

FEASIBILITY AND CHALLENGES OF AI-POWERED MICROGRIDS FOR RURAL ELECTRIFICATION

DR. J. JAYA

PROFESSOR, ECE, HINDUSTHAN COLLEGE OF ENGINEERING AND TECHNOLOGY, COIMBATORE, IN, EMAIL: drjjaya2011@gmail.com

DR. B. ANAND

PROFESSOR, EIE, HINDUSTHAN COLLEGE OF ENGINEERING AND TECHNOLOGY, COIMBATORE, IN

DR. B. PAULCHAMY

PROFESSOR, ECE, HINDUSTHAN INSTITUTE OF TECHNOLOGY, COIMBATORE, IN

DR. R. VIDHYA

PROFESSOR, AIML, HINDUSTHAN COLLEGE OF ENGINEERING AND TECHNOLOGY, COIMBATORE, IN

Abstract: We discuss the relationship between artificial intelligence (AI) and microgrid systems in the paper to enhance rural electrification- breaking the technical, economical, and social constraints of decentralized energy supply in resource scarce environments. The paper employs a multidisciplinary analytical review approach and provides the synthesis of the available empirical evidence regarding the AI application in deep reinforcement learning, Long Short-Memory networks, and hybrid physical-machine learning algorithms of load prediction, energy dispatch optimization, and power quality management. The findings demonstrate that AI-based control mechanisms increase the effectiveness of the operations, renewable energy utilization, and the resilience of the systems compared to the traditional approaches. It is interesting to mention that the research creates an ongoing gap like deficiency of the long-term field validation, shortage of data, socio-economic problems and implementation mismatches like trafficking in the calculators and privacy concerns. The article provides a unified techno-socio-economic approach to emphasize the need to have powerful, explainable AI frameworks, privacy-enhancing data methods, and participatory governance to facilitate scalable and sustainable AI-based microgrid applications. The contribution to the body of knowledge is that the work provides the development of scholarly knowledge and presents practical implications to researchers, practitioners, and policymakers who need to hasten the process of inclusive energy transitions in rural areas that are under-served.

Keywords: AI-powered microgrids, rural electrification, load forecasting, energy management, and sustainable energy systems.

1. INTRODUCTION

Decentralized energy systems and more so micro grids have emerged as a viable alternative in electrification of rural population at location where central grid infrastructure remains low or just not economically viable. The microgrids are small clusters and networks of distributed energy resources (DERs) and loads, which can be grid-connected and islanded. They have preset the characteristics of flexibility to the point of resilience that puts them in the privileged position of taking up rural electrification initiatives (Zulu et al., 2023). Parallel to these developments, there has been a significant well-promising development in artificial intelligence (AI) technologies in the application of energy management systems (EMS) in microgrid architectures. The AI applications will be applicable to enhance multiple operational levels like precision of the load forecasting, optimization of renewable generation and storage resources and fault detection system (Joshi et al., 2023).

In a rural deployment application, the microgrid control systems which will include AI will handle several technical problems that constrain conventional systems. The constant challenges in the operations are uncertainty in patterns of the generation of renewable energy, uncertainty in patterns of load increase, and optimization needs in the energy storage. The AI-enhanced systems offer the means of reducing the reliability and cost-efficiency of the system as it is updated to this dynamic operating parameters (Ahmed et al., 2025). However, the practicality of the proposed AI-powered microgrids implementation in the rural population cannot be constrained to engineering-related considerations. The socio-economic constraints, the institutional framework regulations, and data infrastructure limitations affect the results of the deployment and operational sustainability greatly (Ahmed et al., 2025). Laudably, complete appraisal involves the study of other facets of feasibility besides technical competencies to encompass other dimensions of AI-enabled microgrid adoption undertakings in resource-constrained environments.

The study is based on a multidisciplinary approach to analysis because it will empirically study the practicability of AI-enabled microgrids implementation in rural communities. Technological performance, implications of

economic viability, implications of environmental sustainability and dynamics of social acceptance are examples of evidence synthesized in the review. The paper provides through methodical consideration of recent empirical studies enabling conditions and perpetual constraints that define the real world deployments. The obstacles that were registered include the heavy initial capital outlay, issues of data management and capacity building requirements that affect the success rate of implementation. The value of this paper is that it derives a unified method of techno-socio-economic evaluation of AI-driven microgrids in rural electrification frameworks. This method of analysis serves practical purposes to scholars, practitioners, and policymakers interested in enhancing the rapid process of the sustainable energy transition in remote or underserved geographical locations.

2. AI-based Control and Optimal Dispatch in Microgrids

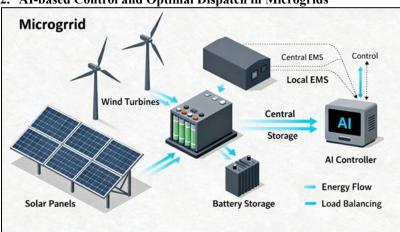


Figure 1. Control in Microgrids

Modern microgrid designs have advanced control systems as shown in Figure 1, which unites dispersed energy assets with smart control protocols. The recent research trends have focused on improving the performance of microgrid energy management system (EMS) via artificial intelligence (AI) approaches, specifically, deep reinforcement learning (DRL), deep Q-networks (DQN) and continuous-action deep reinforcement learning (CDRL) variants of the system to work with the conditions of stochastic renewable supply and time-varying price formations.

Preliminary experimental and simulation studies by Ji et al. (2019), Nakabi and Tovinen (2021), and Alabdullah and Abido (2022) were influential in offering demonstrations that DRL and DQN approaches result in reduction of the operating costs and an increase of renewable utilization compared to the classical rule-based approach and myopic optimization approaches. These enhancements are reflected in the acquired policies that take advantage of the nature of storage flexibility and temporality reflected on the demand profiles, and photovoltaic/ wind generation sequences. The literature has recorded better economic indicators and increased renewable self-consumption rates in case study applications and benchmark test systems, making AI procedures one of the promising solutions to autonomous dispatch operations in the uncertain conditions. The reported gains in performance in these studies were however, largely measured on simulation test beds using stylized system models or using small historical data sets. As a result of this, the reported improvements must be seen as demonstrations of proof-of-concept demonstrations, and not as a guaranteed statement of field performance properties.

2.1 Safety-Aware Learning and Constraint Satisfaction

One of the general criticisms that come out in the literature is the conflict between unconstrained learning aims and the operational safety limitations of actual deployments of microgrids. The studies that have dealt with safety-conscious learning perspectives as in the case of Ye et al. (2023) restate EMS optimization in limited Markov Decision Process (MDP) models. These expressions use interior-point optimization (IPO) and constrained policy-optimization methods to see that boundaries of power-flow, voltage constraints and thermal constraints are maintained during the learning and execution stages. These policies show significant advances of operational viability over naive DRL implementations which do not explicitly resolve constraints.

Other streams of complementary research have embraced alternative constraint-enforcement schemes, such as physics-informed reward structures, constrained reinforcement learning schemes, and hybrid RL-Model Predictive Control (MPC) schemes, which ensure compliance of hard constraints and are also adaptive (Peng et al., 2023; Joshal and Gupta, 2023). Regardless of such methodological improvements, comparatively not many studies have carried out rigorous closed-loop demonstrations of constraint satisfaction in the presence of model error. In addition, there is still a narrow scope regarding systematic comparison of safe RL solvers with industrial strength constrained optimization solvers. Therefore, the safe operation in islanded rural microgrid systems remains an engineering problem of open challenge with conservative validation systems and safety backup strategies.

2.2 Implementation Feasibility and Computational Tractability

Implementing algorithms with interpretability, computational tractability, and compatibility with edge controllers with limited central processing unit (CPU) capacity and limited availability of network bandwidth are desired in resource constrained rural settings. A number of comparative papers and survey articles highlight that, although deep actor-critic architectures may provide better reported reward metrics, they are very expensive to train, have non-transparent decision logic pathways, and have large memory/computational footprints. Such characteristics make field update processes and on-site troubleshooting operations more complex, which would be a major obstacle to rural deployment situations.

These conflicting demands are resolved with hybrid solution architectures in a range of ways: DRL policies trained offline and then distilled into representations of lower computational complexity, DRL controllers controlled by MPC frameworks, and more distributed multi-agent RL systems with federated learning protocols (Hu et al., 2021). Some of the studies also describe successful Hardware-in-Loop (HIL) or OPAL-RT experimental demonstrations that show that real-time inference is still possible on relatively small hardware platforms after the completion of offline training (Lin et al., 2023; Martínez-Nolasco et al., 2023). However, no best comparative analysis that would simultaneously compare latency measures, worst-case execution time values, and interpretability measures across paradigms, including MPC, RL, and hybrid architectures, is present in literature. This is a gap that practitioners have incomplete information about hardware selection criteria and the specifications of fail-safe design.

2.3 Robustness, Adversarial Conditions, and Generalization Capacity

Resistance to non-stationary environmental dynamics, sensor and communication failure instances and adversarial noise conditions are insufficiently investigated in most of the experimental studies. Other publications explore the generalization ability, which is achieved by measuring the performance of RL policies to unseen weather sequences or price paths, as well as, by introducing exogenous fault that makes the simulation conditions (Guatam, 2023; Yu et al., 2024). Some of them put forward Bayesian or ensemble approaches to measure epistemic uncertainty and activate conservative backup controllers in cases where confidence measures drop below reasonable levels (Stavrev, S& Ginchev, 2024; Qiu et al., 2024).

However, there is limited empirical data that proves the effective transferability of DRL policies trained in given geographic or climatic settings to new deployment settings (Haarnoja et al., 2017; Farhani et al., 2025). Devoid of either systematic cross-dataset validation procedures or domain-randomized instruction mechanisms, the learned controllers may display vulnerable conduct beyond setting of distribution shift than frequently seen in the rural deployments (Bui et al., 2024; Fujimoto et al., 2024). Such changes include seasonal changes, changes in load patterns, and the unforeseen distributed energy resource outages. This weakness drives the incorporation of learning-based solutions into a sound optimization framework and modular safety supervisor model to increase the resilience features prior to entry in the field (Di Persio et al., 2024; Wang et al., 2025).

2.4 Validation Evidence and Operational Viability

The most interesting data on the proof of near-operational viability is produced in research that goes beyond offline simulation to the field of HIL validation and small-scale field pilot projects. Examples of such works are OPAL-RT (Wang et al., 2021; Golestan et al., 2024) emulation tests and low-budget HIL systems which can check the timing properties and closed-loop interaction dynamics (Lin et al., 2023; Martínez-Nolasco et al., 2023). These works make several key findings: (a) the real-time policy inference on DRL can be implemented on mid-range controller hardware (Incer et al., 2024; Matni et al., 2024), (b) latency and quantization effects are revealed by HIL testing and not visible in pure simulation settings (Wnag et al., 2019; Wang et al., 202), and (c) layered control architectures, including the primary stability control using MPC or DRL (Vaidya, 2021).

3. Renewable Integration and Power Quality in Rural Microgrids

Figure 2. Rural Microgrids

In countries that feature rural rural microgrid systems with higher levels of photovoltaic (PV) and wind energy production, the integration of renewable energy into the power architecture has significant technical issues in

terms of maintaining power quality, especially systems with higher photovoltaic and wind energy penetration (Li et al., 2022; Talaat et al., 2023). Intense studies have shown that AI-aided forecasting techniques and adaptive control schemes serve essential roles in reducing the occurrence of the renewable curtailment phenomenon, maximizing the energy use efficiency, and improving the voltage and frequency regulation capacity (Faisal et al., 2018; Shahzad et al., 2023). Combined with suitable feature engineering methods, traditional machine learning architectures have shown forecasting metrics of deep learning architectures, thus, supporting more credible renewable energy generation planning models (Joshi et al., 2023; Osalade et al., 2022).

Nevertheless, whereas simulation-based models often operate with perfect storage capacity layouts, the actual-life rural microgrids deployment faces seasonal change patterns and constraints of energy storage scale that negatively affect the stability of systems and qualities of power services (Zhu et al., 2019; Pirie et al., 2024). As a result, the positive results of optimization observed in the simulation environment frequently do not take into account these important practical factors, which is why the need to design specific refined computational models that would reflect various aspects of rural operational scenarios and resource availability patterns (Sinha and Chandel, 2015; Motjoadi et al., 2020; Kamal and Ahsraf, 2023) is acute.

3.1 Inverter Control Coordination and Dynamic Power Management

The coordination of inverter control is a decisive solution in the context of improving power quality in rural AI-powered microgrids. Efficient dynamic reactive control of power with AI-controlled inverter regulatory schemes offers a solution to the occurrence of voltage fluctuations and the variation in frequency caused by distinctions in operations of the distributed renewable energy sources (Adibi, & van der Woude, 2019; Garcia-Torres et al., 2021). The model predictive control and reinforcement learning approaches have been explored as research studies to control the virtual inertia properties in a more adaptive way that improves the robustness of the microgrids under different load and condition of generation scenarios (Olivares et al., 2014; Kusmantoro, 2023; Nithra and Annad, 2024).

Additionally, it has been suggested that hybrid inverter designs that allow a smooth change over between grid-following and grid-forming can be used to enhance the reliability of operation in electrical networks with low short-circuit ratios, as is typical in rural electrification situations (Guerreiro et al., 2025; Nadimuthu et al., 2024). Such technological improvements shed light on how the dynamics of a inverter and artificial intelligence-based adaptive control system intersect, which requires the optimization to preserve the power quality levels without impairing the system resilience properties.

3.2 Hybrid Energy Storage Strategies and AI-Driven Optimization

Hybrid energy storage plans play a very crucial role in determining the performance of AI-based microgrid systems, especially in terms of accommodating variable renewable energy as well as ensuring quality of power indicators. Battery-supercapacitor hybrids, controlled by AI algorithms like the reinforcement learning frameworks, have been shown to be able to stabilize the patterns of energy supply-demand variation, plus increase the battery working life by eliminating the effects of deep discharge cycling (Al-Bayati et al., 2025). Also, integration with vehicle-to-grid technologies and multi-agent system architectures can support the distributed supervisory control methodologies in the optimization of the use of storage deployment decisions based on the contextual energy prices structure and load forecast parameters (Suri et al., 2020).

Nevertheless, many experimental validation works still use representations of synthetic datasets, and do not consider the phenomenon of seasonal storage degradation, so the applicability of performance claims to real-world situations of rural microgrid deployment remains limited (Onaolapo et al., 2021; Pirie et al., 2024). This approach is a major limitation of the generalizability of reported results to the field implementation situation.

3.3 Experimental Realism and Rural Microgrid Operational Characteristics

An important problem that has cropped up in the existing research directions is the extent to which the published experimental settings are representative of the variability of the renewable resources and grid stiffness aspects that are commonly experienced in the rural microgrid setting. Seasonal variations in the patterns of solar irradiance and wind velocity profile may have significant effects on the patterns of power availability, and parameters of voltage stability, which are often simplified or not well-characterized in experimental test protocols (Bihari et al., 2021). Moreover, the microgrids of rural areas are typically characterized by a low level of grid interconnections as well as reduced short-circuit strength parameters, which, in turn, intensify the control complexity demands and influence the ability to maintain the power quality (Gutiérrez-Escalona et al., 2024).

Although some of the research studies may solve these issues of operation by applying the stochastic modeling frameworks and adaptive AI control frameworks, there always exists a gap between laboratory validation results and operational realities in the field. This inconsistency suggests the need to do longitudinal study designs and real-time implementation trials that involves holistic environmental and infrastructural variability that meets the diverse rural deployment setting (Joshi et al., 2023; Nadimuthu et al., 2024).

4. Load and Generation Forecasting for Demand Response and Local Markets

Generation forecasting and load forecasting are primary building blocks to optimized demand response functions and local energy market approaches in microgrid designs, especially in rural implementation scenarios where resource limitations and operational variability can cause system inefficiency (Hyndman, & Athanasopoulos, 2018; Bandara et al., 2020). Ample literature between 2015 and 2025 confirms that machine-learning (ML) models such as gradient boosting algorithms, Long Short-Term Memory (LSTM) networks and hybrid physical-

ML models exhibit better performance metrics and adaptive characteristics compared to the classical statistical forecasting models (Zhang et al., 1998; Computation, 2016; AlKandari, and Ahmad, 2024).

Analyses that use Bi-directional LSTM (Bi-LSTM) model structures have witnessed significant gains in the short-term photovoltaic (PV) power and load prediction results (Marino et al., 2016; Mohammad et al., 2018), and also improved temporal feature capture capabilities have been used to achieve more accurate demand-supply balancing operations (Joshi, 2023; PMC, 2024). Moreover, hybrid modeling tools that combine the physical system understanding and the architecture of ML algorithms demonstrate greater resistance features based on its ability to contextualize the prediction of data-driven forecasting within the constraints of the operational system (Al-Bayati, 2025). Yet, such good performances are often contingent on the quality and the volumetric sufficiency of available training data, which is often a problem in rural microgrid setups with a highly sparse metering infrastructure and intermittency in training data collection systems (Bakirtzis et al., 2002; Hong and Fan., 2016).

4.1 Data Scarcity and Its Impact on Forecasting Performance

The lack of JData in the rural communities setting is a critical bottleneck that has significant impact on the forecasting performance and hence the ability of demand response. A range of studies points to the inherent constraints of translating the distribution obtained on urban or industrial datasets of the ML models to the rural microgrid setting, where the characteristics of consumption patterns have a different seasonality profile and socioeconomic determinants (Raza, & Khosravi, 2015; Lago et al., 2018; Singh et al., 2024). Besides, regulatory regimes restrict the availability of granular consumption information, thus hindering the creation of personalized forecasting models that are needed in the fine-grained local market participation mechanisms. The data availability constraints have also been examined in terms of being alleviated through the use of transfer learning and federated learning methodologies that allow models to adapt in different geographical settings without the need to engage in direct data sharing procedures (Hong et al., 2020; Tafula et al., 2023). Nevertheless, the scalability and interpretability of such methods in the low-resource deployment context have not been studied sufficiently, which implies an urgent need of standardized benchmark development related in particular to rural microgrid data contexts and dynamics (Alquthami et al., 2022; Sua et al. 2025).

4.2 Transferability Challenges Across Heterogeneous Deployment Contexts

The heterogeneity of climatic and topographical conditions that affect the renewable generation profiles and the nature of load pattern characteristics is augmented by the challenge in model transferability in rural microgrid deployments. Empirical studies carried out at multiple locations have noted that model architectures that have been trained to be biased to particular climate zone conditions tend to lose much of their performance when used in different geographical settings, unless they are further retrained or recalibrated incurring a significant expense. Such an operational variability calls upon hybrid modeling systems that combine physical deterministic models such as the solar irradiance prediction model with a data-driven ML forecasting model to enhance the performance of generalization in different environmental conditions (Al-Bayati, 2025).

Moreover, the choice of the temporal resolution has a significant influence on the results of the forecasting. More refined scheduling of demand response can be realized with higher temporal resolutions, but in a trade-off relationship, higher time resolution also amplifies data noise, and overloads computational capacity, which is further required to be balancing trade-offs, such as the rural microgrids with limited edge-computing capacity must maneuver strategically. These practical constraints of computation are a limitation on the complexity of deployable forecasting architectures in resource limited rural settings.

4.3 Privacy Implications and Community Acceptance Considerations

The privacy considerations related to the data collection procedures in small-scale rural micro grid implementation have a big impact on the problem of forecasting methodsology and acceptance processes among the end-users. The issue of intrusive practices in monitoring ethics has raised the research interest in privacy-saving ML algorithms, such as a differential privacy mechanism and a homomorphic encryption approach designed explicitly to the energy consumption data application (Tafula et al., 2023). Furthermore, decentralized forecast systems constructed on the basis of edge-computing devices infrastructures may assist cut down the volume of raw data transfer requirements and yet provide useful demand reaction capabilities and local market coordination measures. These technological advancements are attempting to balance between goals of accuracy of forecasting and upholding the believes and needs of regulations by the community. Yet, these strategies need additional confirmation in the rural implementation settings with a very diverse range of technological literacy levels and parameters of the infrastructure sophistication (Tafula et al., 2023; Demir et al., 2025). Socio-technical aspects of implementation of forecast system such as user acceptance, preservation of privacy as well as the operational transparency are all important success factors that go beyond the considerations of algorithmic performance only.

5. Outcome and Research Gaps

The overall review presents evidence that AI-based microgrids have a significant opportunity to improve rural electrification projects in terms of combating the main challenges related to the renewable energy integration, load variation control, and optimization within the energy management system. The empirical data show that AI-driven approaches, such as deep reinforcement learning, Long Short-Term Memory (LSTM) network structures, and hybrid physical-ML modeling systems, can help improve the accuracy of forecasting, optimize energy dispatch operations, and improve the power quality characteristics, thus enhancing the performance characteristics of rural microgrids based on the operational robustness and cost. According to socio-economic studies, the introduction

of AI may enhance the willingness to adopt in community because it enhances the reliability levels of the system, and enables the tariff optimization systems. Also, the research directions that have emerged stress that there is an urgent need to integrate participatory governance models with adaptable business structure frameworks in an effort to support long-term sustainability plans. However, these encouraging news are tainted with a series of annoying problems that demonstrate grave lapses in the research that requires systematic studies.

Among the primary gaps in the research, the absence of field validation of AI-augmented microgrid systems on the long-term scale, in real-life conditions in constrained resources, such as rural areas, is one of them. Majority of developed AI control strategies and forecasting model architectures have been validated by simulation platforms or hardware-in-loop testbed set ups that are poorly configured to reflect operational complexities like patterns of seasonal renewable variability, communication network limits and operational maintenance realities. Moreover, the contemporary studies are inclined to romanticize the storage system size parameters, the state of data availability, and the feature of the network reliability, and thus present over-optimistic estimations of the AI system performance features and the possibility of the scalability. Strong empirical evidence touching upon total cost of ownership measures, operator training requirements, and adaptive maintenance approach efficacy are still very scarce in the existing literature corpus.

The other notable gap is related to the socio-economic aspects of the AI microgrid implementation in the context of rural communities. Although techno-economic modeling frameworks, social survey tools, indicate a bright future of adoption scenarios, there is a strong lack of longitudinal, integrated study designs of user acceptance, tariff design, fairness perceptions, and transaction cost burden distributions, and the dynamics of institutional governance effectiveness over long periods of time. This methodological deficit leads to the risk of poor consideration of important institutional and cultural factors, which will result in successful outcomes of community engagement and sustainability of the business model viability. The irrelevance of technical performance validation aspects to socio-economic aspects of implementation is a major limitation to the translation of algorithmic capabilities in achieving operational success in rural electrification scenarios.

6. CONCLUSION

This generalized empirical literature review confirms that AI-controlled microgrids are a potentially promising technological paradigm in rural areas with limited contexts that demand careful resolution of various implementation issues to reach the scale of deployment. It is shown in the synthesis that the state-of-the-art AI techniques, such as deep reinforcement learning algorithms, Long Short-Term Memory network models, and hybrid physical-machine learning models, provide empirical results in improving accuracy, energy dispatch optimization, and power quality control compared to traditional control algorithms, and thus they meet their scientific expectations in solving the challenges of operational complexities posed by rural microgrid systems. Theoretically, this study demonstrates that the establishment of AI microgrids requires a systematic integration of the following aspects of computational tractability, data infrastructure sufficiency, privacy protection processes, institutional governance, and community acceptance as a complex of factors that dictate whether the laboratoryproven capabilities are translated into the performance in the field. There are however underlying constraints to the generalizability of available findings. Most notable is the vast over-reliance of simulation testbeds and hardware in-loop validation systems that poorly present seasonal variability, communication impairments and complexities of maintaining device performance aspects of actual seasonal scenarios, and thus inject optimistic bias on the asserted performance values. Lack of field trials over the long period and covering in depth technoeconomic and socio-institutional measures constitute a significant methodological gap that does not allow conclusive assumptions on the total cost of ownership and community engagement effectiveness in the framework of the real operational conditions. Immediate research needs must focus on multi-site field pilot applications in which systematically measured operational performance, economic feasibility and social acceptance processes in a wide range of geographical settings, using standardized benchmark protocols with communication impairment and seasonal variation trends are utilized. Also, the research should focus on privacy preserving federated learning architectures, domain randomized training regimes that improve model robustness, hybrid control structures that synthesize learning adaptivity and formal constraints guarantees, and interpretable AI approaches that can be used in limited contexts of technical capacity. Intensive coordination will be required in the implementation of AIpowered microgrids in underserved geographical locations, in terms of perfecting algorithms, creating infrastructure, capacity building initiatives and regulatory measures that will make such deployments turn AIpowered microgrids into scalable, reliable, and equitable rural energy provision that can accelerate the sustainable electrification process in underserved geographical locations.

REFERENCES

- 1. Adibi, M., & van der Woude, J. (2019). A reinforcement learning approach for frequency control of inverted-based microgrids. IFAC-PapersOnLine, 52(4), 111-116.
- 2. Ahmed, F., Uzzaman, A., Adam, M. I., Islam, M., Rahman, M. M., & Islam, A. M. (2025). AI-Driven Microgrid Solutions for Enhancing Energy Access and Reliability in Rural and Remote Areas: A Comprehensive Review. Control Systems and Optimization Letters, 3(1), 110-116.

- 3. Alabdullah, M. H., & Abido, M. A. (2022). Microgrid energy management using deep Q-network reinforcement learning. Alexandria Engineering Journal, 61(11), 9069–9078. https://doi.org/10.1016/j.aej.2022.022.042.
- 4. Al-bayati, A. M., Ullah, M. H., & Abdulkhudhur, H. H. (2025). Optimization and Feasibility Assessment of Hybrid Mini-Grid Power Systems for Iraq's Residential Rural Electrification. IEEE Access.
- 5. AlKandari, M., & Ahmad, I. (2024). Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Applied Computing and Informatics, 20(3/4), 231-250.
- 6. Alquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., & Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE access, 10, 48419-48433.
- 7. Bakirtzis, A. G., Theocharis, J. B., Kiartzis, S. J., & Satsios, K. J. (2002). Short term load forecasting using fuzzy neural networks. IEEE Transactions on power systems, 10(3), 1518-1524.
- 8. Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert systems with applications, 140, 112896.
- 9. Bihari, S. P., Sadhu, P. K., Sarita, K., Khan, B., Arya, L. D., Saket, R. K., & Kothari, D. P. (2021). A comprehensive review of microgrid control mechanism and impact assessment for hybrid renewable energy integration. IEEE access, 9, 88942-88958.
- 10. Bui, V. H., Das, S., Hussain, A., Hollweg, G. V., & Su, W. (2024). A critical review of safe reinforcement learning techniques in smart grid applications. arXiv preprint arXiv:2409.16256.
- 11. Computation, N. (2016). Long short-term memory. Neural Comput, 9, 1735-1780.
- 12. Demir, A., Najafi, A., & Acaroğlu, H. (2025). Transfer learning for renewable energy: fine-tuning and domain adaptation. In Computer Vision and Machine Intelligence for Renewable Energy Systems (pp. 305-314). Elsevier. 13. Di Persio, L., Garbelli, M., & Giordano, L. M. (2024). Reinforcement Learning for Bidding Strategy Optimization in Day-Ahead Energy Market. arXiv preprint arXiv:2411.16519.
- 14. Faisal, M., Hannan, M. A., Ker, P. J., Hussain, A., Mansor, M. B., & Blaabjerg, F. (2018). Review of energy storage system technologies in microgrid applications: Issues and challenges. Ieee Access, 6, 35143-35164.
- 15. Farhani, G., Rahman, T., & Humphries, K. (2025). Bayesian Uncertainty Quantification with Anchored Ensembles for Robust EV Power Consumption Prediction. arXiv preprint arXiv:2511.06538.
- 16. Fujimoto, T., Suetterlein, J., Chatterjee, S., & Ganguly, A. (2024). Assessing the impact of distribution shift on reinforcement learning performance. arXiv preprint arXiv:2402.03590.
- 17. Garcia-Torres, F., Zafra-Cabeza, A., Silva, C., Grieu, S., Darure, T., & Estanqueiro, A. (2021). Model predictive control for microgrid functionalities: Review and future challenges. Energies, 14(5), 1296.
- 18. Gautam, M. (2023). Deep Reinforcement learning for resilient power and energy systems: Progress, prospects, and future avenues. Electricity, 4(4), 336-380.
- 19. Golestan, S., Golmohamadi, H., Sinha, R., Iov, F., & Bak-Jensen, B. (2024). Real-time simulation and hardware-in-the-loop testing based on OPAL-RT ePHASORSIM: A review of recent advances and a simple validation in EV charging management systems. Energies, 17(19), 4893.
- 20. Guerreiro, J. F., Busarello, T. D. C., Guillardi, H., Maronni, I. A., Olímpio Filho, J. D. A., Paredes, H. K. M., & Pomilio, J. A. (2025). Self-Stabilization of Grid-Connected Inverters by Means of an Impedance-based Adaptive Controller. IEEE Open Journal of Industry Applications.
- 21. Gutiérrez-Escalona, J., Roncero-Clemente, C., Husev, O., Matiushkin, O., & Blaabjerg, F. (2024). Artificial Intelligence in the Hierarchical Control of ac, dc and Hybrid ac/dc Microgrids—A Review. IEEE Access.
- 22. Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017, July). Reinforcement learning with deep energy-based policies. In International conference on machine learning (pp. 1352-1361). PMLR.
- 23. Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 32(3), 914-938.
- 24. Hong, Y., Zhou, Y., Li, Q., Xu, W., & Zheng, X. (2020). A deep learning method for short-term residential load forecasting in smart grid. IEEE Access, 8, 55785-55797.
- 25. Hu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., & Rodriguez, J. (2021). Model predictive control of microgrids—An overview. Renewable and Sustainable Energy Reviews, 136, 110422.
- 26. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
- 27. Incer, I., Csomay-Shanklin, N., Ames, A. D., & Murray, R. M. (2024). Layered control systems operating on multiple clocks. IEEE Control Systems Letters, 8, 1211-1216.
- 28. Ji, Y., Wang, J., Xu, J., Fang, X., & Zhang, H. (2019). Real-time energy management of a microgrid using deep reinforcement learning. Energies, 12(12), 2291. https://doi.org/10.3390/en12122291.
- 29. Joshal, K. S., & Gupta, N. (2023). Microgrids with model predictive control: A critical review. Energies, 16(13), 4851.
- 30. Joshi, A., Capezza, S., Alhaji, A., & Chow, M. Y. (2023). Survey on AI and machine learning techniques for microgrid energy management systems. IEEE/CAA Journal of Automatica Sinica, 10(7), 1513-1529.
- 31. Kamal, M. M., & Ashraf, I. (2023). Evaluation of a hybrid power system based on renewable and energy storage for reliable rural electrification. Renewable Energy Focus, 45, 179-191.
- 32. Kusmantoro, A. (2023). Multi-inverter coordinated control on AC microgrid for enhanced stability. IEEE Conference on Power Electronics.

- 33. Lago, J., De Ridder, F., & De Schutter, B. (2018). Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386-405.
- 34. Li, Y., He, S., Li, Y., Shi, Y., & Zeng, Z. (2023). Federated multiagent deep reinforcement learning approach via physics-informed reward for multimicrogrid energy management. IEEE Transactions on Neural Networks and Learning Systems, 35(5), 5902-5914.
- 35. Lin, F.-J., Chang, C.-F., Huang, Y.-C., & Su, T.-M. (2023). A deep reinforcement learning method for economic power dispatch of microgrid in OPAL-RT environment. Technologies, 11(4), 96. https://doi.org/10.3390/technologies11040096.
- 36. Marino, D. L., Amarasinghe, K., & Manic, M. (2016, October). Building energy load forecasting using deep neural networks. In IECON 2016-42nd annual conference of the IEEE industrial electronics society (pp. 7046-7051). IEEE.
- 37. Martínez-Nolasco, J., et al. (2023). Development of a hardware-in-the-loop platform for the validation of a small-scale wind system control strategy. Energies, 16(23), 7813.
- 38. Matni, N., Ames, A. D., & Doyle, J. C. (2024). Towards a theory of control architecture: A quantitative framework for layered multi-rate control. arXiv preprint arXiv:2401.15185.
- 39. Mohammad, F., Lee, K. B., & Kim, Y. C. (2018). Short term load forecasting using deep neural networks. arXiv preprint arXiv:1811.03242.
- 40. Motjoadi, V., Bokoro, P. N., & Onibonoje, M. O. (2020). A review of microgrid-based approach to rural electrification in South Africa: Architecture and policy framework. Energies, 13(9), 2193.
- 41. Nadimuthu, L. P. R., Victor, K., Bajaj, M., & Tuka, M. B. (2024). Feasibility of renewable energy microgrids with vehicle-to-grid technology for smart villages: A case study from India. Results in Engineering, 24, 103474.
- 42. Nakabi, T. A., & Toivanen, P. (2021). Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustainable Energy, Grids and Networks, 25, 100413.
- 43. Nithra., & Anand. (2021). Comparative analysis of different control strategies in microgrid. International Journal of Green Energy, 18(12), 1249-1262.
- 44. Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M., ... & Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on smart grid, 5(4), 1905-1919.
- 45. Onaolapo, A. K., Carpanen, R. P., Dorrell, D. G., & Ojo, E. E. (2021). Reliability evaluation and financial viability of an electricity power micro-grid system with the incorporation of renewable energy sources and energy storage: case study of KwaZulu-Natal, South Africa. IEEE Access, 9, 159908-159924.
- 46. Osalade, A., Abe, A., Adebanji, B., Fasina, T., Adeleye, S. A., & Omotoso, T. (2022). Feasibility Study and Techno-Economic Analysis of Solar PV-Biomass Hybrid Power System: A Case Study of Kajola Village, Nigeria. European Journal of Energy Research, 2(4), 32-38.
- 47. Peng, Y., Jiang, W., Wei, X., Pan, J., Kong, X., & Yang, Z. (2023). Microgrid optimal dispatch based on distributed economic model predictive control algorithm. Energies, 16(12), 4658. https://doi.org/10.3390/en16124658.
- 48. Pirie, C., Kalutarage, H., Hajar, M. S., Wiratunga, N., Charles, S., Madhushan, G. S., ... & Pathiranage, S. (2024). A Survey of AI-Powered Mini-Grid Solutions for a Sustainable Future in Rural Communities. arXiv preprint arXiv:2407.15865.
- 49. Plasencia-Salgueiro, A. D. J. (2023). Deep reinforcement learning for autonomous mobile robot navigation. In Artificial Intelligence for Robotics and Autonomous Systems Applications (pp. 195-237). Cham: Springer International Publishing.
- 50. Qiu, D., Wang, J., Ruan, G., Zhang, Q., & Strbac, G. (2024). Robust Reinforcement Learning for Decision Making Under Uncertainty in Electricity Markets. IEEE Transactions on Power Systems.
- 51. R. Singh, A., Kumar, R. S., Bajaj, M., Khadse, C. B., & Zaitsev, I. (2024). Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources. Scientific Reports, 14(1), 19207.
- 52. Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352-1372.
- 53. Salimpour, S., Peña-Queralta, J., Paez-Granados, D., Heikkonen, J., & Westerlund, T. (2025). Sim-to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to Gazebo and Real ROS 2 Robots. arXiv preprint arXiv:2501.02902.
- 54. Shahzad, S., Abbasi, M. A., Ali, H., Iqbal, M., Munir, R., & Kilic, H. (2023). Possibilities, challenges, and future opportunities of microgrids: A review. Sustainability, 15(8), 6366.
- 55. Sinha, S., & Chandel, S. S. (2015). Review of recent trends in optimization techniques for solar photovoltaic—wind based hybrid energy systems. Renewable and sustainable energy reviews, 50, 755-769.
- 56. Stavrev, S., & Ginchev, D. (2024). Reinforcement learning techniques in optimizing energy systems. Electronics, 13(8), 1459.
- 57. Sua, L. S., Wang, H., & Huang, J. (2025). Deep learning in renewable energy forecasting: A cross-dataset evaluation of temporal and spatial models. Energy & Environment, 0958305X251367102.
- 58. Suri, D., Shekhar, J., Mukherjee, A., & Bajaj, A. S. (2020, June). Designing microgrids for rural communities: A practitioner focused mini-review. In 2020 IEEE International Conference on Environment and Electrical

Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE.

- 59. Tafula, J. E., Justo, C. D., Moura, P., Mendes, J., & Soares, A. (2023). Multicriteria decision-making approach for optimum site selection for off-grid solar photovoltaic microgrids in Mozambique. Energies, 16(6), 2894.
- 60. Talaat, M., Elkholy, M. H., Alblawi, A., & Said, T. (2023). Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artificial Intelligence Review, 56(9), 10557-10611
- 61. Vaidya, G. Y. (2021). Deep Reinforcement Learning for Autonomous Navigation of Mobile Robots in Indoor Environments (Doctoral dissertation).
- 62. Wang, J., Simpson, J., Yang, R., Palmintier, B., Tiwari, S., & Zhang, Y. (2021, February). Hardware-in-the-loop evaluation of an advanced distributed energy resource management algorithm. In 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1-5). IEEE.
- 63. Wang, K., Liu, Z., Lin, Y., Lin, J., & Han, S. (2019). Haq: Hardware-aware automated quantization with mixed precision. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8612-8620).
- 64. Wang, K., Liu, Z., Lin, Y., Lin, J., & Han, S. (2020). Hardware-centric automl for mixed-precision quantization. International Journal of Computer Vision, 128(8), 2035-2048.
- 65. Wang, X., Wang, L., & Liang, N. (2025). Machine learning-driven power demand forecasting models for optimized power management. Electrical Engineering, 1-26.
- 66. Ye, Y., Wang, H., Chen, P., Tang, Y., & Strbac, G. (2023). Safe deep reinforcement learning for microgrid energy management in distribution networks with leveraged spatial-temporal perception. IEEE Transactions on Smart Grid, 14(5), 3759–3775.
- 67. Yu, P., Wang, Z., Zhang, H., & Song, Y. (2024). Safe reinforcement learning for power system control: A review. arXiv preprint arXiv:2407.00681.
- 68. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:: The state of the art. International journal of forecasting, 14(1), 35-62.
- 69. Zhu, X., Premrudeepreechacharn, S., Sorndit, C., Meenual, T., Kasirawat, T., & Tantichayakorn, N. (2019, March). Design and development of a microgrid project at rural area. In 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia) (pp. 877-882). IEEE.
- 70. Zulu, M. L. T., Carpanen, R. P., & Tiako, R. (2023). A comprehensive review: study of artificial intelligence optimization technique applications in a hybrid microgrid at times of fault outbreaks. Energies, 16(4), 1786.