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Abstract: We discuss the relationship between artificial intelligence (AI) and microgrid systems in 

the paper to enhance rural electrification- breaking the technical, economical, and social constraints 

of decentralized energy supply in resource scarce environments. The paper employs a 

multidisciplinary analytical review approach and provides the synthesis of the available empirical 

evidence regarding the AI application in deep reinforcement learning, Long Short-Memory 

networks, and hybrid physical-machine learning algorithms of load prediction, energy dispatch 

optimization, and power quality management. The findings demonstrate that AI-based control 

mechanisms increase the effectiveness of the operations, renewable energy utilization, and the 

resilience of the systems compared to the traditional approaches. It is interesting to mention that the 

research creates an ongoing gap like deficiency of the long-term field validation, shortage of data, 

socio-economic problems and implementation mismatches like trafficking in the calculators and 

privacy concerns. The article provides a unified techno-socio-economic approach to emphasize the 

need to have powerful, explainable AI frameworks, privacy-enhancing data methods, and 

participatory governance to facilitate scalable and sustainable AI-based microgrid applications. The 

contribution to the body of knowledge is that the work provides the development of scholarly 

knowledge and presents practical implications to researchers, practitioners, and policymakers who 

need to hasten the process of inclusive energy transitions in rural areas that are under-served.  

Keywords: AI-powered microgrids, rural electrification, load forecasting, energy management, and 

sustainable energy systems. 

 

1. INTRODUCTION 

 

Decentralized energy systems and more so micro grids have emerged as a viable alternative in electrification of 

rural population at location where central grid infrastructure remains low or just not economically viable. The 

microgrids are small clusters and networks of distributed energy resources (DERs) and loads, which can be grid-

connected and islanded. They have preset the characteristics of flexibility to the point of resilience that puts them 

in the privileged position of taking up rural electrification initiatives (Zulu et al., 2023). Parallel to these 

developments, there has been a significant well-promising development in artificial intelligence (AI) technologies 

in the application of energy management systems (EMS) in microgrid architectures. The AI applications will be 

applicable to enhance multiple operational levels like precision of the load forecasting, optimization of renewable 

generation and storage resources and fault detection system (Joshi et al., 2023). 

In a rural deployment application, the microgrid control systems which will include AI will handle several 

technical problems that constrain conventional systems. The constant challenges in the operations are uncertainty 

in patterns of the generation of renewable energy, uncertainty in patterns of load increase, and optimization needs 

in the energy storage. The AI-enhanced systems offer the means of reducing the reliability and cost-efficiency of 

the system as it is updated to this dynamic operating parameters (Ahmed et al., 2025). However, the practicality 

of the proposed AI-powered microgrids implementation in the rural population cannot be constrained to 

engineering-related considerations. The socio-economic constraints, the institutional framework regulations, and 

data infrastructure limitations affect the results of the deployment and operational sustainability greatly (Ahmed 

et al., 2025). Laudably, complete appraisal involves the study of other facets of feasibility besides technical 

competencies to encompass other dimensions of AI-enabled microgrid adoption undertakings in resource-

constrained environments. 

The study is based on a multidisciplinary approach to analysis because it will empirically study the practicability 

of AI-enabled microgrids implementation in rural communities. Technological performance, implications of 
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economic viability, implications of environmental sustainability and dynamics of social acceptance are examples 

of evidence synthesized in the review. The paper provides through methodical consideration of recent empirical 

studies enabling conditions and perpetual constraints that define the real world deployments. The obstacles that 

were registered include the heavy initial capital outlay, issues of data management and capacity building 

requirements that affect the success rate of implementation. The value of this paper is that it derives a unified 

method of techno-socio-economic evaluation of AI-driven microgrids in rural electrification frameworks. This 

method of analysis serves practical purposes to scholars, practitioners, and policymakers interested in enhancing 

the rapid process of the sustainable energy transition in remote or underserved geographical locations. 

 

2. AI-based Control and Optimal Dispatch in Microgrids 

 
Figure 1. Control in Microgrids 

 

Modern microgrid designs have advanced control systems as shown in Figure 1, which unites dispersed energy 

assets with smart control protocols. The recent research trends have focused on improving the performance of 

microgrid energy management system (EMS) via artificial intelligence (AI) approaches, specifically, deep 

reinforcement learning (DRL), deep Q-networks (DQN) and continuous-action deep reinforcement learning 

(CDRL) variants of the system to work with the conditions of stochastic renewable supply and time-varying price 

formations. 

Preliminary experimental and simulation studies by Ji et al. (2019), Nakabi and Tovinen (2021), and Alabdullah 

and Abido (2022) were influential in offering demonstrations that DRL and DQN approaches result in reduction 

of the operating costs and an increase of renewable utilization compared to the classical rule-based approach and 

myopic optimization approaches. These enhancements are reflected in the acquired policies that take advantage 

of the nature of storage flexibility and temporality reflected on the demand profiles, and photovoltaic/ wind 

generation sequences. The literature has recorded better economic indicators and increased renewable self-

consumption rates in case study applications and benchmark test systems, making AI procedures one of the 

promising solutions to autonomous dispatch operations in the uncertain conditions. The reported gains in 

performance in these studies were however, largely measured on simulation test beds using stylized system models 

or using small historical data sets. As a result of this, the reported improvements must be seen as demonstrations 

of proof-of-concept demonstrations, and not as a guaranteed statement of field performance properties. 

2.1 Safety-Aware Learning and Constraint Satisfaction 

One of the general criticisms that come out in the literature is the conflict between unconstrained learning aims 

and the operational safety limitations of actual deployments of microgrids. The studies that have dealt with safety-

conscious learning perspectives as in the case of Ye et al. (2023) restate EMS optimization in limited Markov 

Decision Process (MDP) models. These expressions use interior-point optimization (IPO) and constrained policy-

optimization methods to see that boundaries of power-flow, voltage constraints and thermal constraints are 

maintained during the learning and execution stages. These policies show significant advances of operational 

viability over naive DRL implementations which do not explicitly resolve constraints. 

Other streams of complementary research have embraced alternative constraint-enforcement schemes, such as 

physics-informed reward structures, constrained reinforcement learning schemes, and hybrid RL-Model 

Predictive Control (MPC) schemes, which ensure compliance of hard constraints and are also adaptive (Peng et 

al., 2023; Joshal and Gupta, 2023). Regardless of such methodological improvements, comparatively not many 

studies have carried out rigorous closed-loop demonstrations of constraint satisfaction in the presence of model 

error. In addition, there is still a narrow scope regarding systematic comparison of safe RL solvers with industrial 

strength constrained optimization solvers. Therefore, the safe operation in islanded rural microgrid systems 

remains an engineering problem of open challenge with conservative validation systems and safety backup 

strategies. 
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2.2 Implementation Feasibility and Computational Tractability 

Implementing algorithms with interpretability, computational tractability, and compatibility with edge controllers 

with limited central processing unit (CPU) capacity and limited availability of network bandwidth are desired in 

resource constrained rural settings. A number of comparative papers and survey articles highlight that, although 

deep actor-critic architectures may provide better reported reward metrics, they are very expensive to train, have 

non-transparent decision logic pathways, and have large memory/computational footprints. Such characteristics 

make field update processes and on-site troubleshooting operations more complex, which would be a major 

obstacle to rural deployment situations. 

These conflicting demands are resolved with hybrid solution architectures in a range of ways: DRL policies trained 

offline and then distilled into representations of lower computational complexity, DRL controllers controlled by 

MPC frameworks, and more distributed multi-agent RL systems with federated learning protocols (Hu et al., 

2021). Some of the studies also describe successful Hardware-in-Loop (HIL) or OPAL-RT experimental 

demonstrations that show that real-time inference is still possible on relatively small hardware platforms after the 

completion of offline training (Lin et al., 2023; Martínez-Nolasco et al., 2023). However, no best comparative 

analysis that would simultaneously compare latency measures, worst-case execution time values, and 

interpretability measures across paradigms, including MPC, RL, and hybrid architectures, is present in literature. 

This is a gap that practitioners have incomplete information about hardware selection criteria and the 

specifications of fail-safe design. 

2.3 Robustness, Adversarial Conditions, and Generalization Capacity 

Resistance to non-stationary environmental dynamics, sensor and communication failure instances and adversarial 

noise conditions are insufficiently investigated in most of the experimental studies. Other publications explore the 

generalization ability, which is achieved by measuring the performance of RL policies to unseen weather 

sequences or price paths, as well as, by introducing exogenous fault that makes the simulation conditions (Guatam, 

2023; Yu et al., 2024). Some of them put forward Bayesian or ensemble approaches to measure epistemic 

uncertainty and activate conservative backup controllers in cases where confidence measures drop below 

reasonable levels (Stavrev, S& Ginchev, 2024; Qiu et al., 2024). 

However, there is limited empirical data that proves the effective transferability of DRL policies trained in given 

geographic or climatic settings to new deployment settings (Haarnoja et al., 2017; Farhani et al., 2025). Devoid 

of either systematic cross-dataset validation procedures or domain-randomized instruction mechanisms, the 

learned controllers may display vulnerable conduct beyond setting of distribution shift than frequently seen in the 

rural deployments (Bui et al., 2024; Fujimoto et al., 2024). Such changes include seasonal changes, changes in 

load patterns, and the unforeseen distributed energy resource outages. This weakness drives the incorporation of 

learning-based solutions into a sound optimization framework and modular safety supervisor model to increase 

the resilience features prior to entry in the field (Di Persio et al., 2024; Wang et al., 2025). 

2.4 Validation Evidence and Operational Viability 

The most interesting data on the proof of near-operational viability is produced in research that goes beyond 

offline simulation to the field of HIL validation and small-scale field pilot projects. Examples of such works are 

OPAL-RT (Wang et al., 2021; Golestan et al., 2024) emulation tests and low-budget HIL systems which can check 

the timing properties and closed-loop interaction dynamics (Lin et al., 2023; Martínez-Nolasco et al., 2023). These 

works make several key findings: (a) the real-time policy inference on DRL can be implemented on mid-range 

controller hardware (Incer et al., 2024; Matni et al., 2024), (b) latency and quantization effects are revealed by 

HIL testing and not visible in pure simulation settings (Wnag et al., 2019; Wang et al., 202), and (c) layered control 

architectures, including the primary stability control using MPC or DRL (Vaidya, 2021). 

 

3. Renewable Integration and Power Quality in Rural Microgrids 

 
Figure 2. Rural Microgrids 

 

In countries that feature rural rural microgrid systems with higher levels of photovoltaic (PV) and wind energy 

production, the integration of renewable energy into the power architecture has significant technical issues in 
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terms of maintaining power quality, especially systems with higher photovoltaic and wind energy penetration (Li 

et al., 2022; Talaat et al., 2023). Intense studies have shown that AI-aided forecasting techniques and adaptive 

control schemes serve essential roles in reducing the occurrence of the renewable curtailment phenomenon, 

maximizing the energy use efficiency, and improving the voltage and frequency regulation capacity (Faisal et al., 

2018; Shahzad et al., 2023). Combined with suitable feature engineering methods, traditional machine learning 

architectures have shown forecasting metrics of deep learning architectures, thus, supporting more credible 

renewable energy generation planning models (Joshi et al., 2023; Osalade et al., 2022). 

Nevertheless, whereas simulation-based models often operate with perfect storage capacity layouts, the actual-

life rural microgrids deployment faces seasonal change patterns and constraints of energy storage scale that 

negatively affect the stability of systems and qualities of power services (Zhu et al., 2019; Pirie et al., 2024). As a 

result, the positive results of optimization observed in the simulation environment frequently do not take into 

account these important practical factors, which is why the need to design specific refined computational models 

that would reflect various aspects of rural operational scenarios and resource availability patterns (Sinha and 

Chandel, 2015; Motjoadi et al., 2020; Kamal and Ahsraf, 2023) is acute. 

3.1 Inverter Control Coordination and Dynamic Power Management 

The coordination of inverter control is a decisive solution in the context of improving power quality in rural AI-

powered microgrids. Efficient dynamic reactive control of power with AI-controlled inverter regulatory schemes 

offers a solution to the occurrence of voltage fluctuations and the variation in frequency caused by distinctions in 

operations of the distributed renewable energy sources (Adibi, & van der Woude, 2019; Garcia-Torres et al., 2021). 

The model predictive control and reinforcement learning approaches have been explored as research studies to 

control the virtual inertia properties in a more adaptive way that improves the robustness of the microgrids under 

different load and condition of generation scenarios (Olivares et al., 2014; Kusmantoro, 2023; Nithra and Annad, 

2024). 

Additionally, it has been suggested that hybrid inverter designs that allow a smooth change over between grid-

following and grid-forming can be used to enhance the reliability of operation in electrical networks with low 

short-circuit ratios, as is typical in rural electrification situations (Guerreiro et al., 2025; Nadimuthu et al., 2024). 

Such technological improvements shed light on how the dynamics of a inverter and artificial intelligence-based 

adaptive control system intersect, which requires the optimization to preserve the power quality levels without 

impairing the system resilience properties. 

3.2 Hybrid Energy Storage Strategies and AI-Driven Optimization 

Hybrid energy storage plans play a very crucial role in determining the performance of AI-based microgrid 

systems, especially in terms of accommodating variable renewable energy as well as ensuring quality of power 

indicators. Battery-supercapacitor hybrids, controlled by AI algorithms like the reinforcement learning 

frameworks, have been shown to be able to stabilize the patterns of energy supply-demand variation, plus increase 

the battery working life by eliminating the effects of deep discharge cycling ( Al-Bayati et al., 2025). Also, 

integration with vehicle-to-grid technologies and multi-agent system architectures can support the distributed 

supervisory control methodologies in the optimization of the use of storage deployment decisions based on the 

contextual energy prices structure and load forecast parameters (Suri et al., 2020). 

Nevertheless, many experimental validation works still use representations of synthetic datasets, and do not 

consider the phenomenon of seasonal storage degradation, so the applicability of performance claims to real-world 

situations of rural microgrid deployment remains limited (Onaolapo et al., 2021; Pirie et al., 2024). This approach 

is a major limitation of the generalizability of reported results to the field implementation situation. 

3.3 Experimental Realism and Rural Microgrid Operational Characteristics 

An important problem that has cropped up in the existing research directions is the extent to which the published 

experimental settings are representative of the variability of the renewable resources and grid stiffness aspects that 

are commonly experienced in the rural microgrid setting. Seasonal variations in the patterns of solar irradiance 

and wind velocity profile may have significant effects on the patterns of power availability, and parameters of 

voltage stability, which are often simplified or not well-characterized in experimental test protocols (Bihari et al., 

2021). Moreover, the microgrids of rural areas are typically characterized by a low level of grid interconnections 

as well as reduced short-circuit strength parameters, which, in turn, intensify the control complexity demands and 

influence the ability to maintain the power quality (Gutiérrez-Escalona et al., 2024). 

Although some of the research studies may solve these issues of operation by applying the stochastic modeling 

frameworks and adaptive AI control frameworks, there always exists a gap between laboratory validation results 

and operational realities in the field. This inconsistency suggests the need to do longitudinal study designs and 

real-time implementation trials that involves holistic environmental and infrastructural variability that meets the 

diverse rural deployment setting (Joshi et al., 2023; Nadimuthu et al., 2024). 

 

4. Load and Generation Forecasting for Demand Response and Local Markets 

Generation forecasting and load forecasting are primary building blocks to optimized demand response functions 

and local energy market approaches in microgrid designs, especially in rural implementation scenarios where 

resource limitations and operational variability can cause system inefficiency (Hyndman, & Athanasopoulos, 

2018; Bandara et al., 2020) . Ample literature between 2015 and 2025 confirms that machine-learning (ML) 

models such as gradient boosting algorithms, Long Short-Term Memory (LSTM) networks and hybrid physical-
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ML models exhibit better performance metrics and adaptive characteristics compared to the classical statistical 

forecasting models (Zhang et al., 1998; Computation, 2016;  AlKandari, and Ahmad, 2024). 

Analyses that use Bi-directional LSTM (Bi-LSTM) model structures have witnessed significant gains in the short-

term photovoltaic (PV) power and load prediction results (Marino et al., 2016; Mohammad et al., 2018), and also 

improved temporal feature capture capabilities have been used to achieve more accurate demand-supply balancing 

operations (Joshi, 2023; PMC, 2024). Moreover, hybrid modeling tools that combine the physical system 

understanding and the architecture of ML algorithms demonstrate greater resistance features based on its ability 

to contextualize the prediction of data-driven forecasting within the constraints of the operational system (Al-

Bayati, 2025). Yet, such good performances are often contingent on the quality and the volumetric sufficiency of 

available training data, which is often a problem in rural microgrid setups with a highly sparse metering 

infrastructure and intermittency in training data collection systems (Bakirtzis et al., 2002; Hong and Fan., 2016). 

4.1 Data Scarcity and Its Impact on Forecasting Performance 

The lack of JData in the rural communities setting is a critical bottleneck that has significant impact on the 

forecasting performance and hence the ability of demand response. A range of studies points to the inherent 

constraints of translating the distribution obtained on urban or industrial datasets of the ML models to the rural 

microgrid setting, where the characteristics of consumption patterns have a different seasonality profile and socio-

economic determinants (Raza, & Khosravi , 2015; Lago et al., 2018; Singh et al., 2024). Besides, regulatory 

regimes restrict the availability of granular consumption information, thus hindering the creation of personalized 

forecasting models that are needed in the fine-grained local market participation mechanisms. The data 

availability constraints have also been examined in terms of being alleviated through the use of transfer learning 

and federated learning methodologies that allow models to adapt in different geographical settings without the 

need to engage in direct data sharing procedures (Hong et al., 2020; Tafula et al., 2023). Nevertheless, the 

scalability and interpretability of such methods in the low-resource deployment context have not been studied 

sufficiently, which implies an urgent need of standardized benchmark development related in particular to rural 

microgrid data contexts and dynamics (Alquthami et al., 2022; Sua et al. 2025). 

4.2 Transferability Challenges Across Heterogeneous Deployment Contexts 

The heterogeneity of climatic and topographical conditions that affect the renewable generation profiles and the 

nature of load pattern characteristics is augmented by the challenge in model transferability in rural microgrid 

deployments. Empirical studies carried out at multiple locations have noted that model architectures that have 

been trained to be biased to particular climate zone conditions tend to lose much of their performance when used 

in different geographical settings, unless they are further retrained or recalibrated incurring a significant expense. 

Such an operational variability calls upon hybrid modeling systems that combine physical deterministic models 

such as the solar irradiance prediction model with a data-driven ML forecasting model to enhance the performance 

of generalization in different environmental conditions (Al-Bayati, 2025). 

Moreover, the choice of the temporal resolution has a significant influence on the results of the forecasting. More 

refined scheduling of demand response can be realized with higher temporal resolutions, but in a trade-off 

relationship, higher time resolution also amplifies data noise, and overloads computational capacity, which is 

further required to be balancing trade-offs, such as the rural microgrids with limited edge-computing capacity 

must maneuver strategically. These practical constraints of computation are a limitation on the complexity of 

deployable forecasting architectures in resource limited rural settings. 

4.3 Privacy Implications and Community Acceptance Considerations 

The privacy considerations related to the data collection procedures in small-scale rural micro grid implementation 

have a big impact on the problem of forecasting methodsology and acceptance processes among the end-users. 

The issue of intrusive practices in monitoring ethics has raised the research interest in privacy-saving ML 

algorithms, such as a differential privacy mechanism and a homomorphic encryption approach designed explicitly 

to the energy consumption data application (Tafula et al., 2023). Furthermore, decentralized forecast systems 

constructed on the basis of edge-computing devices infrastructures may assist cut down the volume of raw data 

transfer requirements and yet provide useful demand reaction capabilities and local market coordination measures. 

These technological advancements are attempting to balance between goals of accuracy of forecasting and 

upholding the believes and needs of regulations by the community. Yet, these strategies need additional 

confirmation in the rural implementation settings with a very diverse range of technological literacy levels and 

parameters of the infrastructure sophistication (Tafula et al., 2023; Demir et al., 2025). Socio-technical aspects of 

implementation of forecast system such as user acceptance, preservation of privacy as well as the operational 

transparency are all important success factors that go beyond the considerations of algorithmic performance only. 

 

5. Outcome and Research Gaps 

The overall review presents evidence that AI-based microgrids have a significant opportunity to improve rural 

electrification projects in terms of combating the main challenges related to the renewable energy integration, load 

variation control, and optimization within the energy management system. The empirical data show that AI-driven 

approaches, such as deep reinforcement learning, Long Short-Term Memory (LSTM) network structures, and 

hybrid physical-ML modeling systems, can help improve the accuracy of forecasting, optimize energy dispatch 

operations, and improve the power quality characteristics, thus enhancing the performance characteristics of rural 

microgrids based on the operational robustness and cost. According to socio-economic studies, the introduction 
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of AI may enhance the willingness to adopt in community because it enhances the reliability levels of the system, 

and enables the tariff optimization systems. Also, the research directions that have emerged stress that there is an 

urgent need to integrate participatory governance models with adaptable business structure frameworks in an 

effort to support long-term sustainability plans. However, these encouraging news are tainted with a series of 

annoying problems that demonstrate grave lapses in the research that requires systematic studies. 

Among the primary gaps in the research, the absence of field validation of AI-augmented microgrid systems on 

the long-term scale, in real-life conditions in constrained resources, such as rural areas, is one of them. Majority 

of developed AI control strategies and forecasting model architectures have been validated by simulation 

platforms or hardware-in-loop testbed set ups that are poorly configured to reflect operational complexities like 

patterns of seasonal renewable variability, communication network limits and operational maintenance realities. 

Moreover, the contemporary studies are inclined to romanticize the storage system size parameters, the state of 

data availability, and the feature of the network reliability, and thus present over-optimistic estimations of the AI 

system performance features and the possibility of the scalability. Strong empirical evidence touching upon total 

cost of ownership measures, operator training requirements, and adaptive maintenance approach efficacy are still 

very scarce in the existing literature corpus. 

The other notable gap is related to the socio-economic aspects of the AI microgrid implementation in the context 

of rural communities. Although techno-economic modeling frameworks, social survey tools, indicate a bright 

future of adoption scenarios, there is a strong lack of longitudinal, integrated study designs of user acceptance, 

tariff design, fairness perceptions, and transaction cost burden distributions, and the dynamics of institutional 

governance effectiveness over long periods of time. This methodological deficit leads to the risk of poor 

consideration of important institutional and cultural factors, which will result in successful outcomes of 

community engagement and sustainability of the business model viability. The irrelevance of technical 

performance validation aspects to socio-economic aspects of implementation is a major limitation to the 

translation of algorithmic capabilities in achieving operational success in rural electrification scenarios. 

 

6. CONCLUSION 

 

This generalized empirical literature review confirms that AI-controlled microgrids are a potentially promising 

technological paradigm in rural areas with limited contexts that demand careful resolution of various 

implementation issues to reach the scale of deployment. It is shown in the synthesis that the state-of-the-art AI 

techniques, such as deep reinforcement learning algorithms, Long Short-Term Memory network models, and 

hybrid physical-machine learning models, provide empirical results in improving accuracy, energy dispatch 

optimization, and power quality control compared to traditional control algorithms, and thus they meet their 

scientific expectations in solving the challenges of operational complexities posed by rural microgrid systems. 

Theoretically, this study demonstrates that the establishment of AI microgrids requires a systematic integration of 

the following aspects of computational tractability, data infrastructure sufficiency, privacy protection processes, 

institutional governance, and community acceptance as a complex of factors that dictate whether the laboratory-

proven capabilities are translated into the performance in the field. There are however underlying constraints to 

the generalizability of available findings. Most notable is the vast over-reliance of simulation testbeds and 

hardware in-loop validation systems that poorly present seasonal variability, communication impairments and 

complexities of maintaining device performance aspects of actual seasonal scenarios, and thus inject optimistic 

bias on the asserted performance values. Lack of field trials over the long period and covering in depth techno-

economic and socio-institutional measures constitute a significant methodological gap that does not allow 

conclusive assumptions on the total cost of ownership and community engagement effectiveness in the framework 

of the real operational conditions. Immediate research needs must focus on multi-site field pilot applications in 

which systematically measured operational performance, economic feasibility and social acceptance processes in 

a wide range of geographical settings, using standardized benchmark protocols with communication impairment 

and seasonal variation trends are utilized. Also, the research should focus on privacy preserving federated learning 

architectures, domain randomized training regimes that improve model robustness, hybrid control structures that 

synthesize learning adaptivity and formal constraints guarantees, and interpretable AI approaches that can be used 

in limited contexts of technical capacity. Intensive coordination will be required in the implementation of AI-

powered microgrids in underserved geographical locations, in terms of perfecting algorithms, creating 

infrastructure, capacity building initiatives and regulatory measures that will make such deployments turn AI-

powered microgrids into scalable, reliable, and equitable rural energy provision that can accelerate the sustainable 

electrification process in underserved geographical locations. 
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