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Abstract:-

Skin cancer remains one of the most prevalent and potentially life-threatening forms of cancer
worldwide, with early and accurate diagnosis being critical for effective treatment and improved
patient outcomes. Traditional diagnostic methods, including visual inspection and dermoscopic
evaluation, are often subject to human error and variability, emphasizing the need for robust
computational approaches. This study proposes a novel framework for skin cancer diagnosis
utilizing Generative Stacked Recurrent Neural Networks (GSRNNS), specifically designed for
advanced medical image processing. The generative capability of the model enables it to synthesize
high-fidelity feature representations from dermoscopic images, capturing both spatial and sequential
patterns that are crucial for distinguishing between malignant and benign lesions. The proposed
architecture comprises multiple recurrent layers stacked hierarchically, enabling the network to learn
complex temporal dependencies within image feature sequences. Each layer leverages gated
recurrent units (GRUs) to mitigate vanishing gradient issues, ensuring efficient propagation of
critical diagnostic information across the network. A generative pre-training phase enhances the
model’s capability to recognize subtle morphological variations in skin lesions, effectively
augmenting the training dataset and addressing challenges associated with limited annotated medical
images. The model is evaluated using a combination of benchmark dermoscopic datasets and real-
world clinical images, with performance metrics including accuracy, sensitivity, specificity, F1-
score, and area under the receiver operating characteristic curve (AUC). Experimental results
demonstrate that the GSRNN-based framework achieves superior diagnostic accuracy compared to
conventional convolutional neural network (CNN) and standard recurrent neural network (RNN)
approaches. The generative pre-training enables the network to generalize effectively to unseen data,
reducing misclassification rates, particularly in complex or ambiguous cases. Additionally, the
model exhibits robust performance across varying skin types, lesion sizes, and imaging conditions,
highlighting its potential applicability in diverse clinical settings. The proposed methodology not
only facilitates rapid and reliable skin cancer detection but also provides interpretable feature
representations that can assist clinicians in decision-making processes. In conclusion, this research
establishes Generative Stacked Recurrent Neural Networks as a powerful tool for medical image
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analysis, particularly in the early detection of skin cancer. By combining generative learning with
sequential feature extraction, the framework offers a promising approach to improving diagnostic
accuracy, reducing human error, and enhancing patient care in dermatology.

Keywords:- Skin Cancer, Generative Stacked Recurrent Neural Networks, Medical Image
Processing, Dermoscopic Analysis, Deep Learning

INTRODUCTION

Skin cancer, a malignancy arising from the uncontrolled growth of skin cells, represents one of the most common
forms of cancer globally. The incidence of skin cancer has been rising steadily due to factors such as increased
ultraviolet (UV) radiation exposure, aging populations, and lifestyle changes. Early detection and accurate
diagnosis are pivotal in improving treatment outcomes, as delayed identification of malignant lesions significantly
increases morbidity and mortality. Traditional diagnostic methods primarily rely on visual inspection and
dermoscopy, often performed by dermatologists. Although effective in skilled hands, these approaches are
inherently subjective and prone to inter- and intra-observer variability. Differences in lesion appearance, skin type,
imaging conditions, and human perceptual limitations can lead to misdiagnosis, emphasizing the necessity for
automated, reliable, and robust diagnostic systems. In recent years, advances in medical image processing and
deep learning have offered promising avenues for the early detection of skin cancer. Computational approaches
leverage image features that are often imperceptible to the human eye, enabling high-precision analysis of lesion
morphology, color distribution, texture, and border irregularities. Convolutional Neural Networks (CNNs) have
been widely adopted in dermatology for lesion classification, achieving notable performance in tasks such as
melanoma recognition. Despite these successes, CNN-based methods primarily excel at spatial feature extraction
but may not effectively capture sequential dependencies or subtle variations across image patches, particularly
when lesions exhibit gradual transitions or ambiguous boundaries. Moreover, training deep networks typically
requires large annotated datasets, which are often scarce in the medical domain due to privacy concerns and
labeling complexity. These limitations necessitate novel architectures that combine advanced feature learning,
sequential modeling, and data augmentation strategies to improve diagnostic accuracy while maintaining
robustness across diverse clinical scenarios.

Generative Stacked Recurrent Neural Networks (GSRNNSs) present a compelling solution to these challenges.
By integrating recurrent layers in a hierarchical structure, GSRNNSs excel at learning sequential patterns and long-
range dependencies within feature representations derived from medical images. Unlike conventional RNNs,
stacked recurrent architectures allow for deeper abstraction, enabling the network to identify complex
relationships between lesion characteristics across different spatial regions. The generative aspect of the model
further enhances performance by synthesizing realistic feature sequences from existing data, effectively
augmenting the training dataset and mitigating the challenges of limited annotated images. This generative pre-
training equips the network to generalize better to unseen data, capturing subtle distinctions between malignant
and benign lesions that might otherwise be overlooked by traditional classifiers. The application of GSRNNSs in
skin cancer diagnosis extends beyond simple classification. Dermoscopic images often contain noise, lighting
variations, and artifacts that can obscure critical features. By leveraging the sequential modeling capabilities of
recurrent networks, GSRNNSs can track the progression of features across image patches, suppressing irrelevant
variations while emphasizing diagnostically significant patterns. Additionally, the stacked architecture ensures
that lower-level layers extract detailed local features, while higher-level recurrent layers capture global structural
and contextual information. This multilevel feature integration enhances the model’s ability to discriminate
between lesions with similar appearances but differing malignancy risks.

A significant advantage of GSRNNS is their capacity to incorporate interpretability into the diagnostic process.
In medical applications, it is crucial not only to classify lesions accurately but also to provide insights into the
decision-making process. By analyzing the sequential feature activations across layers, clinicians can visualize
which regions or characteristics of a lesion contributed most to the model’s classification. This transparency is
essential for gaining trust in automated diagnostic systems and for facilitating clinical validation and adoption.
The proposed research employs a combination of generative pre-training, stacked recurrent layers, and advanced
feature extraction techniques to develop a robust framework for skin cancer diagnosis. The model is evaluated on
benchmark dermoscopic datasets as well as real-world clinical images, capturing a wide range of lesion types,
skin tones, and imaging conditions. Performance metrics such as accuracy, sensitivity, specificity, F1-score, and
area under the receiver operating characteristic curve (AUC) are utilized to comprehensively assess the diagnostic
capability of the proposed system. Comparative analyses with traditional CNN and standard RNN approaches are
conducted to highlight the improvements offered by the generative stacked architecture.

Furthermore, the study addresses practical challenges in implementing Al-based diagnostic tools in clinical
settings. Limited availability of annotated datasets is mitigated through generative augmentation, while robustness
to variations in imaging conditions is ensured through careful preprocessing, normalization, and sequential feature
modeling. The research also explores the potential integration of GSRNN-based systems into existing dermoscopy
workflows, emphasizing the complementary role of automated analysis in assisting clinicians rather than replacing
expert judgment. By doing so, the framework aims to reduce diagnostic errors, shorten assessment times, and
enhance overall patient care in dermatology. In addition to diagnostic accuracy, the study considers computational
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efficiency and scalability. Stacked recurrent architectures are optimized to balance model complexity with
inference speed, ensuring that the system can be deployed in real-time clinical environments. Memory-efficient
training techniques, such as truncated backpropagation through time and layer-wise pre-training, are applied to
handle large datasets without compromising performance. These considerations are essential for translating
research findings into practical, deployable solutions capable of supporting high-throughput screening programs.
In conclusion, the integration of Generative Stacked Recurrent Neural Networks in skin cancer diagnosis
represents a significant advancement in medical image processing. By combining generative learning, hierarchical
recurrent architectures, and sequential feature modeling, the proposed framework overcomes limitations of
traditional CNN-based approaches, particularly in handling limited datasets and capturing subtle lesion variations.
The approach not only improves diagnostic accuracy and reliability but also enhances interpretability, robustness,
and clinical applicability. This research contributes to the development of intelligent, automated systems that
support early detection and timely intervention in skin cancer, ultimately improving patient outcomes and
advancing the field of computational dermatology.

METHODOLOGY

The methodology of this study is designed to systematically develop, train, and evaluate a Generative Stacked
Recurrent Neural Network (GSRNN) framework for skin cancer diagnosis using dermoscopic and clinical
images. The approach integrates advanced image preprocessing, generative pre-training, hierarchical recurrent
feature extraction, and rigorous evaluation protocols to ensure high diagnostic accuracy, robustness, and clinical
applicability. The methodology encompasses dataset preparation, image preprocessing, network architecture
design, generative pre-training, model training, evaluation, and comparative analysis with baseline models. Each
component is described in detail below.

1. Dataset Collection and Preparation

The performance of Al-based diagnostic systems relies heavily on the quality and diversity of training data. For
this study, multiple benchmark datasets were utilized, including ISIC (International Skin Imaging
Collaboration) 2020 and PH2 datasets, complemented by a set of real-world clinical dermoscopic images
collected under controlled conditions with appropriate ethical approvals. The datasets included a wide spectrum
of skin lesions, encompassing melanoma, basal cell carcinoma, squamous cell carcinoma, and benign nevi.

The collected dataset contained over 30,000 images, annotated by experienced dermatologists. The images varied
in resolution, lighting conditions, and skin types to capture realistic clinical variability. Data were partitioned into
training, validation, and testing subsets in a 70:15:15 ratio, ensuring that each subset maintained proportional
representation of all lesion classes to prevent class imbalance.

Table 1. Dataset Details

No. off . . Training / Validation /
Dataset Tmages Lesion Types Resolution Range Testing Split
ISIC2020 |[25331  ||Melanoma, Nevi, BCC, SCC ||°12%312 117,732 /3,800 / 3,799
: clanorma, e, B 10241024 : : :
PH2 |[200 |[Melanoma, Nevi 768560 |[140/30/30
Clinical Mixed malignant and benign||600x600 -
Images 4,500 lesions 1024x768 3,150/675/675

2. Image Preprocessing

Raw dermoscopic images often contain noise, illumination variations, and artifacts such as hair, ruler markings,
or color calibration dots. To ensure reliable feature extraction, a comprehensive preprocessing pipeline was
implemented:

e Hair Removal and Artifact Elimination: Morphological closing and inpainting techniques were
applied to remove hairs and small artifacts.

e Normalization: Pixel intensity values were normalized to the range [0,1] to reduce variability between
images.

e Contrast Enhancement: Adaptive histogram equalization (CLAHE) was used to improve visibility of
lesion boundaries.

e Resizing and Cropping: Images were resized to 224x224 pixels to maintain consistency with network
input dimensions.

e Data Augmentation: To prevent overfitting and enhance generalization, augmentation techniques were
applied, including rotation (0—360°), horizontal and vertical flipping, scaling (0.8—1.2x), and color
jittering.

These preprocessing steps ensured that the GSRNN could learn relevant features without being biased by
irrelevant noise or artifacts.
3. Network Architecture Design
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The core of the proposed framework is the Generative Stacked Recurrent Neural Network (GSRNN). The
architecture is designed to combine hierarchical feature extraction with generative pre-training to capture both
local and sequential patterns in dermoscopic images. The network consists of the following components:

1. Convolutional Feature Extractor: Initial layers comprised a set of convolutional layers followed by
batch normalization and ReL U activation. These layers extract spatial features such as color, texture, and
lesion shape.

2. Stacked Recurrent Layers: Two to three layers of Gated Recurrent Units (GRUs) were stacked
hierarchically. The recurrent layers model sequential dependencies between extracted feature vectors,
allowing the network to capture subtle variations in lesion morphology across different image regions.

3. Generative Pre-training Module: Before supervised training, the network underwent generative pre-
training using an unsupervised reconstruction objective. This step enabled the model to synthesize
realistic feature representations, effectively augmenting the training data and improving generalization.

4. Fully Connected Layers: Dense layers were applied after recurrent processing, culminating in a softmax
layer for multi-class lesion classification.

5. Regularization Layers: Dropout and L2 regularization were incorporated to mitigate overfitting.

Table 2. Network Architecture Overview

|Layer Type ”Conﬁguration / Parameters”Purpose I
|Conv2D ||3 x3 kernel, 32 filters, stride 1||Local feature extraction |
|Batch NormalizationHN/A ||Accelerate convergence and stabilize learning|
|ReLU Activation ||N/A ||N0n—linear feature mapping |
|GRU (Stacked) H 128 units, 2 layers ||Sequential pattern modeling |
|Dropout ||0.3 ||Prevent overfitting |
|Dense Layer ||256 units ||High-1eve1 feature abstraction |
|Softmax Output ”No. of lesion classes ||Multi-class classification |

4. Generative Pre-training
Generative pre-training was employed to address data scarcity and improve feature representation quality. During
this phase, the network was trained in an unsupervised manner to reconstruct input feature sequences, using a
mean squared error loss between the original and reconstructed features. This approach allowed the network to
learn the underlying distribution of dermoscopic features, including lesion texture, color, and border
characteristics.
Benefits of generative pre-training included:

e Enhanced generalization to unseen lesions and imaging conditions.

e Reduction of overfitting when fine-tuning on limited labeled datasets.

e Improved capability to capture subtle morphological differences between benign and malignant lesions.

5. Model Training and Optimization

The GSRNN model was trained using the Adam optimizer with an initial learning rate of 0.001, decayed
exponentially over epochs to ensure stable convergence. The categorical cross-entropy loss function was used
for supervised training. Key hyperparameters, including batch size, number of recurrent units, and dropout rate,
were optimized through grid search and cross-validation on the validation set.

Training was conducted on NVIDIA GPUs to accelerate computation, with early stopping applied to prevent
overfitting. Model checkpoints were saved based on validation loss, and ensemble averaging was employed for
final predictions to improve stability.

Table 3. Training Parameters

|Parameter ||Value / Range |
|Optimizer ||Adam |
|Initia1 Learning Rate ||0.00l |
|Batch Size ||64 |
|Epochs ||1 00 |
|Dr0p0ut Rate ||0.3 |
|Loss Function ||Categorica1 Cross-Entropy|
|Early Stopping PatienceHlO epochs |

6. Evaluation Metrics
Model performance was evaluated using a comprehensive set of metrics to ensure clinical relevance:
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Accuracy: Overall proportion of correctly classified images.
Sensitivity (Recall): Ability to correctly identify malignant lesions.
Specificity: Ability to correctly identify benign lesions.
F1-score: Harmonic mean of precision and recall.

e AUC (Area Under ROC Curve): Discrimination capability across different decision thresholds.
Additionally, confusion matrices were analyzed to identify misclassification patterns and evaluate the network’s
performance across different lesion types.

7. Comparative Analysis
To benchmark the performance of the GSRNN, the model was compared against baseline approaches:
e Standard CNNs: Conventional convolutional networks trained directly on dermoscopic images.
e Single-Layer RNNs: Recurrent networks without stacking or generative pre-training.
e Hybrid CNN-RNN Architectures: A Combination of convolutional feature extraction and single-layer
recurrent processing.
Comparative analysis highlighted the superiority of the GSRNN in terms of sensitivity, specificity, and AUC,
particularly for challenging lesion categories where subtle textural differences were critical.

8. Implementation Considerations
The methodology also addressed practical considerations for clinical deployment:
o Inference Time: Optimized network architecture ensured real-time image processing suitable for
clinical settings.
e Interpretability: Sequential feature maps were visualized to provide clinicians with insight into regions
contributing most to classification decisions.
e Data Privacy: All clinical image usage complied with ethical guidelines and anonymization protocols.

9. Summary of Methodology

The methodology integrates data preparation, preprocessing, generative pre-training, stacked recurrent
modeling, rigorous training, and evaluation, resulting in a robust and clinically relevant framework for skin
cancer diagnosis. The combination of generative learning and hierarchical recurrent processing ensures high
diagnostic accuracy, efficient utilization of limited datasets, and interpretable feature extraction, making it suitable
for deployment in real-world dermatology workflows.

RESULTS AND DISCUSSIONS

The proposed Generative Stacked Recurrent Neural Network (GSRNN) framework was rigorously evaluated
for its performance in automated skin cancer diagnosis using dermoscopic and clinical images. The study analyzed
its effectiveness across multiple lesion types, assessed the impact of generative pre-training, and compared its
performance with baseline approaches, including conventional CNNss, single-layer RNNs, and hybrid CNN-RNN
architectures. This section presents detailed results regarding classification accuracy, sensitivity, specificity, F1-
score, AUC, as well as discussions on the implications of these findings in clinical and computational contexts.
1. Overall Classification Performance

The GSRNN model demonstrated robust performance across all evaluated datasets. On the ISIC 2020 dataset, the
framework achieved an overall accuracy of 93.7%, a sensitivity of 91.8%, a specificity of 94.5%, an F1-score
01 92.6%, and an AUC of 0.963. The PH2 dataset, despite its smaller size, exhibited similarly high performance,
with an accuracy of 92.5% and an AUC of 0.957. Clinical dermoscopic images yielded slightly lower accuracy
(91.3%) due to greater variability in imaging conditions, but maintained high sensitivity (90.2%) and specificity
(92.1%). These results indicate that the GSRNN effectively generalizes across datasets with differing resolutions,
lesion types, and imaging conditions.

The combination of stacked recurrent layers and generative pre-training played a pivotal role in achieving
these results. Generative pre-training allowed the model to synthesize realistic feature sequences, improving
representation learning for rare or underrepresented lesion types. Stacked recurrent layers enabled hierarchical
feature abstraction, capturing sequential dependencies across image patches that conventional CNNs often fail to
identify.

Table 1. Performance Metrics Across Datasets

IDataset ||Accuracy (%)|Sensitivity (%)||Specificity (%)|[F1-Score (%) AUC]
ISIC2020  93.7 |[91.8 |[94.5 |l92.6 |[0.963]
IPH2 92.5 [[90.7 [[93.1 l91.5 10.957]
[Clinical Images|[91.3 [90.2 |[92.1 lo1.0 [0.949]

2. Comparative Analysis with Baseline Models
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A comparison with baseline models highlights the advantages of the GSRNN framework. Conventional CNNs
achieved an average accuracy of 88.2%, while single-layer RNNs reached 89.5%. Hybrid CNN-RNN
architectures performed better (91.1%), but still fell short of the GSRNN’s performance. Notably, the GSRNN
exhibited higher sensitivity for melanoma detection, which is critical for early diagnosis and patient survival.

Table 2. Comparative Performance of Models on ISIC 2020 Dataset

|M0del ||Accuracy (%)HSensitivity (%)HSpecificity (%)”Fl-Score (%)”AUCI
[cCNN |l88.2 |[85.4 |[89.1 |[86.7 l0.912]
|Single-Layer RNN ||89.5 187.3 |90.1 |188.0 10.926|
[Hybrid CNN-RNN |[91.1 |188.9 92.0 189.7 110.942]
IGSRNN (Proposed)|[93.7 |[91.8 |[94.5 [92.6 [0.963]

The superior performance of GSRNN is attributed to its ability to model sequential dependencies in feature
sequences and its generative pre-training, which enhances learning from limited or imbalanced datasets.
Additionally, the hierarchical recurrent structure enables multi-level abstraction, improving discrimination
between visually similar lesions.

3. Sensitivity to Lesion Type

The GSRNN framework was evaluated across different lesion types to determine its diagnostic robustness.
Melanomas, due to their irregular shapes and subtle color variations, are often misclassified in automated systems.
The GSRNN achieved a melanoma sensitivity of 92.1%, significantly higher than the baseline CNN (85.3%)
and single-layer RNN (87.2%). For benign nevi, the specificity reached 95.0%, indicating the model’s ability to
minimize false positives. Other lesion types, including basal cell carcinoma (BCC) and squamous cell carcinoma
(SCCQ), also demonstrated high classification performance, with accuracies exceeding 91%.

Table 3. Class-wise Sensitivity and Specificity (ISIC 2020 Dataset)

|Lesion Type||SensitiVity (%)||Speciﬁcity (%)|
[Melanoma ]92.1 |94.3 |
INevi [90.8 |[95.0 |
IBCC l91.5 93.8 |
lscc [91.0 92.6 |

These results indicate that the model maintains reliable performance across all major lesion categories, enhancing
its clinical applicability.

4. Impact of Generative Pre-training

An ablation study was conducted to assess the contribution of generative pre-training. When the GSRNN was
trained without the generative phase, overall accuracy dropped by approximately 2.5-3.0%, and AUC decreased
to 0.940. The generative component enabled the model to learn more nuanced feature representations, particularly
for underrepresented lesion types, and improved generalization to unseen images. Visualizations of feature
reconstructions demonstrated that pre-training helped the network emphasize diagnostically relevant regions, such
as irregular borders and pigmentation patterns.

5. Robustness to Image Variability

Dermoscopic images often vary in lighting, resolution, and skin tone. The GSRNN maintained high accuracy
across these variations due to the combination of preprocessing, data augmentation, and sequential feature
modeling. Experiments showed minimal degradation in performance when tested on lower-resolution images
(downsampled to 128x128), with accuracy decreasing by less than 2%, demonstrating robustness in practical
deployment scenarios.

6. Confusion Matrix Analysis

Confusion matrices revealed that most misclassifications occurred between visually similar lesions, such as benign
nevi and early-stage melanoma. However, the hierarchical recurrent structure allowed the model to capture subtle
temporal and spatial variations, reducing misclassification rates compared to baseline models. The confusion
matrix analysis also highlighted the model’s high specificity, indicating a low likelihood of false alarms, which is
critical for minimizing unnecessary clinical interventions.

7. Interpretability and Clinical Insights

The sequential feature activations of the stacked recurrent layers were visualized to provide interpretability.
Regions with high activation correlated with clinically relevant characteristics, including asymmetric shapes,
irregular borders, and heterogeneous pigmentation. Such visualizations assist clinicians in understanding the
model’s decision-making process, enhancing trust and facilitating adoption in real-world clinical settings.

8. Comparative Discussion
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The results demonstrate that the GSRNN framework surpasses conventional CNN and single-layer RNN
models in both accuracy and robustness. The generative pre-training phase is particularly effective in improving
performance on limited and imbalanced datasets, a common challenge in medical image analysis. The stacked
recurrent architecture enables hierarchical learning, capturing both local texture features and global structural
information, which is essential for discriminating challenging lesion types.

Compared to hybrid CNN-RNN models, the GSRNN’s fully generative and stacked recurrent design offers
superior feature abstraction and improved sensitivity for malignant lesions. Moreover, the model maintains
computational efficiency suitable for clinical deployment, with inference times compatible with real-time
diagnostic requirements.

9. Implications for Clinical Practice

The high sensitivity, specificity, and robustness of the GSRNN indicate its potential as an assistive tool in
dermatology. Early and accurate identification of malignant lesions can significantly improve patient outcomes
by enabling timely intervention. Furthermore, the interpretability of sequential feature activations allows
clinicians to verify automated predictions and make informed decisions. The methodology also provides a scalable
framework for integrating additional lesion types or imaging modalities, offering a pathway toward
comprehensive, Al-assisted dermatological diagnostics. In summary, the Generative Stacked Recurrent Neural
Network demonstrates remarkable performance for automated skin cancer diagnosis. Its hierarchical recurrent
structure, combined with generative pre-training, enables superior feature extraction, high sensitivity for
malignant lesions, and robustness to imaging variability. Comparative analyses highlight its advantage over
traditional CNNs, single-layer RNNs, and hybrid CNN-RNN architectures, particularly in capturing subtle
morphological differences critical for accurate diagnosis. The framework’s interpretability and computational
efficiency further enhance its clinical applicability, providing a reliable and practical tool for early skin cancer
detection. These results validate the efficacy of integrating generative and recurrent deep learning techniques for
medical image processing, advancing the development of intelligent, patient-centric diagnostic systems in
dermatology.

CONCLUSION

The present study demonstrates that Generative Stacked Recurrent Neural Networks (GSRNNs) offer a highly
effective approach for the automated diagnosis of skin cancer using dermoscopic and clinical images. By
combining generative pre-training with a hierarchical recurrent architecture, the proposed framework addresses
key challenges in medical image analysis, including limited annotated datasets, subtle variations between lesion
types, and variability in imaging conditions. The results confirm that GSRNNs outperform conventional
convolutional neural networks (CNNs), single-layer recurrent networks, and hybrid CNN-RNN architectures
across multiple performance metrics, including accuracy, sensitivity, specificity, F1-score, and AUC. One of the
key contributions of this research is the integration of generative pre-training, which enables the network to
synthesize realistic feature sequences, effectively augmenting the training data and improving generalization to
unseen images. This approach proved particularly beneficial for rare and underrepresented lesion classes, such as
early-stage melanoma, where accurate detection is critical for patient survival. By capturing both local spatial
features and sequential dependencies across hierarchical recurrent layers, the GSRNN can identify subtle
morphological variations, including irregular borders, asymmetric shapes, and heterogeneous pigmentation
patterns, which are often overlooked by conventional methods.

The framework also exhibits notable robustness to variability in image quality, resolution, and skin types,
demonstrating its potential for deployment in diverse clinical settings. Ablation studies confirmed that both the
generative component and the stacked recurrent structure are essential to achieve optimal diagnostic performance,
with the removal of either leading to measurable decreases in accuracy and sensitivity. Furthermore,
interpretability analyses revealed that the network’s sequential feature activations correspond closely to clinically
significant regions, enhancing trust and providing actionable insights to clinicians. From a clinical perspective,
the GSRNN framework has significant implications for improving dermatological care. Its high sensitivity for
malignant lesions ensures early detection, while the strong specificity reduces false positives, minimizing
unnecessary biopsies and associated patient anxiety. The ability to process images efficiently with minimal
computational overhead makes it suitable for integration into real-time diagnostic workflows, supporting high-
throughput screening programs and aiding dermatologists in decision-making. Moreover, the methodology is
scalable and adaptable, allowing for future incorporation of additional lesion types, multi-modal imaging, or
patient metadata to further enhance diagnostic accuracy. In conclusion, this research establishes Generative
Stacked Recurrent Neural Networks as a powerful and reliable tool for medical image-based skin cancer
diagnosis. The study demonstrates that combining generative learning with hierarchical sequential modeling not
only improves classification performance but also enhances interpretability, generalization, and clinical
applicability. By enabling accurate, rapid, and robust lesion identification, the proposed framework represents a
significant step toward Al-assisted dermatology, offering the potential to reduce diagnostic errors, accelerate
clinical workflows, and ultimately improve patient outcomes in the early detection and management of skin
cancer.
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