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Abstract: We discuss the relationship between artificial intelligence (AI) and microgrid systems in
the paper to enhance rural electrification- breaking the technical, economical, and social constraints
of decentralized energy supply in resource scarce environments. The paper employs a
multidisciplinary analytical review approach and provides the synthesis of the available empirical
evidence regarding the Al application in deep reinforcement learning, Long Short-Memory
networks, and hybrid physical-machine learning algorithms of load prediction, energy dispatch
optimization, and power quality management. The findings demonstrate that Al-based control
mechanisms increase the effectiveness of the operations, renewable energy utilization, and the
resilience of the systems compared to the traditional approaches. It is interesting to mention that the
research creates an ongoing gap like deficiency of the long-term field validation, shortage of data,
socio-economic problems and implementation mismatches like trafficking in the calculators and
privacy concerns. The article provides a unified techno-socio-economic approach to emphasize the
need to have powerful, explainable AI frameworks, privacy-enhancing data methods, and
participatory governance to facilitate scalable and sustainable Al-based microgrid applications. The
contribution to the body of knowledge is that the work provides the development of scholarly
knowledge and presents practical implications to researchers, practitioners, and policymakers who
need to hasten the process of inclusive energy transitions in rural areas that are under-served.
Keywords: Al-powered microgrids, rural electrification, load forecasting, energy management, and
sustainable energy systems.

1. INTRODUCTION

Decentralized energy systems and more so micro grids have emerged as a viable alternative in electrification of
rural population at location where central grid infrastructure remains low or just not economically viable. The
microgrids are small clusters and networks of distributed energy resources (DERs) and loads, which can be grid-
connected and islanded. They have preset the characteristics of flexibility to the point of resilience that puts them
in the privileged position of taking up rural electrification initiatives (Zulu et al., 2023). Parallel to these
developments, there has been a significant well-promising development in artificial intelligence (AI) technologies
in the application of energy management systems (EMS) in microgrid architectures. The Al applications will be
applicable to enhance multiple operational levels like precision of the load forecasting, optimization of renewable
generation and storage resources and fault detection system (Joshi et al., 2023).

In a rural deployment application, the microgrid control systems which will include AI will handle several
technical problems that constrain conventional systems. The constant challenges in the operations are uncertainty
in patterns of the generation of renewable energy, uncertainty in patterns of load increase, and optimization needs
in the energy storage. The Al-enhanced systems offer the means of reducing the reliability and cost-efficiency of
the system as it is updated to this dynamic operating parameters (Ahmed et al., 2025). However, the practicality
of the proposed Al-powered microgrids implementation in the rural population cannot be constrained to
engineering-related considerations. The socio-economic constraints, the institutional framework regulations, and
data infrastructure limitations affect the results of the deployment and operational sustainability greatly (Ahmed
et al., 2025). Laudably, complete appraisal involves the study of other facets of feasibility besides technical
competencies to encompass other dimensions of Al-enabled microgrid adoption undertakings in resource-
constrained environments.

The study is based on a multidisciplinary approach to analysis because it will empirically study the practicability
of Al-enabled microgrids implementation in rural communities. Technological performance, implications of
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economic viability, implications of environmental sustainability and dynamics of social acceptance are examples
of evidence synthesized in the review. The paper provides through methodical consideration of recent empirical
studies enabling conditions and perpetual constraints that define the real world deployments. The obstacles that
were registered include the heavy initial capital outlay, issues of data management and capacity building
requirements that affect the success rate of implementation. The value of this paper is that it derives a unified
method of techno-socio-economic evaluation of Al-driven microgrids in rural electrification frameworks. This
method of analysis serves practical purposes to scholars, practitioners, and policymakers interested in enhancing
the rapid process of the sustainable energy transition in remote or underserved geographical locations.

2. Al-based Control and Optimal Dispatch in Microgrids
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Figure 1. Control in Microgrids

Modern microgrid designs have advanced control systems as shown in Figure 1, which unites dispersed energy
assets with smart control protocols. The recent research trends have focused on improving the performance of
microgrid energy management system (EMS) via artificial intelligence (AI) approaches, specifically, deep
reinforcement learning (DRL), deep Q-networks (DQN) and continuous-action deep reinforcement learning
(CDRL) variants of the system to work with the conditions of stochastic renewable supply and time-varying price
formations.

Preliminary experimental and simulation studies by Ji et al. (2019), Nakabi and Tovinen (2021), and Alabdullah
and Abido (2022) were influential in offering demonstrations that DRL and DQN approaches result in reduction
of the operating costs and an increase of renewable utilization compared to the classical rule-based approach and
myopic optimization approaches. These enhancements are reflected in the acquired policies that take advantage
of the nature of storage flexibility and temporality reflected on the demand profiles, and photovoltaic/ wind
generation sequences. The literature has recorded better economic indicators and increased renewable self-
consumption rates in case study applications and benchmark test systems, making Al procedures one of the
promising solutions to autonomous dispatch operations in the uncertain conditions. The reported gains in
performance in these studies were however, largely measured on simulation test beds using stylized system models
or using small historical data sets. As a result of this, the reported improvements must be seen as demonstrations
of proof-of-concept demonstrations, and not as a guaranteed statement of field performance properties.

2.1 Safety-Aware Learning and Constraint Satisfaction

One of the general criticisms that come out in the literature is the conflict between unconstrained learning aims
and the operational safety limitations of actual deployments of microgrids. The studies that have dealt with safety-
conscious learning perspectives as in the case of Ye et al. (2023) restate EMS optimization in limited Markov
Decision Process (MDP) models. These expressions use interior-point optimization (IPO) and constrained policy-
optimization methods to see that boundaries of power-flow, voltage constraints and thermal constraints are
maintained during the learning and execution stages. These policies show significant advances of operational
viability over naive DRL implementations which do not explicitly resolve constraints.

Other streams of complementary research have embraced alternative constraint-enforcement schemes, such as
physics-informed reward structures, constrained reinforcement learning schemes, and hybrid RL-Model
Predictive Control (MPC) schemes, which ensure compliance of hard constraints and are also adaptive (Peng et
al., 2023; Joshal and Gupta, 2023). Regardless of such methodological improvements, comparatively not many
studies have carried out rigorous closed-loop demonstrations of constraint satisfaction in the presence of model
error. In addition, there is still a narrow scope regarding systematic comparison of safe RL solvers with industrial
strength constrained optimization solvers. Therefore, the safe operation in islanded rural microgrid systems
remains an engineering problem of open challenge with conservative validation systems and safety backup
strategies.
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2.2 Implementation Feasibility and Computational Tractability

Implementing algorithms with interpretability, computational tractability, and compatibility with edge controllers
with limited central processing unit (CPU) capacity and limited availability of network bandwidth are desired in
resource constrained rural settings. A number of comparative papers and survey articles highlight that, although
deep actor-critic architectures may provide better reported reward metrics, they are very expensive to train, have
non-transparent decision logic pathways, and have large memory/computational footprints. Such characteristics
make field update processes and on-site troubleshooting operations more complex, which would be a major
obstacle to rural deployment situations.

These conflicting demands are resolved with hybrid solution architectures in a range of ways: DRL policies trained
offline and then distilled into representations of lower computational complexity, DRL controllers controlled by
MPC frameworks, and more distributed multi-agent RL systems with federated learning protocols (Hu et al.,
2021). Some of the studies also describe successful Hardware-in-Loop (HIL) or OPAL-RT experimental
demonstrations that show that real-time inference is still possible on relatively small hardware platforms after the
completion of offline training (Lin et al., 2023; Martinez-Nolasco et al., 2023). However, no best comparative
analysis that would simultaneously compare latency measures, worst-case execution time values, and
interpretability measures across paradigms, including MPC, RL, and hybrid architectures, is present in literature.
This is a gap that practitioners have incomplete information about hardware selection criteria and the
specifications of fail-safe design.

2.3 Robustness, Adversarial Conditions, and Generalization Capacity

Resistance to non-stationary environmental dynamics, sensor and communication failure instances and adversarial
noise conditions are insufficiently investigated in most of the experimental studies. Other publications explore the
generalization ability, which is achieved by measuring the performance of RL policies to unseen weather
sequences or price paths, as well as, by introducing exogenous fault that makes the simulation conditions (Guatam,
2023; Yu et al., 2024). Some of them put forward Bayesian or ensemble approaches to measure epistemic
uncertainty and activate conservative backup controllers in cases where confidence measures drop below
reasonable levels (Stavrev, S& Ginchev, 2024; Qiu et al., 2024).

However, there is limited empirical data that proves the effective transferability of DRL policies trained in given
geographic or climatic settings to new deployment settings (Haarnoja et al., 2017; Farhani et al., 2025). Devoid
of either systematic cross-dataset validation procedures or domain-randomized instruction mechanisms, the
learned controllers may display vulnerable conduct beyond setting of distribution shift than frequently seen in the
rural deployments (Bui et al., 2024; Fujimoto et al., 2024). Such changes include seasonal changes, changes in
load patterns, and the unforeseen distributed energy resource outages. This weakness drives the incorporation of
learning-based solutions into a sound optimization framework and modular safety supervisor model to increase
the resilience features prior to entry in the field (Di Persio et al., 2024; Wang et al., 2025).

2.4 Validation Evidence and Operational Viability

The most interesting data on the proof of near-operational viability is produced in research that goes beyond
offline simulation to the field of HIL validation and small-scale field pilot projects. Examples of such works are
OPAL-RT (Wang et al., 2021; Golestan et al., 2024) emulation tests and low-budget HIL systems which can check
the timing properties and closed-loop interaction dynamics (Lin et al., 2023; Martinez-Nolasco et al., 2023). These
works make several key findings: (a) the real-time policy inference on DRL can be implemented on mid-range
controller hardware (Incer et al., 2024; Matni et al., 2024), (b) latency and quantization effects are revealed by
HIL testing and not visible in pure simulation settings (Wnag et al., 2019; Wang et al., 202), and (c) layered control
architectures, including the primary stability control using MPC or DRL (Vaidya, 2021).

3. Renewable Integration and Power Quality in Rural Microgrids
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Figure 2. Rural Microgrids

In countries that feature rural rural microgrid systems with higher levels of photovoltaic (PV) and wind energy
production, the integration of renewable energy into the power architecture has significant technical issues in
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terms of maintaining power quality, especially systems with higher photovoltaic and wind energy penetration (Li
et al., 2022; Talaat et al., 2023). Intense studies have shown that Al-aided forecasting techniques and adaptive
control schemes serve essential roles in reducing the occurrence of the renewable curtailment phenomenon,
maximizing the energy use efficiency, and improving the voltage and frequency regulation capacity (Faisal et al.,
2018; Shahzad et al., 2023). Combined with suitable feature engineering methods, traditional machine learning
architectures have shown forecasting metrics of deep learning architectures, thus, supporting more credible
renewable energy generation planning models (Joshi et al., 2023; Osalade et al., 2022).

Nevertheless, whereas simulation-based models often operate with perfect storage capacity layouts, the actual-
life rural microgrids deployment faces seasonal change patterns and constraints of energy storage scale that
negatively affect the stability of systems and qualities of power services (Zhu et al., 2019; Pirie et al., 2024). As a
result, the positive results of optimization observed in the simulation environment frequently do not take into
account these important practical factors, which is why the need to design specific refined computational models
that would reflect various aspects of rural operational scenarios and resource availability patterns (Sinha and
Chandel, 2015; Motjoadi et al., 2020; Kamal and Ahsraf, 2023) is acute.

3.1 Inverter Control Coordination and Dynamic Power Management

The coordination of inverter control is a decisive solution in the context of improving power quality in rural Al-
powered microgrids. Efficient dynamic reactive control of power with Al-controlled inverter regulatory schemes
offers a solution to the occurrence of voltage fluctuations and the variation in frequency caused by distinctions in
operations of the distributed renewable energy sources (Adibi, & van der Woude, 2019; Garcia-Torres et al., 2021).
The model predictive control and reinforcement learning approaches have been explored as research studies to
control the virtual inertia properties in a more adaptive way that improves the robustness of the microgrids under
different load and condition of generation scenarios (Olivares et al., 2014; Kusmantoro, 2023; Nithra and Annad,
2024).

Additionally, it has been suggested that hybrid inverter designs that allow a smooth change over between grid-
following and grid-forming can be used to enhance the reliability of operation in electrical networks with low
short-circuit ratios, as is typical in rural electrification situations (Guerreiro et al., 2025; Nadimuthu et al., 2024).
Such technological improvements shed light on how the dynamics of a inverter and artificial intelligence-based
adaptive control system intersect, which requires the optimization to preserve the power quality levels without
impairing the system resilience properties.

3.2 Hybrid Energy Storage Strategies and AI-Driven Optimization

Hybrid energy storage plans play a very crucial role in determining the performance of Al-based microgrid
systems, especially in terms of accommodating variable renewable energy as well as ensuring quality of power
indicators. Battery-supercapacitor hybrids, controlled by Al algorithms like the reinforcement learning
frameworks, have been shown to be able to stabilize the patterns of energy supply-demand variation, plus increase
the battery working life by eliminating the effects of deep discharge cycling ( Al-Bayati et al., 2025). Also,
integration with vehicle-to-grid technologies and multi-agent system architectures can support the distributed
supervisory control methodologies in the optimization of the use of storage deployment decisions based on the
contextual energy prices structure and load forecast parameters (Suri et al., 2020).

Nevertheless, many experimental validation works still use representations of synthetic datasets, and do not
consider the phenomenon of seasonal storage degradation, so the applicability of performance claims to real-world
situations of rural microgrid deployment remains limited (Onaolapo et al., 2021; Pirie et al., 2024). This approach
is a major limitation of the generalizability of reported results to the field implementation situation.

3.3 Experimental Realism and Rural Microgrid Operational Characteristics

An important problem that has cropped up in the existing research directions is the extent to which the published
experimental settings are representative of the variability of the renewable resources and grid stiffness aspects that
are commonly experienced in the rural microgrid setting. Seasonal variations in the patterns of solar irradiance
and wind velocity profile may have significant effects on the patterns of power availability, and parameters of
voltage stability, which are often simplified or not well-characterized in experimental test protocols (Bihari et al.,
2021). Moreover, the microgrids of rural areas are typically characterized by a low level of grid interconnections
as well as reduced short-circuit strength parameters, which, in turn, intensify the control complexity demands and
influence the ability to maintain the power quality (Gutiérrez-Escalona et al., 2024).

Although some of the research studies may solve these issues of operation by applying the stochastic modeling
frameworks and adaptive Al control frameworks, there always exists a gap between laboratory validation results
and operational realities in the field. This inconsistency suggests the need to do longitudinal study designs and
real-time implementation trials that involves holistic environmental and infrastructural variability that meets the
diverse rural deployment setting (Joshi et al., 2023; Nadimuthu et al., 2024).

4. Load and Generation Forecasting for Demand Response and Local Markets

Generation forecasting and load forecasting are primary building blocks to optimized demand response functions
and local energy market approaches in microgrid designs, especially in rural implementation scenarios where
resource limitations and operational variability can cause system inefficiency (Hyndman, & Athanasopoulos,
2018; Bandara et al., 2020) . Ample literature between 2015 and 2025 confirms that machine-learning (ML)
models such as gradient boosting algorithms, Long Short-Term Memory (LSTM) networks and hybrid physical-
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ML models exhibit better performance metrics and adaptive characteristics compared to the classical statistical
forecasting models (Zhang et al., 1998; Computation, 2016; AlKandari, and Ahmad, 2024).

Analyses that use Bi-directional LSTM (Bi-LSTM) model structures have witnessed significant gains in the short-
term photovoltaic (PV) power and load prediction results (Marino et al., 2016; Mohammad et al., 2018), and also
improved temporal feature capture capabilities have been used to achieve more accurate demand-supply balancing
operations (Joshi, 2023; PMC, 2024). Moreover, hybrid modeling tools that combine the physical system
understanding and the architecture of ML algorithms demonstrate greater resistance features based on its ability
to contextualize the prediction of data-driven forecasting within the constraints of the operational system (Al-
Bayati, 2025). Yet, such good performances are often contingent on the quality and the volumetric sufficiency of
available training data, which is often a problem in rural microgrid setups with a highly sparse metering
infrastructure and intermittency in training data collection systems (Bakirtzis et al., 2002; Hong and Fan., 2016).
4.1 Data Scarcity and Its Impact on Forecasting Performance

The lack of JData in the rural communities setting is a critical bottleneck that has significant impact on the
forecasting performance and hence the ability of demand response. A range of studies points to the inherent
constraints of translating the distribution obtained on urban or industrial datasets of the ML models to the rural
microgrid setting, where the characteristics of consumption patterns have a different seasonality profile and socio-
economic determinants (Raza, & Khosravi , 2015; Lago et al., 2018; Singh et al., 2024). Besides, regulatory
regimes restrict the availability of granular consumption information, thus hindering the creation of personalized
forecasting models that are needed in the fine-grained local market participation mechanisms. The data
availability constraints have also been examined in terms of being alleviated through the use of transfer learning
and federated learning methodologies that allow models to adapt in different geographical settings without the
need to engage in direct data sharing procedures (Hong et al., 2020; Tafula et al., 2023). Nevertheless, the
scalability and interpretability of such methods in the low-resource deployment context have not been studied
sufficiently, which implies an urgent need of standardized benchmark development related in particular to rural
microgrid data contexts and dynamics (Alquthami et al., 2022; Sua et al. 2025).

4.2 Transferability Challenges Across Heterogeneous Deployment Contexts

The heterogeneity of climatic and topographical conditions that affect the renewable generation profiles and the
nature of load pattern characteristics is augmented by the challenge in model transferability in rural microgrid
deployments. Empirical studies carried out at multiple locations have noted that model architectures that have
been trained to be biased to particular climate zone conditions tend to lose much of their performance when used
in different geographical settings, unless they are further retrained or recalibrated incurring a significant expense.
Such an operational variability calls upon hybrid modeling systems that combine physical deterministic models
such as the solar irradiance prediction model with a data-driven ML forecasting model to enhance the performance
of generalization in different environmental conditions (Al-Bayati, 2025).

Moreover, the choice of the temporal resolution has a significant influence on the results of the forecasting. More
refined scheduling of demand response can be realized with higher temporal resolutions, but in a trade-off
relationship, higher time resolution also amplifies data noise, and overloads computational capacity, which is
further required to be balancing trade-offs, such as the rural microgrids with limited edge-computing capacity
must maneuver strategically. These practical constraints of computation are a limitation on the complexity of
deployable forecasting architectures in resource limited rural settings.

4.3 Privacy Implications and Community Acceptance Considerations

The privacy considerations related to the data collection procedures in small-scale rural micro grid implementation
have a big impact on the problem of forecasting methodsology and acceptance processes among the end-users.
The issue of intrusive practices in monitoring ethics has raised the research interest in privacy-saving ML
algorithms, such as a differential privacy mechanism and a homomorphic encryption approach designed explicitly
to the energy consumption data application (Tafula et al., 2023). Furthermore, decentralized forecast systems
constructed on the basis of edge-computing devices infrastructures may assist cut down the volume of raw data
transfer requirements and yet provide useful demand reaction capabilities and local market coordination measures.
These technological advancements are attempting to balance between goals of accuracy of forecasting and
upholding the believes and needs of regulations by the community. Yet, these strategies need additional
confirmation in the rural implementation settings with a very diverse range of technological literacy levels and
parameters of the infrastructure sophistication (Tafula et al., 2023; Demir et al., 2025). Socio-technical aspects of
implementation of forecast system such as user acceptance, preservation of privacy as well as the operational
transparency are all important success factors that go beyond the considerations of algorithmic performance only.

5. Outcome and Research Gaps

The overall review presents evidence that Al-based microgrids have a significant opportunity to improve rural
electrification projects in terms of combating the main challenges related to the renewable energy integration, load
variation control, and optimization within the energy management system. The empirical data show that AI-driven
approaches, such as deep reinforcement learning, Long Short-Term Memory (LSTM) network structures, and
hybrid physical-ML modeling systems, can help improve the accuracy of forecasting, optimize energy dispatch
operations, and improve the power quality characteristics, thus enhancing the performance characteristics of rural
microgrids based on the operational robustness and cost. According to socio-economic studies, the introduction
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of Al may enhance the willingness to adopt in community because it enhances the reliability levels of the system,
and enables the tariff optimization systems. Also, the research directions that have emerged stress that there is an
urgent need to integrate participatory governance models with adaptable business structure frameworks in an
effort to support long-term sustainability plans. However, these encouraging news are tainted with a series of
annoying problems that demonstrate grave lapses in the research that requires systematic studies.

Among the primary gaps in the research, the absence of field validation of Al-augmented microgrid systems on
the long-term scale, in real-life conditions in constrained resources, such as rural areas, is one of them. Majority
of developed AI control strategies and forecasting model architectures have been validated by simulation
platforms or hardware-in-loop testbed set ups that are poorly configured to reflect operational complexities like
patterns of seasonal renewable variability, communication network limits and operational maintenance realities.
Moreover, the contemporary studies are inclined to romanticize the storage system size parameters, the state of
data availability, and the feature of the network reliability, and thus present over-optimistic estimations of the Al
system performance features and the possibility of the scalability. Strong empirical evidence touching upon total
cost of ownership measures, operator training requirements, and adaptive maintenance approach efficacy are still
very scarce in the existing literature corpus.

The other notable gap is related to the socio-economic aspects of the Al microgrid implementation in the context
of rural communities. Although techno-economic modeling frameworks, social survey tools, indicate a bright
future of adoption scenarios, there is a strong lack of longitudinal, integrated study designs of user acceptance,
tariff design, fairness perceptions, and transaction cost burden distributions, and the dynamics of institutional
governance effectiveness over long periods of time. This methodological deficit leads to the risk of poor
consideration of important institutional and cultural factors, which will result in successful outcomes of
community engagement and sustainability of the business model viability. The irrelevance of technical
performance validation aspects to socio-economic aspects of implementation is a major limitation to the
translation of algorithmic capabilities in achieving operational success in rural electrification scenarios.

6. CONCLUSION

This generalized empirical literature review confirms that Al-controlled microgrids are a potentially promising
technological paradigm in rural areas with limited contexts that demand careful resolution of various
implementation issues to reach the scale of deployment. It is shown in the synthesis that the state-of-the-art Al
techniques, such as deep reinforcement learning algorithms, Long Short-Term Memory network models, and
hybrid physical-machine learning models, provide empirical results in improving accuracy, energy dispatch
optimization, and power quality control compared to traditional control algorithms, and thus they meet their
scientific expectations in solving the challenges of operational complexities posed by rural microgrid systems.
Theoretically, this study demonstrates that the establishment of Al microgrids requires a systematic integration of
the following aspects of computational tractability, data infrastructure sufficiency, privacy protection processes,
institutional governance, and community acceptance as a complex of factors that dictate whether the laboratory-
proven capabilities are translated into the performance in the field. There are however underlying constraints to
the generalizability of available findings. Most notable is the vast over-reliance of simulation testbeds and
hardware in-loop validation systems that poorly present seasonal variability, communication impairments and
complexities of maintaining device performance aspects of actual seasonal scenarios, and thus inject optimistic
bias on the asserted performance values. Lack of field trials over the long period and covering in depth techno-
economic and socio-institutional measures constitute a significant methodological gap that does not allow
conclusive assumptions on the total cost of ownership and community engagement effectiveness in the framework
of the real operational conditions. Immediate research needs must focus on multi-site field pilot applications in
which systematically measured operational performance, economic feasibility and social acceptance processes in
a wide range of geographical settings, using standardized benchmark protocols with communication impairment
and seasonal variation trends are utilized. Also, the research should focus on privacy preserving federated learning
architectures, domain randomized training regimes that improve model robustness, hybrid control structures that
synthesize learning adaptivity and formal constraints guarantees, and interpretable Al approaches that can be used
in limited contexts of technical capacity. Intensive coordination will be required in the implementation of Al-
powered microgrids in underserved geographical locations, in terms of perfecting algorithms, creating
infrastructure, capacity building initiatives and regulatory measures that will make such deployments turn Al-
powered microgrids into scalable, reliable, and equitable rural energy provision that can accelerate the sustainable
electrification process in underserved geographical locations.
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