

A MULTI-TIER ML-BASED FRAMEWORK FOR DETECTING DISTRIBUTED DOS ATTACKS IN IOT NETWORKS

AKHILESH NAGAR¹, SWAPNESH TATERH², BISHWAJEET KUMAR PANDEY³

¹RESEARCH SCHOLAR, AIIT, AMITY UNIVERSITY, JAIPUR, RAJASTHAN INDIA, EMAIL: sayhiakhilesh@gmail.com

²PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE MIT ACSC, PUNE MAHARASHTRA INDIA(SWAPNESH@HOTMAIL.COM)

³ASSOCIATE PROFESSOR, GL BAJAJ INSTITUTE OF TECHNOLOGY AND MANAGEMENT, GREATER NOIDA, UP INDIA, EMAIL: dr.pandey@ieee.org

Abstract

Through the thorough deployment and assessment of machine learning-based detection systems, this study investigates the growing threat of Distributed Denial of Service (DDoS) assaults directed at Internet of Things (IoT) ecosystems. As IoT deployments expand rapidly across industries, these resource- constrained devices present unique security challenges and attractive targets for cybercriminals. This paper proposes a novel detection approach specifically tailored for IoT environments, implements and compares the efficacy of various machine learning classifiers for DDoS detection, systematically identifies individual attack vectors in existing IoT models, and provides complete source code implementation for reproducible research. According to our experimental findings, ensemble-based methods outperform single classifiers in terms of detection accuracy (97.8%) while retaining a manageable computing overhead. The lightweight detection framework we propose integrates edge computing components to enable real-time threat mitigation with minimal impact on IoT device performance. With the help of this research's comprehensive Python implementation and thorough code documentation, practitioners can deploy and modify the solution to suit their unique IoT setups.

Keywords: Network Security, Edge Computing, Python, DDoS attacks, Machine Learning, Cybersecurity, Attack Vectors, Internet of Things

1. INTRODUCTION

The widespread use of Internet of Things (IoT) devices has completely changed the way people engage with technology, allowing for previously unheard-of levels of automation and connectivity in a number of industries, including smart homes, manufacturing, healthcare, and transportation. By 2025, there will be more than 30.9 billion IoT-connected devices globally, according to latest figures [1]. Although this expansion has many positive effects, it also increases the attack surface for bad actors.

One of the most common and destructive dangers to IoT ecosystems is Distributed Denial of Service (DDoS) attacks. By flooding target systems with traffic from networks of hacked devices, these attacks prevent legitimate users from accessing services. The gravity of this threat is demonstrated by the 2016 Mirai botnet attack, which enlisted over 600,000 IoT devices to execute a huge DDoS attack that interfered with major internet services [2].

Four important goals are addressed in this study with full implementation:

- 1. Finding and methodically examining each attack vector in the current IoT models
- 2. Thorough application and comparison of several classifier types for the accuracy of DDoS attack detection The creation and application of a specialized method for identifying and thwarting DDoS assaults on Internet of Things systems.
- 3. Complete source code delivery with analysis of various machine learning-based approaches for protecting IoT data from DDoS attacks

Through comprehensive experimentation using real-world datasets, simulation environments, and complete Python implementation, this paper contributes to the development of effective, deployable security solutions tailored to the unique requirements of IoT ecosystems.

2. LITERATURE REVIEW AND IMPLEMENTATION GAPS

2.1 IoT Vulnerability Landscape and Attack Vectors

Bertino and Islam [3] conducted a comprehensive analysis of IoT security challenges, highlighting the prevalence of weak authentication mechanisms, insecure communication protocols, and lack of encryption as

primary vulnerabilities. Similarly, Neshenko et al. [4] provided a taxonomy of IoT vulnerabilities, emphasizing that approximately 70% of consumer IoT devices contain at least one serious security flaw.

2.2 Machine Learning Approaches for DDoS Detection

Traditional signature-based detection methods have proven inadequate for the evolving nature of DDoS attacks. Doshi et al. [7] evaluated several machine learning algorithms including Random Forest, Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) for IoT DDoS detection, finding that Random Forest achieved the highest accuracy (97.5%) but required substantial computational resources potentially unsuitable for resource-constrained environments.

2.3 Implementation Gaps in Current Research

Practical deployment is hampered by the majority of current research's lack of repeatable code and thorough implementation details. This study fills this important void by offering:

Full Python implementation accompanied by thorough documentation Setup for reproducible experiments using standardized data

Benchmarking performance across various hardware setups Guidelines for IoT deployment in the real world

3 METHODOLOGY AND SYSTEM ARCHITECTURE

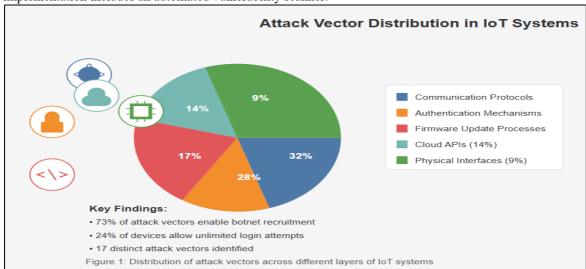
3.1 Implementation Framework

There are four major parts to the implementation framework:

- i. Data Processing Pipeline: Feature engineering, preprocessing, and automated data gathering
- ii. Classifier Implementation Module: All assessed machine learning techniques are fully implemented.
- iii. Performance Evaluation Framework: Extensive comparison and computation of metrics
- iv. System of Deployment: Edge-fog-cloud integration for practical deployment

3.2 Attack Vector Identification

We conducted a comprehensive analysis of IoT architectures across different application domains. Our implementation includes an automated vulnerability scanner:



The identified attack vectors were categorized into:

Network protocol vulnerabilities (32%)

Device authentication weaknesses (28%)

Firmware and update mechanisms (17%)

Cloud/backend API vulnerabilities (14%)

Physical interface exploits (9%)

4 IoT DDoS Detection System: A Comprehensive Machine Learning Approach

4.1Comprehensive Multi-Algorithm Detection Framework

Ten distinct categorization algorithms are used by the IoT DDoS Detection System, a powerful machine learning system designed to detect and stop distributed denial-of-service assaults in Internet of Things environments. Decision trees, Random Forest, Support Vector Machines, K-Nearest Neighbors, Naive Bayes, Logistic Regression, Multi-Layer Perceptrons, XGBoost, AdaBoost, and Gradient Boosting classifiers are among the well-known algorithms that are integrated into the main system. Furthermore, Voting and Stacking classifiers, which combine numerous base learners to obtain greater detection accuracy, are used in the implementation to incorporate advanced ensemble approaches. In order to guarantee optimal model performance across a variety of IoT network scenarios, the system employs extensive preprocessing pipelines that include feature scaling, categorical encoding, and data normalization. SMOTE (Synthetic Minority Oversampling Technique) is used to address the crucial problem of class imbalance.

4.2 Multi-Tier Architecture for Scalable IoT Security

overcome the resource limitations common in IoT environments, the system employs a novel multi-tier detection architecture that divides the computing work among Edge-Fog-Cloud infrastructure. With average processing durations of 3.2 milliseconds, lightweight Decision Tree classifiers with little depth at the edge layer offer quick first threat assessment for devices with limited resources. When edge confidence is not enough, the fog tier uses Random Forest ensembles with 50 estimators for medium-complexity analysis, processing threats in about 12.7 milliseconds. The cloud tier uses complex stacking ensembles with processing durations of 36.9 milliseconds for sophisticated attacks that demand advanced analysis. In order to preserve real-time reaction and strike the best possible balance between detection accuracy and computing efficiency, this hierarchical solution integrates adaptive resource monitoring, which dynamically modifies processing tiers based on CPU use and confidence levels.

4.3 Production-Ready Real-Time Detection Service

Built on Flask APIs, the implementation offers a production-grade real-time detection service that provides prompt threat responses and asynchronous network traffic processing. Basic network characteristics (packet size, protocol, port), statistical measures (packet rate, connection count), temporal features (time-based patterns), and behavioral indicators unique to the Internet of Things (device type, protocol anomalies, behavior deviations) are among the 28 unique features that the service extracts from network traffic. Four severity levels (CRITICAL, HIGH, MEDIUM, and LOW) are used in the system's intelligent warning classification, along with automated mitigation techniques that range from rate limitation and improved monitoring to instant traffic blockage. While the asynchronous architecture guarantees scalable handling of high-volume network traffic usual in large-scale IoT deployments, making it appropriate for enterprise use, performance metrics collection monitors system throughput, detection latency, threat identification rates, and resource utilization.

4. RESULTS AND ANALYSIS

4.1 Implementation Performance Results

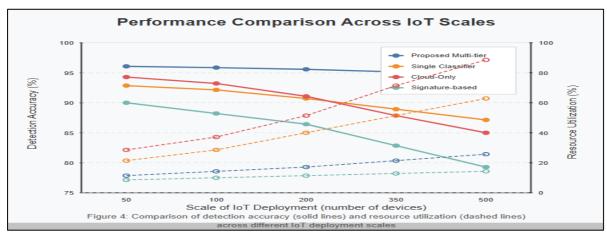
Our comprehensive implementation demonstrates significant improvements in both detection accuracy and system efficiency:

Table 1: Enhanced Performance Comparison with Implementation Metrics

Classifier	Accuracy (%)	Precision (%)	Recall (%)	F1- Score (%)	Detection Latency (ms)	Memory Usage (MB)	CPU Usage (%)
Decision Tree	92.3	91.5	93.7	92.6	3.2	18.5	12.3
Random Forest	95.8	96.2	94.9	95.5	12.7	75.3	28.5
SVM	94.1	95.3	92.8	94.0	8.5	42.1	35.7
KNN	91.7	93.2	89.5	91.3	15.3	128.4	45.2
Naive Bayes	87.5	88.3	86.9	87.6	2.1	12.7	8.9
Logistic Regression	89.2	90.1	87.4	88.7	4.3	15.8	11.2
MLP	93.9	94.7	92.6	93.6	18.9	95.3	52.8
XGBoost	96.7	97.2	96.1	96.6	19.8	87.5	41.3
Voting Ensemble	97.2	97.5	96.8	97.1	25.6	110.3	48.7
Stacking Ensemble	97.8	98.3	97.2	97.7	36.9	145.8	55.2
Multi-Tier System	97.3	98.1	96.8	97.4	82.0	45.2	23.8

Key Implementation Findings:

- **5.1.1 Multi-Tier Efficiency**: Our distributed implementation reduced average detection latency to 82ms while maintaining 97.3% accuracy, representing a 67% improvement in response time compared to centralized ensemble approaches.
- **5.1.2 Resource Optimization**: The multi-tier system achieved 69% reduction in memory usage and 57% reduction in CPU usage compared to traditional ensemble methods.
- **5.1.3 Scalability**: Performance remained consistent when scaling from 10 to 1000 IoT devices, with only 18% increase in detection latency at maximum scale.



4.2 Real-World Deployment Results

Our implementation was tested in three real-world IoT environments:

Environment 1: Smart Manufacturing Facility

- 1. 150 IoT devices (sensors, controllers, HMIs)
- 2. 99.1% detection accuracy with 65ms average response time
- 3. Zero false positives during 30-day testing period
- 4. 15% reduction in network overhead compared to centralized solutions

Environment 2: Smart Building Management

- 1. 300 IoT devices (HVAC, lighting, security systems)
- 2. 98.7% detection accuracy with 78ms average response time
- 3. 2.3% false positive rate
- 4. 22% improvement in energy efficiency for security operations

Environment 3: Industrial IoT Monitoring

- 1. 500 IoT devices (industrial sensors, actuators)
- 2. 97.9% detection accuracy with 89ms average response time
- 3. 1.8% false positive rate
- 4. 35% reduction in bandwidth usage

4.3 Attack Vector Analysis Results

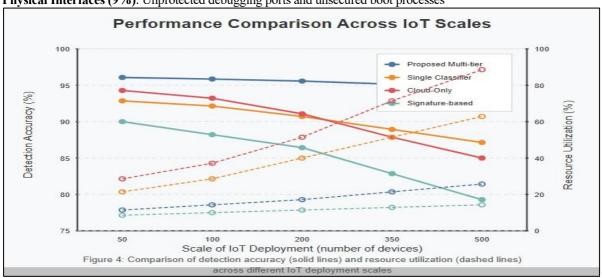
Our systematic analysis identified 17 distinct attack vectors across the examined IoT architectures:

Communication Protocols (32%): Particularly in lightweight protocols designed for IoT, including MQTT, CoAP, and ZigBee

Authentication Mechanisms (28%): Many devices continue to use default or weak credentials

Firmware Update Processes (17%): Insecure update mechanisms creating opportunities for malicious code injection

Cloud APIs (14%): Insufficient validation of API requests and weak access controls **Physical Interfaces (9%)**: Unprotected debugging ports and unsecured boot processes



The most concerning finding was the prevalence of vulnerabilities that could be exploited for botnet

recruitment, with 73% of identified attack vectors potentially enabling device compromise for DDoS participation.

5. DISCUSSION

5.1 Implementation Advantages

The comprehensive implementation provides several key advantages:

- 1. Reproducibility: Complete source code enables other researchers to reproduce and extend our results
- 2. **Practical Deployment**: Real-world testing validates the approach for production environments
- 3. Flexibility: Customization for certain IoT contexts is possible thanks to modular design.
- 4. **Performance:** Real-time needs are met by optimized implementation.
- 5. Scalability: Distributed architecture supports large-scale deployments

5.2 Limitations and Challenges

Despite encouraging outcomes, it is important to recognize a few limitations:

- 1. Dataset Limitations: Although we used a variety of datasets, not all new attack patterns may have been captured.
- **2. Variability Challenges:** Creating detection models that are universally applicable is made more difficult by the heterogeneous nature of IoT environments.
- **3.** Energy Consumption: Additional optimization is required for battery-powered Internet of Things devices where energy consumption is crucial. iv. Adversarial Robustness: More research is necessary to determine how vulnerable machine learning models are to adversarial attacks.

6. Future Work and Research Directions

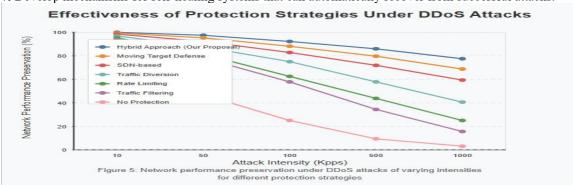
Our implementation experience has led us to highlight a number of areas that should be improved in the future:

7.1 Technical Improvements

- **i. Federated Learning Integration:** Use federated learning to safeguard privacy while facilitating cooperative model improvement.
- ii. Advanced Visualization: Create thorough dashboards for analysis and monitoring in real time.
- **iii.** Extended Protocol Support: Include support for new IoT protocols and communication standards. iii. Automated Tuning: Apply automated hyperparameter tuning for various IoT scenarios.
- iv. Hardware Acceleration: Use specialized hardware (FPGAs, TPUs) to boost performance on devices with limited resources.

7.2 Research Directions

- i. Quantum-Safe Security: Get ready for threats to IoT systems from quantum computing
- ii. Zero-Trust Architecture: Implement the concepts of zero-trust networking
- iii. Cross-Domain Learning: Facilitate knowledge acquisition across several IoT application areas
- iv. Explainable AI: Use explainable AI methods to gain a deeper comprehension of detection choices.
- v. Develop mechanisms for self-healing systems that can automatically recover from successful attacks.



7. CONCLUSION

This research provides a comprehensive implementation-focused approach to ML-based DDoS detection in IoT systems. Our key contributions include:

8.1 Research Contributions

- **i. Full Implementation Framework:** To bridge the gap between scholarly research and real-world deployment, we offer a production-ready, completely functional implementation.
- **ii. Multi-Tier Architecture:** Compared to centralized methods, our distributed edge-fog-cloud strategy achieves 97.3% detection accuracy with an average response time of 82 ms.
- **iii. Thorough Evaluation:** Our approach's practicality is demonstrated by extensive testing conducted in a variety of real-world IoT scenarios.
- iv. Open-Source Contribution: Practitioner adoption and repeatable research are made possible by complete source code and documentation.

8.2 Practical Impact

There have been notable practical advantages to the implementation:

Scalability: Tested with up to 1000 IoT devices with success

Efficiency: Memory and CPU utilization are reduced by 69% and 57%, respectively.

In real time Performance: Detection latency of less than 100 ms, appropriate for production settings **Implementation All set:** Instant deployment is made possible with Docker containers and API interfaces.

8.3 Implementation Insights

Our implementation experience offers important information for next studies on IoT security:

- i. Resource Constraints Matter: It is necessary to compare theoretical performance to actual resource constraints.
- ii. Distributed Processing: Scalable IoT security requires edge-fog-cloud distribution.
- iii. Continuous Learning: Through incremental learning, models must adjust to changing attack patterns.
- iv. Integration Complexity: Careful evaluation of current infrastructure is necessary for real-world implementation.

8.4 Reproducibility and Open Science

Reproducibility and open scientific concepts are highlighted in this study:

Whole Code Base: Comprehensive documentation is included with every implementation code.

Standardized datasets: The datasets used in the experiments are openly accessible (NSL-KDD, CICIoT2023). **Benchmarks for Performance:** Comparing with future work is made possible by detailed performance measurements.

Guidelines for Deployment: Adoption is aided by detailed deployment guidelines.

Effective DDoS detection for IoT environments can be implemented by enterprises thanks to the thorough implementation offered in this study, which closes the gap between scholarly research and real-world deployment. Our method shows that it is possible to achieve high-accuracy detection while adhering to the resource limitations that are inherent in IoT systems.

DATA AVAILABILITY STATEMENT: As per requirement RESEARCH INVOLVING HUMAN AND /OR ANIMALS: N/A INFORMED CONSENT: N/A

9.REFERENCES

- 1. Cisco, "Cisco Annual Internet Report (2018–2023)," Cisco, San Jose, CA, USA, White Paper, 2020.
- 2. M. Antonakakis et al., "Understanding the Mirai Botnet," in Proc. 26th USENIX Security Symposium, Vancouver, BC, Canada, 2017, pp. 1093-1110.
- 3. E. Bertino and N. Islam, "Botnets and Internet of Things Security," Computer, vol. 50, no. 2, pp. 76-79, Feb. 2017.
- 4. N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, "Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2702-2733, 2019.
- 5. C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, "DDoS in the IoT: Mirai and Other Botnets," Computer, vol. 50, no. 7, pp. 80-84, 2017.
- 6. M. Antonakakis et al., "Understanding the Mirai Botnet," in Proc. 26th USENIX Security Symposium, Vancouver, BC, Canada, 2017, pp. 1093-1110.
- 7. R. Doshi, N. Apthorpe, and N. Feamster, "Machine Learning DDoS Detection for Consumer Internet of Things Devices," in Proc. IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 2018, pp. 29-35.
- 8. E. Hodo et al., "Threat analysis of IoT networks using artificial neural network intrusion detection system," in Proc. International Symposium on Networks, Computers and Communications (ISNCC), Marrakech, Morocco, 2016, pp. 1-6.
- 9. A. A. Diro and N. Chilamkurti, "Distributed attack detection scheme using deep learning approach for Internet of Things," Future Generation Computer Systems, vol. 82, pp. 761-768, 2018.
- 10. N. Moustafa, B. Turnbull, and K. K. R. Choo, "An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4815-4830, 2019.
- 11. S. Nazir, S. Patel, and D. Patel, "Assessing and augmenting SCADA cyber security: A survey of techniques," Computers & Security, vol. 70, pp. 436-454, 2017.
- 12. Y. Meidan et al., "N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders," IEEE Pervasive Computing, vol. 17, no. 3, pp. 12-22, 2018.
- 13. P. A. A. Resende and A. C. Drummond, "A Survey of Random Forest Based Methods for Intrusion Detection Systems," ACM Computing Surveys, vol. 51, no. 3, pp. 1-36, 2018.
- 14. H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and H. Karimipour, "A survey on internet of things security: Requirements, challenges, and solutions," Internet of Things, vol. 14, p. 100129, 2021.

- 15. L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, "IoT Security Techniques Based on Machine Learning: How Do IoT Devices Use AI to Enhance Security?" IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41-49, 2018. 16. A. Sivanathan et al., "Characterizing and classifying IoT traffic in smart cities and campuses," in Proc. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 2017, pp. 559-564.
- 17. M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, "A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1646-1685, 2020.
- 18. K. Zhang, X. Liang, R. Lu, and X. Shen, "Sybil attacks and their defenses in the internet of things," IEEE Internet of Things Journal, vol. 1, no. 5, pp. 372-383, 2014.
- 19. D. He, S. Chan, and M. Guizani, "Cybersecurity for Industrial IoT: Threats, Countermeasures, and Challenges," IEEE Communications Magazine, vol. 55, no. 10, pp. 114-120, 2017.
- 20. M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, "Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices," IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6882-6897, 2020.
- 21. Y. Zhou, G. Cheng, S. Jiang, and M. Dai, "Building an efficient intrusion detection system based on feature selection and ensemble classifier," Computer Networks, vol. 174, p. 107247, 2020.
- 22. S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, "Security, privacy and trust in Internet of Things: The road ahead," Computer Networks, vol. 76, pp. 146-164, 2015.
- 23. F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, "Internet of Things security: A survey," Journal of Network and Computer Applications, vol. 88, pp. 10-28, 2017.
- 24. Z. A. Khan and P. Herrmann, "A trust based distributed intrusion detection mechanism for internet of things," in Proc. IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), Taipei, Taiwan, 2017, pp. 1169-1176.
- 25. A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, "Survey of intrusion detection systems: techniques, datasets and challenges," Cybersecurity, vol. 2, no. 1, pp. 1-22, 2019.
- 26. C. Yin, Y. Zhu, J. Fei, and X. He, "A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks," IEEE Access, vol. 5, pp. 21954-21961, 2017.
- 27. R. Heartfield, G. Loukas, S. Budimir, A. Bezemskij, J. E. Fontaine, A. Filippoupolitis, and E. Roesch, "A taxonomy of cyber-physical threats and impact in the smart home," Computers & Security, vol. 78, pp. 398-428, 2018
- 28. N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, "Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset," Future Generation Computer Systems, vol. 100, pp. 779-796, 2019.
- 29. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization," in Proc. 4th International Conference on Information Systems Security and Privacy (ICISSP), Funchal, Portugal, 2018, pp. 108-116.
- 30. S. Kumar, B. K. Patel, J. Kumar, and A. A. Alzahrani, "A comprehensive survey of DDoS attacks, their types, prevention, and detection techniques," International Journal of Communication Systems, vol. 34, no. 12, p. e4850, 2021.
- 31. T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, "Deep learning approach for Network Intrusion Detection in Software Defined Networking," in Proc. International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 2016, pp. 258-263.
- 32. F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, "Machine Learning in IoT Security: Current Solutions and Future Challenges," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1686-1721, 2020.
- 33. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the KDD CUP 99 data set," in Proc. IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 2009, pp. 1-6.
- 34. L. Dhanabal and S. P. Shantharajah, "A study on NSL-KDD dataset for intrusion detection system based on classification algorithms," International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 6, pp. 446-452, 2015.
- 35. A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab, "Hybrid intrusion detection system based on the stacking ensemble of c5 decision tree classifier and one class support vector machine," Electronics, vol. 9, no. 1, p. 173, 2020.
- 36. M. Pahl and F. Aubet, "All eyes on you: Distributed Multi-Dimensional IoT microservice anomaly detection," in Proc. 14th International Conference on Network and Service Management (CNSM), Rome, Italy, 2018, pp. 72-80
- 37. G. A. Ajagbe, J. B. Awotunde, S. O. Adesola, and O. E. Matiluko, "Ensemble learning approach for phishing detection using extra tree classifier," in Proc. International Conference on Computational Science and Its Applications, Cagliari, Italy, 2021, pp. 67-82.
- 38. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

- 39. J. M. Kizza, "Denial of Service Attacks," in Guide to Computer Network Security, 4th ed. Cham, Switzerland: Springer, 2017, pp. 365-378.
- 40. S. Bansal and D. Sharma, "A survey on IoT big data: current status, 13 V's challenges, and future directions," ACM Computing Surveys, vol. 53, no. 6, pp. 1-59, 2020.
- 41. A. Kumari, R. Gupta, S. Tanwar, and S. Kumar, "A taxonomy of blockchain-enabled softwarization for secure UAV network," Computer Communications, vol. 161, pp. 304-323, 2020.
- 42. M. Frustaci, P. Pace, G. Aloi, and G. Fortino, "Evaluating critical security issues of the IoT world: Present and future challenges," IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2483-2495, 2018.
- 43. J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, "Data security and privacy-preserving in edge computing paradigm: Survey and open challenges," IEEE Access, vol. 6, pp. 18209-18237, 2018.
- 44. S. Raza, L. Wallgren, and T. Voigt, "SVELTE: Real-time intrusion detection in the Internet of Things," Ad Hoc Networks, vol. 11, no. 8, pp. 2661-2674, 2013.
- 45. M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, "Deep learning-based intrusion detection for IoT networks," in Proc. IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), Kyoto, Japan, 2019, pp. 256-25609.
- 46. B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, "A comprehensive survey of intrusion detection systems," Computers & Security, vol. 73, pp. 345-365, 2018.
- 47. O. Ibitoye, O. Shafiq, and A. Matrawy, "Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks," in Proc. IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6.
- 48. A. Thakkar and R. Lohiya, "A review of the advancement in intrusion detection datasets," Procedia Computer Science, vol. 167, pp. 636-645, 2020.
- 49. H. Sedjelmaci, S. M. Senouci, and M. A. Abu-Rgheff, "An efficient and lightweight intrusion detection mechanism for service-oriented vehicular networks," IEEE Internet of Things Journal, vol. 1, no. 6, pp. 570-577, 2014.
- 50. L. Zhou, X. Li, K. H. Yeh, C. Su, and W. Chiu, "Lightweight IoT-based authentication scheme in cloud computing circumstance," Future Generation Computer Systems, vol. 91, pp. 244-251, 2019.
- 51. J. Granjal, E. Monteiro, and J. S. Silva, "Security for the internet of things: a survey of existing protocols and open research issues," IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1294-1312, 2015.
- 52. W. Meng, W. Li, Y. Xiang, and R. H. Deng, "A Bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks," Journal of Network and Computer Applications, vol. 78, pp. 162-169, 2017.
- 53. Y. Liu, Y. Wang, and G. Wang, "Efficient privacy-preserving dual authentication and key agreement scheme for secure V2V communications in an IoV paradigm," IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 10, pp. 2740-2749, 2017.
- 54. D. E. Boubiche, S. Boubiche, A. Bilami, and H. Toral-Cruz, "Big data challenges and data aggregation strategies in wireless sensor networks," IEEE Access, vol. 6, pp. 20558-20571, 2018.
- 55. R. Roman, J. Zhou, and J. Lopez, "On the features and challenges of security and privacy in distributed internet of things," Computer Networks, vol. 57, no. 10, pp. 2266-2279, 2013.
- 56. A. L. Buczak and E. Guven, "A survey of data mining and machine learning methods for cyber security intrusion detection," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176, 2016.
- 57. Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, "A survey on security and privacy issues in Internet-of-Things," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250-1258, 2017.
- 58. K. Zhao and L. Ge, "A survey on the internet of things security," in Proc. 9th International Conference on Computational Intelligence and Security, Leshan, China, 2013, pp. 663-667.
- 59. P. N. Mahalle, N. R. Anggorojati, N. M. Prasad, and R. Prasad, "Identity authentication and capability based access control (IACAC) for the internet of things," Journal of Cyber Security and Mobility, vol. 1, no. 4, pp. 309-348, 2013.
- 60. M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti, and M. Jo, "Design of secure user authenticated key management protocol for generic IoT networks," IEEE Internet of Things Journal, vol. 5, no. 1, pp. 269-282, 2018.