in a world "with missingness," and sparse data compound this issue. Few studies have compared
the effectiveness of various robust estimation methods when data are missing. This study will contribute to that
ongoing conversation (Guerra-Urzola et al., 2021).

2. Theoretical Background and Literature Review

A widespread problem in psychometric modeling is missing data, which undermines the correctness and
legitimacy of our evaluations (Dai, 2021). When values in a dataset are not recorded and are instead lost because
of "missingness." This can occur due to survey non-response, time and space limitations during an evaluation, or
technical problems during the measures of data collection (Xiao & Bulut, 2020). If missing data are not properly
addressed, they can distort the results and lead to biased estimates (Huo et al., 2015). The nature and pattern of
missingness demand a careful analysis by researchers to figure out the best method for addressing it in the
applications of psychometrics and, by extension, the best method for handling it in the construction and evaluation
of measures of human behavior (Bulut & Kim, 2021).

In 1976, Rubin categorized missing data into three principal types. Missing Completely at Random (MCAR),
missing at random (MAR), and missing not at random (MNAR) (Carpenter & Smuk, 2021). Complete missing at
random occurs when the likelihood of missing data is completely independent of both observed and non-observed
data (Enders, 2022). This kind of missingness does not cause any trouble at all because it does not introduce
systematic bias and is therefore perfectly missing at random. Missing at Random (MAR) occurs when missingness
is related to the observed data but not to the missing values (Mohan & Pearl, 2021). For example, respondents
with lower cognitive ability scores were less likely to complete the test (Newgard & Lewis, 2015). The most
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challenging type, MNAR, arises when the probability of missing data is affected by the missing values, which can
lead to significant biases in the estimation (Pedersen et al., 2017). Understanding these differences is vital for the
correct choice of strategies for dealing with missing data in psychometric modeling. Fatigue from taking tests is
a prevalent reason for this behavior (Tang & Ishwaran, 2017). Respondents may not answer questions and instead
leave them blank, especially when it comes to the portion of the assessment that is long and toward the end of that
segment (Mohan & Pearl, 2021). Several sources may lead to missing psychometric data. Technical issues such
as software malfunctions or poor data collection techniques can also cause missing data (Enders, 2022).

Item non-response is a leading cause of missing data, particularly in self-reported surveys. This occurred when
participants failed to respond to certain survey items. These are not answered for one of two reasons: the items
are too sensitive or the items are too difficult to respond to (McNeish, 2017b). Additionally, methods of adaptive
testing, such as Computerized Adaptive Testing (CAT), may purposely exclude items based on the performance
of an individual being tested. This produces a kind of missing data that must be managed with care (Wei et al.,
2018). There are datasets with missing responses, and there are responses that are missing in these datasets (sparse
data). This sparsity occurs in two well-known ways; when there are too many variables and insufficient data to
fill them up or when we do not have enough variables and samples from our population to fill out the few variables
we managed to put together. We try to do psychometrics with them, all the while knowing that precise parameter
estimates are impossible because we have these two well-defined paths to imprecision (Lang & Little, 2018).
Unlike datasets with missing values that occur randomly, sparse data usually results from intentional testing
designs, such as matrix sampling, where different groups of respondents are given different sets of questions to
reduce the length of the test. Large-scale surveys or longitudinal studies in which participants drop out over time
can yield not only low response rates but also sparse data (Wang et al., 2019).

A structure that is frequently unfamiliar to the dataset builders. Sparse datasets contain a small number of
adequately informative instances, which can also give rise to convergence issues when the model parameters are
being estimated (Antholzer et al., 2019). Data that convey weak information can considerably affect how accurate
and how sound the estimation of abilities is in psychometric mode (Patra et al., 2015). When a large amount of
data is missing, the model can find it difficult to learn significant connections between things and respondent
abilities, which can lead to standard errors that are too big and unreliable score interpretations (Jaritz et al., 2018).
Also, the fairness of the test can be affected by having sparse data. If some of the questions on the test have no
answers, this may distort the estimation of just how proficient the test taker is.

In other words, the answers from the missing test-taker would not have made them more proficient if they had
taken the test on the test day (Graham & Van der Maaten, 2017). Researchers must meticulously assess how thin
data affect the reliability of the tests, the validity of the constructs, and the generalizability of the results to ensure
that the psychometric inferences drawn from the assessments carry any real meaning (Graham & Van der Maaten,
2017). According to Enders (2022), missing data in psychometric modeling must be dealt with using appropriate
handling methods. The most traditional methods take a rather simple approach and use techniques like listwise
deletion and mean imputation. More recently, and with the advent of better computational tools, we can use more
sophisticated statistical methods that apply modeling to the psychometric data and employ machine learning
techniques to the missing data problem (Lang & Little, 2018).

The effectiveness of any technique relies on the mechanism behind the missing data, the size of the dataset, and
the psychometric model's indeterminacy. When missing data are present, what is the researcher to do? Should he
or she simply use the data that were collected and "impute," or fill in the missing portions? Or should he or she
conduct a more complex piece of statistical wizardry known as "full information maximum likelihood
estimation"? Each approach has advantages and disadvantages (Kwak & Kim, 2017). As per Pepinsky (2018),
list-wise deletion is one of the simplest techniques for dealing with missing data. When using this technique, any
case with missing data for any variable is deleted. Although this method is straightforward and can easily be
programmed into statistical packages, it has several drawbacks that often make it an unwise choice.

Instead of discarding all cases, pairwise deletion offers a middle ground by using all available data for each
analysis. However, this allows us to sharpen our pencil without resorting to too much data imputation or carrying
too much missingness for individual cases. (Wang & Aronow, 2023). Multiple Imputation (MI) is a widely used
method for dealing with missing data. It is a more sophisticated approach that estimates missing values multiple
times to produce several complete datasets (Austin et al., 2021). Different datasets allow us to dissect things more
fully and obtain a clearer picture of what is going on. Using these together helps us better understand the problem
space. We know from experience that doing things the way we are doing them now—using multiple imputations
to handle the inevitable missingness when we are working with these datasets—helps us obtain much more
trustworthy results. Still, many psychometricians doubt the psychometric soundness of their estimates because of
the missing data issue, but that was a problem they had before (Blazek et al., 2021).

The Expectation-Maximization (EM) algorithm is a model-based method for iteratively estimating the missing
values. The observed data were used to estimate the missing parameters in the EM algorithm. These constitute the
E (expectation) step. The parameters are then refined in the M (maximization) step, and the EM iterates between
these two steps until it converges. For applications in psychometrics involving IRT models, EM is not only
effective but also remarkably more accurate than the interval methods frequently used for latent trait estimation.
What is very important is this without discarding valuable data (Malan et al., 2020). Bayesian methods provide a
way of dealing with missing data that is fundamentally different from the traditional approaches. This strategy is
particularly useful when the achieved sample size is small and the analyst wishes to use any additional information
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available to bolster the estimation process (Enders, 2022). The former refers to imputation methods based on poor
information about the parameters of the model used for generating the imputed values and about the mechanism
causing the missing data. As such, they can be safely used under nearly any model of the missing data mechanism.
The latter, the high-in formativeness approaches, are methods that utilize good, strong, and specific information
about both the model parameters and the missing data mechanism, leading to far less computationally intensive
estimation (Wang et al., 2021).

Machine-learning techniques lead other alternatives in missing data handling in psychometric modeling
(Emmanuel et al., 2021). They compute missing values using predictive algorithms. Advanced algorithms such
as k-nearest neighbors (k-NN), deep learning, and random forest imputation do this. They are more adaptable and
more proficient in managing the various types and distributions of variables in data as opposed to more traditional
techniques. They are also very effective in large datasets (Ma et al., 2020). K-NN imputation identifies the k most
similar instances in the data and uses their values to predict the missing values. It identifies the patterns in the data
and makes no assumptions about the population of the data (Syahrizal et al., 2024). This is ideal when values are
missing in certain ways and the reasons for data absence are similar to the other variables having values.
Psychometric research has also employed deep learning to deal with missing data using auto encoders and
generative adversarial networks (GANs). These models predict missing data with impressive precision because
they are very good at identifying complex patterns in the data.

However, due to the size of the datasets and the amount of computational power needed, the applicability of deep
learning methods for low-N psychometric research is limited at best (Jena & Dehuri, 2022). Imputation using the
random forest method makes use of an ensemble of decision trees that are "grown" from a set of observed data
(Hong & Lynn, 2020). Missing values are predicted from these trees and are assigned to the observations with
missing values. This method assumes that the relationships we see in the observed data hold true for the
unobserved data as well. This assumption may or may not be justified. We certainly hope it is, because if it is not,
our imputed values are just "guesses" that will lead us to erroneous conclusions about our data and its structure
(Feng et al., 2021).

RESEARCH OBJECTIVES

1. To identify the patterns and types of missing data in assessments of mainstream school populations.
2. To empirically evaluate the performance of missing data handling techniques.
3. To determine the most effective technique for recovering data with minimal bias and error.

RESEARCH METHODOLOGY

The sample comprised 275 students from mainstream schools in south Punjab, Pakistan. Participants were in
Grades 5 to 7. Informed consent was obtained from schools and parents. A standardized mathematics achievement
test based on the national curriculum was developed with 30 multiple-choice items. The test was pilot-tested for
reliability and accessibility. Tests were administered in small groups under controlled conditions with teacher and
psychologist support. Item-level responses were recorded digitally. Missing responses were coded as blank or
skipped items. Observation logs were used to document any behavioral or fatigue-related issues. The nature of
missingness was examined using Little's MCAR test, logistic regression for MAR identification, and pattern
visualization. Missing data mechanisms were labeled accordingly.

Following data imputation techniques were applied

o Traditional: Listwise Deletion, Mean Imputation

e Statistical: Multiple Imputation (MICE), Bayesian Estimation

e Machine Learning: k-Nearest Neighbors (k-NN), Random Forest Imputation

Psychometric Modeling IRT (2PL model) was applied pre- and post-imputation using the Itm package in R.
Parameter estimates (item difficulty, discrimination) and RMSE values were compared.

RESULTS AND ANALYSIS

Figure 1 presents a comparison of Root Mean Square Error (RMSE) across various imputation techniques. None
of the approaches yielded RMSE higher than the others Multiple Imputation and Bayesian Estimation. The lowest
RMSE (0.042 and 0.045) values were also indicators of faster computational speed and higher accuracy in
recovering the true test scores. Conversely, Listwise Deletion and Mean Imputation yielded RMSE values greater
than 0.07, indicating that poor performance were lost due to the leave out of the data. The MODERN BUSINESS
INTELLIGENCE analytics techniques (such as data mining) yields moderate accuracy, where RMSE values fall
higher than the traditional and below the contemporary statistical techniques. Techniques include k-NN, Random
Forest.
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Figure 1: RMSE Comparison across Missing Data Imputation Techniques

The bias contributed by each technique in imputing missing data in shown in figure 2. Lower RMSE are aligned
with the bias from Multiple Imputation and Bayesian Estimation, which are less than 2%, and are more reliable
in maintaining the structure of the data. Conversely, Listwise Deletion and Mean Imputation are older methods
which are more biased, being in the region of 7 - 8%, which can be detrimental to inferences. While more advanced
methods from machine learning are expected to perform better, they still are more biased than the statistical
methods.

Bias Comparison Across Missing Data Techniques
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Figure 2: Bias Comparison across Missing Data Techniques

In the case of the data set distribution, Figure 3 indicates the absence of data types where the largest portion of
the data is determined to be within the absence of data that is classified as missing at random (45%), and is
followed by absents of data that is classified as missing completely at random (30%), and absents of data that is
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classified as missing not at random (25%). The largest portion of absences of data indicates a sufficient number
of missing data points was attributable to the unobservable variables, thus supporting the multivariate advanced
techniques of slight absence data, and highly supports the absence data points that have been classified as missing
at random types.

B NAR [ |MCAR [l VAR

Figure 3: Distribution of Missing Data Types in the dataset

In Figure 4, we demonstrate imputation methods affecting item difficulty estimates in the IRT model. Again,
Multiple Imputation and Bayesian Estimation showed minimal changes (only 0.03 and 0.04 average change in
item difficulty estimates, respectively, and almost similar to 0). Meanwhile, Listwise Deletion and Mean
Imputation increased item difficulty estimates (0.10 and 0.12, respectively) and may misestimate the student's
competence. Machine learning impacts on difficulty parameters than better than traditional methods were, yet still
were worse than statistical methods.

Impact of Imputation Methods on IRT Item Difficulty
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Figure 4: Impact of Imputation Methods on IRT Item Difficulty

The estimated reliability (Cronbach’s Alpha) of the test shown in Figure 5. Based on the results we received, we
can conclude that the best Internal consistency restoration of the dataset is from Multiple Imputation (0.87) and
Bayesian Estimation (0.85) as they are the highest in reliability. The lowest estimates of reliability (less than 0.75)
are obtained from Listwise Deletion and Mean Imputation as they eliminate the data variability. Machine learning
methods are not that bad in reliability as they are around 0.81-0.83 and can be used as an alternative if the resources
are available.
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Figure 5: Estimated Reliability after Data Imputation
DISCUSSION

This study shows just how much of an effect the preferred imputation methods have on the expression of quality
in educational measurement. Specifically the findings related to the psychometrics of the user’s data when
compared to the population of interest from Mainstream Schools (Zargar et al. 2022). The evidence of data
distortion from the Multiple Imputation and Bayesian Estimation are seen to be less biased as the RMSE for the
value of the data are seen to be less diverging (Pereira et al. 2020). These methods have their missing observations
correctly imputed while preserving the true structure of the data in the process.

In other words, the methods did not simply fill in the gaps. They improved the overall understanding of the picture
(Afkanpour et al. 2024). About 45% of the missing data mechanisms being MAR makes the use of sophisticated
imputation methods that much more important within this context as well (Li et al. 2020). As MAR assumes that
the probability of missingness is related to the observed data, it follows that not every case can be used for missing
data handling techniques like multiple imputation. MAR is a common and reasonable assumption, however (Tahir
et al., 2022). Ways such as traditional methods, for instance, listwise deletion and mean imputation, did not solve
the problem with patterns of missing data. What they did was inflate error rates, bias estimates, and compromise
validity across a number of assessment outcomes (Li et al., 2020). Imputing data affects the retrieval of IRT
values. Using listwise and mean imputation will create bias in engineering estimates of item difficulty. This has
significant implications due to the effect of item difficulty on the psychometric definition of an assessment (what
is measured and the quality of measurement) (Tiwaskar et al., 2024).

From an educational standpoint, it is important to conduct calibration and keep students’ assessment accuracy in
mind (Gonzalez-Vidal et al., 2020). As for the accuracy of the measurements, the results also attest to the
effectiveness of sophisticated strategies to cope with absence (Sun et al., 2023). When several imputations and
Bayesian methods were used in the tests, internal consistency was shown to be at a higher level, as per the
Cronbach’s alpha coefficients. The tests showed higher consistency and reliability (Thomas & Rajabi, 2021). On
the contrary, traditional approaches showed worse results because of the loss of variance in the data. The
performance of the machine learning models was such that it placed them as winners of some categories,
demonstrating that they are reliable and efficient methods. In spite of that, the best statistical models showed
marginally less bias and better RMSE scores (Noghrehchi et al., 2021).

The purpose of this research is to identify suitable techniques for handling missing data. The most fitting
techniques must be chosen to correspond to the data set characteristics and the purpose of the assessment (Pindiyan
& Pramila, 2024). However, the random forest and k-NN techniques, especially in machine learning, remain the
most accurate in predictions when dealing with large, complex data sets (Altamimi et al., 2024). It is not purely
methodological in nature when educational researchers and practitioners working with incomplete data, especially
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in mainstream schools, choose to employ robust imputation techniques. It is a methodological choice that
promotes fairness, equity, and ‘evidence-based’ decision making (Thomas & Rajabi, 2021).

CONCLUSION

The purpose of this empirical study is to explain the data missingness techniques used in educational assessments
to improve policy evaluations. This empirical study has demonstrated the importance of missing data techniques
in educational assessments. Merging data trends and longitudinal missing data capture in educational assessments
is addressed mostly in this study. This study is also concerned with the relative importance of comparing missing
at the data assessment techniques. This focus has the potential to bias educational assessments made on
mainstream school populations. Within this study, Bayesian estimation and multiple imputation are deemed the
most bias free, and the estimates are deemed less reliable, and that estimation is consistent with the psychometric
model. This study is particularly concerned with missing data due to challenges like learning disabilities, fatigue,
or disengagement. This study also picks missing data imputation techniques.

7. Recommendations for Future Research

1. Future studies should explore the development and testing of hybrid imputation techniques that combine the
strengths of statistical and machine-learning methods to further enhance accuracy and efficiency.

2. Longitudinal research is needed to assess the impact of imputation techniques on student growth measures
over time, especially in adaptive testing environments.

3. Future studies should be conducted with diverse special education populations to determine the
generalizability of imputation performance across different types of disabilities and educational contexts.

4. Practical guidelines and user-friendly tools should be developed for educators and researchers to implement
robust imputation methods in real-time assessment systems.
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