
TPM Vol. 32, No. S7, 2025 

ISSN: 1972-6325 

https://www.tpmap.org/ 

Open Access 

2001 

 

 

 

SUPPLY CHAIN AND DEMAND DYNAMICS: CAN AI BE A 

DRIVING FORCE? 

MASHAIL SALEH IBRAHIM ALSALAMAH 
DEPARTMENT OF MANAGEMENT INFORMATION SYSTEM AND PRODUCTION MANAGEMENT, COLLEGE OF 

BUSINESS & ECONOMIC, QASSIM UNIVERSITY, SAUDI ARABIA, EMAIL: mslamh@qu.ed.sa 

 

Abstract 

With today’s global economy, the complexity of supply chains and the potential for their 

disruption are escalating, which highlights the need for companies to be agile and data-driven 

in making decisions. This research investigates how to apply Deep Learning (DL) methods to 

increase supply chain resilience, improve demand forecasting, and achieve operational 

efficiency. A quantitative approach was adopted to analyze over 1500 records of the supply 

chain data in Saudi Arabia, which include historical demand, inventory-level, shipment 

characteristics, and risk metrics. To preserve the most important information, we performed 

data pretreatment that included normalization, trend- and domain-informed imputation of 

missing values, and Principal Component Analysis (PCA) to reduce dimensions. The proposed 

Adaptive Electromagnetic Field Optimized Attention-enriched Memory Networks (AEFO-Att- 

MN) made use of the treated data for input. The networks used (LSTM) networks to take into 

account long term temporal dependencies along with attention mechanisms to highlight 

significant features and (AEFO) to optimize feature weights and model parameter. The 

framework was made with Python, TensorFlow, and PyTorch. The performance test showed 

that the model's ability to make accurate predictions has improved a lot. The Root Mean 

Squared Error (RMSE) is 0.412, the Mean Absolute Error (MAE) is 0.365, and the R² is 0.862. 

The results showed that there were fewer times when there was too much stock or not enough 

stock, better management of lead times, and shipments that were at risk are found before they 

happen. Moreover, the results showed that using advanced preprocessing and AEFO-Att-MN 

techniques together made forecasts much more accurate and made it easier to deal with 

unexpected events. This is useful information for AI-driven supply chain management. 

Keywords: Supply Chain Resilience, Deep Learning (DL), Artificial Intelligence (AI), 

Demand Forecasting, Operational Efficiency, Inventory Optimization, COVID-19 Disruptions, 

Operations Management 

1. INTRODUCTION 

 

Global supply chains consist of suppliers, manufacturers, distributors, and retailers, collaborating to transfer products 

across the globe. The process includes obtaining raw materials, manufacturing, transportation, and finally delivering 

goods to consumers. The issue for all of these professionals is obtaining the appropriate information at the appropriate 

time, collaboration, and efficiency. The operation of these systems is essential for the cultivation of the modern 

connected marketplace and at the same time complicated and thus vulnerable. They require a significant amount of 

planning and continuous post-service management to continue functioning [1]. 

The varied and numerous events in the supply chain such as customer demand fluctuations, supplier delay events, 

transportation troubles, and even domestic and international economic or political unrest that can lead to stock-outs, 

overstocking, elevated costs and delivery delays. The complexity of supplier-to-market relations creates additional 

exposure to risk and continuation of typical management principles become ineffective to alleviate these problems in 

contemporary business practice. All these features bring about the need for adaptive, resilient, data driven practices to 

optimally maintain desirable performance [2]. 

The COVID-19 pandemic and other events have forced major disruptions in global supply chains; manufacturing was 

interrupted, transportation was slowed, and rapid adjustments in demand were necessary. These events pointed to the 

normal vulnerabilities of traditional systems, including a significant amount of rigidity, and not adequately considering 

risks, to name a few. Organizations suffered from irregularities in supply chains, which resulted in too little and too 

much inventory along with unnecessary delays in operations. This elicited the importance of how data driven, agile, 

intelligent supply chain solutions, should resolve unpredictable challenges [3]. 

Traditional supply chains fail to respond appropriately when there is an increase in demand or a disruption in the 

supply chain. Smart, agile, models based on AI and DL empower organizations to monitor supply chain activities in 
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real-time, build accurate forecasting, and take proactive decisions. This supply chain technology grants organizations 

the competitive edge to respond quickly to the market, ultimately leading to improved performance consistency and 

supply chain reliability. It also increases business resiliency [4], reduces costs, optimizes inventory, and improves 

operations. 

Artificial intelligence enhances the field of operations management through automation, data management, and 

predictive analytical analysis. It enhances the risk exposure of organizations; optimizes inventory; and improves 

demand forecasting [5]. This results in effective operations, and reducing errors. AI set organizations in a position to 

react in a timely manner by engaging real-time tracking, while offering more contextually adaptive solutions to react 

to interruptions that may enhance competitiveness and operations in the midst of changing and more complex supply 

chains. Operations management seeks to ensure business activities are designed, organized, and optimized to 

maximize production and service delivery efficiency [6]. 

Nowadays, in businesses, this is achieved through technology, data analytics, and automation: maximizing resource 

utilization, minimizing costs, and increasing productivity. Effectiveness in operations management supports concrete 

strategic decisions for organizations to maintain competitiveness and market sensitivity to fluctuating demand and 

international pressure. Demand forecasting is a vital feature to sustaining supply chains because it enables 

organizations to forecast changes in the marketplace and customer needs. Being transparent and accurate about 

prediction aids organizations in planning for resource allocation, production scheduling, and inventory management. 

This enables organizations to exercised efficiency, provides product availability and managers to validate prescriptive 

stock levels, eliminating overages, shortages and operational overhead [7]. 

Organizations, nowadays, are also facing increased risk due to the threat of global disruption, volatility in the 

marketplace, technology failure, and geopolitical issues. Businesses carry the burden of making decisions, thinking 

ahead, and operating with future considerations, this responsibility is more important than ever. Considering 

interruptions due to pandemics, cyber threats, and scarcity of products and goods, and how businesses must operate 

and plan in consideration of these matters is best a practice in modern business planning. These uncertainties are 

pushing traditional systems of management to the breaking point, especially when considering the need for adaptable, 

technology driven plans that enable organizations to address constant change, build capacity, and endure in the case 

of uncertainty in global markets [8]. Applying information, analytics, and predictive models in real-time related to 

decision-making in the context of strategy, operationalizing information can become efficacious and invaluable in 

contingency planning. It assists managers in trending, demand forecasts, resources allocations, and risk and 

consequence management. Assuredly, companies that leverage large data, apply real-time precise, actionable, and 

accurate assessments, can confidently make slippery decisions, improve supply chain performance, increase 

throughput, reduce costs [9]. 

Aim of this research: The goal is to advance supply chain resilience and enhance operational efficiency using AI- 

powered DL models in monitoring real-time demand situations, inventory management, risk assessment and actions 

based on environmental and market conditions as represented by the AEFO-Att-MN model. 

1.1. Contributions of research 

➢ An AI-driven deep learning framework (AEFO-Att-MN) was developed to increase robustness in the supply chain 

and enhance demand forecasting. 

➢ Adaptive Electromagnetic Field Optimization was coupled with an attention-based memory neural network to 

make the model more precise and adaptable. 

➢ Demonstrated the framework's ability to mitigate stockouts, overstocking, and delays within the supply chain. 

➢ Conducted quantitative analysis with real-world and publicly available datasets from Amazon case studies and 

Saudi transportation models. 

➢ Completed comparative evaluation to traditional forecasting models to verify the integrity of improvements in 

MAE, RMSE, and R2 performance metrics. 

➢ Enabled forward-looking at-risk shipments for proactive adaptive data-driven decision-making during disruptions. 

➢ Provided value-added information to companies transitioning to a smart, AI-enabled supply chain system to keep 

their businesses viable and strategically prepared for the future. 

Research organization: The research paper organization is as follows: Section 1 covers the introduction and purpose 

of the study. The next section 2 provides a summary of previous work. Section 3 presents the proposed methodology 

working with a series of mathematical equations. Section 4 presents performance evaluation and summary of the main 

findings, and Section 5 concludes. 

 

2. RELATED WORKS 

Due to the pandemic, supply chain managers enhanced resilience through using the end-to-end visibility framework 

[10], which combined management, organizational, and technology elements. It served as a framework to inform 

potential disruptions and optimize operations but had limited generalizability. 
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The Partial Least Squares (PLS) regression framework [11] used structured questionnaires to examine the effects of 

agility, supply chain collaborations, and internal integration into resilience and long-term competitiveness in 

Indonesian manufacturing company settings, with limited generalizability due to self-reporting and lack of cross- 

industry validation. The validation was limited to computational scenarios [12]; risk averse mixed-integer nonlinear 

model prioritized recovery and identifying short-term disruptions, reducing risks from disruption, and maximizing 

facility placement, capacity, allocation flows, and resilient actions. It noted utility of preemptive investments and 

flexibility. 

The Quality Function Deployment-Multi-Criteria Decision-Making (QFD-MCDM) framework was suggested [13] to 

relate resilience capabilities, benefits generation, and risks for sustainable supply chain disruptions, while the 

implementation identified priority risks and tasks, enhanced capacity, visibility, and provided disruption mitigations, 

although the generalizability was limited to a single case study. The Akaike Information Criterion (AIC) information 

system [14] was proposed to help display, collect, and analyze and contextualize incidents in the context of a combined 

model-driven and event-driven architecture. Implementation improved risk detection efficiency, reduced costs and 

increased speed, but it was limited to a single pharmaceutical supply chain. 

The triple-P framework was developed by examining the complexity of Product, Partnership, and Process in terms of 

matching resilience options to supply chain types [15]. Implementation showed that strategies were influenced by the 

amount of integration and homogeneity of process. However, generalizability is limited, as it was solely based on 

executive interviews. The proposed framework integrating blockchain and artificial intelligence [16] improved supply 

chain resilience as well as operational performance and benefited economy, environment and society; however, it was 

not generalizable, because it only focused on the behavior of Chinese organizations, notwithstanding the differences 

amongst industries and regions. 

The Interpretive Structural Modeling-Bayesian Network (ISM-BN) model [17] called on both the expert opinion and 

interdependencies to ascertain significant indicators of supply chain resilience. The results indicated that strategies 

were ranked effectively in three Indian manufacturing contexts; however, it is unlikely to apply to other sectors, 

regions, or more complicated situations. The smart resilient supply chain framework brought together demand 

forecasting, risk conditioned inference, and customer order clustering using planned-do-check-act decision making 

[18]. As a result of this process, they were able to produce better risk management and benchmark performance; 

however, they were not likely to be generalizable as their evidence-based ranges focused on single industries, regions, 

or new technologies. 

The Double Exponential Smoothing (DES) proposed forecasting methods [19] were effective in predicting changes 

in demand and facilitating the management of inventory in food and beverage supply chains. The outcome was that 

the costs decreased, and the forecasts were accurate, but they couldn't be applied in all industries, parts of the world, 

or network configurations that were complex. 

3. MATERIALS AND METHODS 

 

Implementation increased accuracy in risk detection, cost efficiency, and speed; however, there was limited 

applicability to one pharmaceutical supply chain. The Triple-P framework was developed by assessing the complexity 

of Product, Partnership, and Process to match resilience options with supply-chain types [15]. Implementation pointed 

to strategies being affected by integration and process homogeneity, instead, the generalizability was limited as it was 

only based on executives through interviews. 

The proposed framework integrating blockchain and artificial intelligence improved supply chain resilience and 

operational performance, which ultimately benefit the economy, environment, and society [16]. However, it did not 

have generalizability applied only to Chinese companies in isolation, while lacking consideration of differences in 

industries and regions. The Interpretive Structural Modeling-Bayesian Network (ISM-BN) model [17] used both 

feedback from experts and the interdependences in a three-case study to identify significant signs of resilience in 

supply chains. The studies appeared to prioritize strategies effectively in three instances from Indian manufacturing; 

however, it was not transferable to other industries, regions or more complicated situations. 

The smart resilient supply chain framework [18] used Plan-Do-Check-Act decision-making to pull together demand 

forecasting, risk inference, working across customer order clustering for food waste reduction and recycling. This 

provided improved risk management capability, and more benchmark performance in using fishery topics; however, 

was not transferable to different industries, regions or new technological advancements. 

Finally, Adaptive Electromagnetic Field Optimization (AEFO) is employed to fine-tune feature weights and model 

parameters, balancing exploration and exploitation to achieve optimal forecasting performance and robust decision 

support for supply chain resilience. Figure 1 shows the schematic work flow of the proposed system. 
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Figure 1. Structural Flow of the Proposed Model 

 

3.1 Data Sources and Collection 

The dataset has 1500 records of supply chain metrics from Saudi Arabia. The public Kaggle repository 

(https://www.kaggle.com/datasets/programmer3/saudi-supply-chain-dataset/data) is where these records brought 

from. It has information about demand and inventory, such as past demand, past forecasts, inventory levels, order 

quantities, lead time, and stockout flags. This information can be used to look at past demand patterns and make 

accurate demand forecasts. To determine the effectiveness of logistics and investigate delays, relevant shipment data 

is collected, including shipment ID, origin, destination, distance, transportation mode, transit time, hours delayed, fuel 

cost, and shipment status. Risk indicators (e.g., supplier risk, weather disruption, political risk, labor strikes, demand 

volatility, resilience score, and at-risk shipment) help to identify risks in the company and in the environment which 

allows for finding them before they happen. Data was divided into a training set (80%) and a test set (20%). 
3.2 Handling Missing Values - Imputation and Cleansing of Key Supply Chain Metrics 

Dealing with missing values is an important step in preprocessing the data set so the resulting supply chain forecasts 

and risk analysis can be done accurately. The approach that typically relies upon prior trends and business relationships 

is value imputation for missing values on important variables such as historical demand, forecast demand, inventory 

positions, order quantity, lead time, delay hours, shipment status and such. This is a way to respect the relational and 

temporal aspects of the data set, the modeling can accurately learn demand changes in relation to delay in shipments 

and risk operational implications such as a chain reaction of delays. Subsequent to this phase, the cleaned and full 

features, past demand, predicted demand, inventory level, order quantity, lead time, delay hours, shipment status, 

supplier risk score, and resilience score-are sent to the feature extraction phase for additional transformation and 

dimensionality reduction, which facilitates solid and precise deep learning predictions. 

3.2.1 Data Preprocessing Using Z-Score Normalization 

Operational and logistical data for supply chain forecasting are normalized using Z-score normalization, which 

standardizes feature values by centering and scaling them to ensure consistency across variables. This process 

enhances the reliability and performance of the DL. The process makes the data have a standard deviation of one and 

centers it around zero. Equation (1) shows a feature w′ using the Z-score. 

1) w′ = 
w−mean(w)

 
std(w) 

where w′is the normalized value utilized for modeling, mean(w) is the mean value of the original supply chain feature 

w, and std(w) is its standard deviation. 

3.3 Principal Component Analysis (PCA) using Feature extraction 
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The dimensionality of the Saudi supply chain dataset is high, and to retain the most informative features, PCA is 

applied. Fake parts are made from original features that capture the most variation in the dataset. This helps the AI 

model focus on the most important data for figuring out risks, optimizing inventory, and predicting demand. To make 

a dataset that doesn't have a mean, we take the mean of each feature and subtract it from the dataset. The covariance 

(Covw1w2 ) between two features is computed as Equation (2). 

2) Cov 
 

w1w2 
= 

∑(W1−M1)(W2−M2) 

m 

where W1and W2are instances of the features, M1and M2are the respective means, and mis the total number of records. 
For datasets with multiple features, the covariance matrix (D) is represented as follows in Equation (3). 

u(W1) d(W1, W2) ⋯  d(W1, Wo) 

3) D = (d(W1, W2) u(W1) ⋯  d(W2, Wo)) 
⋯ ⋯ ⋯ ⋯ 

d(W1, Wo) d(W2, Wo) ⋯  u(Wo) 

The covariance matrix Dcaptures variances u(Wi)of each feature Wiand covariances d(Wi, Wj)between feature pairs, 

where ois the total number of features. The variance recorded is quantified by the eigenvectors (eig) of the directions 

of maximal variance and the related eigenvalues. Ordering eigenvectors by descending eigenvalues allows selection 

of the most informative components. The top eigenvectors form the reduced feature vector in Equation (4), retaining 

essential dataset information while reducing dimensionality. 

4) FeatureVector = (eig1, eig2, eig3, . . . , eigm) 

Finally, a newly reduced feature space is generated from the dataset using Equation (5). 

5) NewDataset = [FeatureVector]S[Data]S 

This PCA-based feature selection lets the model use the most important supply chain features while keeping the most 

variation and lowering the number of dimensions. This means that the AI system can accurately predict demand, find 

shipments that are in danger, and make the supply chain stronger. 

3.4 Adaptive Electromagnetic Field Optimized Attention-enriched Memory Networks (AEFO-Att-MN) model 

is designed to improve demand forecasting, inventory optimization, and supply chain resilience 

The proposed AEFO-Att-MN framework integrates attention mechanisms to prioritize critical features, LSTM 

networks to capture complex temporal dependencies, and AEFO optimization to fine-tune feature weights and 

parameters. This synergy improves the accuracy, stability, and adaptability of forecasts for long-term management of 

urban environmental facilities. Using focused feature learning, temporal memory modeling, and intelligent 

optimization, the model makes sure that decisions are strong and work well. 

3.4.1 Enhances memory representation to capture dependencies for accurate forecasting using Attention- 

enriched Memory Networks (Att-MN) 

The attention mechanism, which is based on how the brain sees things, focuses on the most important parts of supply 

chain forecasting. It gives more weight to important features and less weight to less important ones. Scaled dot-product 

attention is utilized, derived from supply chain time-series data as delineated in Equation (6). 

6) P = softmax (
QKT

) . V 
√L 

where P represents the output of the attention mechanism, Qis obtained from the TCN (Temporal Convolutional 

Network) output, K and Vare derived from the original input sequence, and Lis the input feature length. The keys and 

values are computed as Equation (7 and 8). 

7) K = J. Xl + al 

8) V = J. XU 
In this case, J is the original time-series data from the supply chain, Xl and XU are trainable weight matrices for figuring 

out keys and values, and al is the bias vector that is added to the keys. This mechanism lets the model give more 

weight to important parts of the supply chain, which improves the accuracy of demand predictions, the ability to spot 
shipments that are at risk early on, and the overall resilience of the supply chain. 

Att-MN is a machine learning technique used to model long-term temporal dependencies in urban environmental 

sensor data. Its four components the input gate, forget gate, output gate, and update mechanism manage information 

transmission, forgetting, and storing to generate accurate future predictions for sustainable facility operation as follows 

in Equation (9). 

9) js = σ(Xj ∗ [gs−1, ws] + ai) 

where jsrepresents the input gate activation controlling new information flow into the cell, The input gate's weight 

matrix is represented by Xj, while the previous time step's hidden state is represented by gs−1, wsis the current input 

(e.g., sensor readings, energy load, or environmental metrics), and aiis the bias term. The sigmoid function σregulates 

the flow of information between 0 and 1. It is shown in Equation (10). 

10)es = σ(Xe ∗ [gs−1, ws] + ae) 
where es denotes the forget gate activation that filters past memory contributions. The forget gate's weight matrix is 
called Xe, and its bias is called ae. This step is crucial to remove outdated patterns in environmental data, such as 
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transient peaks or outliers. In order to enable the model to preserve any long-term dependencies, the method used to 

update the cell state determines which candidate values should be added to the memory cell. This is outlined 

mathematically as Equations (11 and 12). 

11) M ds = tanh(Xd ∗ [gs−1, ws] + ad) 

12) ds = es ∗ ds−1 + js ∗ ds 

WhereXdis the weight matrix for the cell update, Xd is the bias term, ds is the previous cell state. The multiplication 

with es allows forgetting irrelevant past signals, while js decides how much of the new candidate state is retained. In 

the context of this research, this enables the model to balance historical sensor trends with real-time data streams. The 
gate for output controls the generation of the ultimate concealed condition, which represents the model’s interpretation 
of relevant temporal patterns. It is expressed as shown in Equations (13 and 14). 

13)ps = σ(Xp ∗ [gs−1, ws] + ap) 
14) gs = ps ∗ tanh(ds) 

where Xpis the output gate's weight matrix, ap is its bias, gs is the updated hidden state at time s, and psis the output 

gate activation. The LSTM architecture enhances the prediction of environmental dynamics by acquiring temporal 

dependencies from multimodal sensor streams, forecasting urban facility operations, and facilitating adaptive resource 

management, thereby improving sustainable facility planning. Figure 2 shows what an LSTM cell looks like on the 

inside. It shows how the network can use the cell's ability to selectively store, update, and output information from 

sequential time-series data to find long-term dependencies and short-term trends for accurate forecasting. 

Figure 2. LSTM Cell Internal Mechanism 

 

3.4.2 Adaptive Electromagnetic Field Optimization (EFO) Steering Intelligent Feature Weighting and Model 

Fine-Tuning 

To optimize the model parameters and feature selection weights that influence urban environment facility monitoring 

and adaptive decision-making EFO algorithm is employed. Traditional optimization techniques often lead to local 

convergence, especially in high-dimensional environmental data involving sensor dynamics, public facility usage, and 

environmental conditions. EFO is used to find a balance between exploration and exploitation, which makes sure that 

the algorithm moves toward a global optimal solution. Equation (15) shows how to make the first population. 
15) EMPEj = Lower + random(Upper − Lower ), j = 1, ....... , NumberofEMPE; i = 

i i i i 

1, . . . NumberofelectromagnetsofElectromagneticParticle (EMPE) 
Here, EMPEjrepresents the jth electromagnet of the ith electromagnetic particle (candidate solution). Lower and 

i j 

Upperjare the lower and upper bounds of each variable (e.g., feature weight or parameter), and randomis a uniform 

random number in [0,1]. The algorithm categorizes solutions based on their fitness performance into three fields. This 

adds more variety to each iteration, which helps the algorithm get out of local minima. The roulette wheel method 

(RWM) uses Equation (16) to find the best solutions by figuring out how fit each new particle. 
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16) EMPEnew = 
⎨ 

EMPERWNiifrandom 

< Probabilityofselectingvariables 
inengenderedparticle 

EMPEneutrali + (φ + random) 

(EMPE
positivei − EMPE

neutrali ) i i 

⎪−random(EMPEnegativei − EMPEneutrali) orelse 
i i 

{ i = 1, . . . , Numberofelectromagnets 
Roulette Wheel Method (RWM) enhances the exploitation capability by probabilistically selecting better solutions 

more frequently. Finally, the selection probability is updated adaptively to smoothly transition from exploration to 

exploitation as iterations progress, is shown in Equation (17). 

17)(PSV)rate = PSV + 
i teration×(PSVmi𝚗 −PSVmax) 

 Maximumiteration  
In this case, PSVmin and PSVmax are the lowest and highest values for the selection probability, and iteration and 

rate rate 

maximumiteration are the current and total number of iterations. EFO uses this structured optimization to figure out 

the best variable weights and parameter settings for the model that senses the environment. This leads to better 

detection accuracy, more flexibility, and better decision support for the long-term management of urban public 

facilities. Algorithm 1 shows how the system should work. 
Pseudocode 1: AEFO-ATT-MN 

BEGIN AEFO-Att-MN 

Initialization 

num_slots = 10; slot_dim = 64 
input_dim = 128; feat_dim = 64; out_dim = 5 

Initialize memory M[10 × 64], θ_f, θ_a, θ_orandomly 
α = 0.1 # EM field strength 

β = 0.01 # step size 

ε = 0.001 # convergence 

epochs = 50; batch_size = 32 

Attention Mechanism 

FUNCTION Attention(q, M): 

scores = softmax(q · M^T) # [1×10] 

RETURN scores · M # [1×64] 

Forward Pass 
FUNCTION Forward(x): 

f = Feature(x, θ_f) # [1×64] 

q = Transform(f, θ_a) # [1×64] 

c = Attention(q, M) # [1×64] 

RETURN Output([f || c], θ_o) # [1×5] 

AEFO Parameter Update 

FUNCTION AEFO_Update(param, grad): 

EM_force = α ∗ grad / (||param|| + 1e − 8) 
RETURNparam − β ∗ EM_force 
Training 

FOR epoch = 1..epochs: 
FOR each batch: 

y = Forward(x) 
loss = CE(y, target) 
grads = Backprop(loss) 

Update θ_f, θ_a, θ_o, M using AEFO_Update 

α = α ∗ 0.99 # decay EM force 

IFloss < ε: BREAK 

Prediction 

FUNCTION Predict(x): 

RETURN Forward(x) 

END AEFO-Att-MN 
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4. RESULT 

 

The AEFO-Att-MN proposed framework improves forecasting demand, optimizing inventory, identifying emerging 

risks, and overall resilience of the supply chain, achieving better performance than traditional methods. As seen 

through graphical and quantitative methods compared to programmed baseline models, operational efficiency, 

bottlenecking and predictive ability appear to be positively tweaked or influenced. To train the system, Keras 2.2.4 

was utilized, meanwhile, testing happened using Tensorflow ("Python," 3.6). The outcomes show the AEFO-Att-MN 

proposed framework performs much stronger than conventional methods at analyzing resilience and predicting supply 

chain events. Graphs reveal delays in transportation, fuel costs, resilience scores, supplier risks, and bottlenecking. 

Important measure of operation metrics matter that confirm just how these two metrics together can help to show how 

both transport delays and changes in fuel costs can adversely affect the overall performance and efficiency of the 

supply chain can be revealed in Figure 3. 

Figure 3(a) reveals delays in hours for each mode of transport. It indicates that sea, road, and air all have a similar 

median delay overall. The variation illustrates that operations are not always predictable, warranting the use of AI for 

making the best predictions possible for an improved supply chain. From Figure 3(b), fuel costs fluctuate according 

to the status of the shipment; usually, a late shipment costs less than on-time shipments. There seem to be a pattern; 

timely shipments tend to cost more or even less fuel than late shipments. This demonstrates the balance between cost 

and efficiency in the supply chain operation. 

Figure 3: Graphical representation of Delay hours and fuel cost analysis across transport modes 

Figure 4 illustrates the resilience of the supply chain and its transportation effectiveness while also documenting what 

different factors apply to operational reliability and efficiency. Figure 4(a) illustrates the density distribution of the 

resilience scores across the supply chain participants. The densities skew more to the 0.5 - 0.9 resilience scores 

suggesting good operational performance illustrated by operational stability and adaptability. Higher density scores 

with more scores in the middle balanced would imply all supply chain nodes are likely strong. Figure 4(b) then follows 

the correlation of distance and delay hours showing that longer distances naturally create a bit of a delay to arrival, 

but the density distribution illustrates how other outside factors would have negative influence on delivery. Overall, 

this illustrates how important predictive planning is to support a resilient and efficient supply chain. 

Figure 4: Graphical representation of Supply chain resilience scores and distance versus delay analysis 

Supplier risks and transit performance by transport modes is graphic in Figure 5. It also suggests what factors influence 

reliability in the supply chain. In Figure 5(a), raw supplier risk scores for Sea, Road and Air are presented. The median 
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risk for both Air and Road is slightly upward, indicating that these two forms of expedited or land-based logistics may 

also offer less reliability. Sea Transportation scored moderate risk and inspection was consistent. In Figure 5(b), 

distance vs. transit time is captured using a hexbin plot. More distance typically equals more time for delivery. This 

trend shows that distance greatly influences logistics performance and is significant for predictive optimization in 

supply chain management. 

Figure 5: Graphical representation of Supplier risk scores and distance versus transit time analysis 

Figure 6 illustrates the performance of the supply chain by illustrating shifting relationships and process bottlenecks. 

Figure 6(a) illustrates a parallel coordinate plot that illustrates how historical demand, inventory level, lead time, and 

resilience score are interconnected with one another. Two different groups of lines are displayed by the red and blue 

lines, and this makes it easier to distinguish patterns and relationships among these variables. Figure 6(b) illustrates a 

supply chain funnel that indicates how orders reduced from 238,966 to merely 1,350 shipped and 1,275 delivered 

products. This indicates where the supply process slows. 

Figure 6: Graphical representation of Supply chain variable relationships and order funnel bottleneck analysis 

Table 1 displays a comparison of the performance results of the proposed model, AEFO-Att-MN, against currently 

accepted models such as MLP Regressor [20], Elastic Net [20]. XGBoost [20], Random Forest [20], and Linear 

Regression [20]. This section demonstrates that the AEFO-Att-MN has improved accuracy by validating well- 

established methods and reference measures/rules of thumb through established performance measures of R², RMSE, 

and MAE. 

In figure 7(a), RMSE was used to provide forecast accuracy portending the level of agreement between actual 

observations and forecasted supply chain demand values. The AEFO-Att-MN provided the best RMSE value of 0.412, 

exceeding Random Forest (1.014) and Linear Regression (0.985) in predictive accuracy by minimizing prediction 

error and delivering higher reliability. 

The MAE is another measure of average prediction error to determine forecasting accuracy. Figure 7(b) shows the 

AEFO-Att-MN had the best MAE of 0.365, as compared to traditional models with a measurement of 0.866 to 1.059. 

Therefore, the AEFO-Att-MN had excellent accuracy with little space between predicted demand and actual demand. 

The model's ability to explain variation in demand forecasts is measured by R-squared (R²), which is an indicator of 

predictive accuracy and model trustworthiness. Figure 7(c) indicates that the proposed AEFO-Att-MN has an R² of 

0.862, which is much higher than the other models (i.e., Linear regression = 0.003) demonstrating higher forecasting 

opportunity and a great ability to explain variances in demand forecasting. 
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Table 1: Proposed Model Outperforms Baseline Regression Methods 
Model RMSE MAE R-squared (R²) 

Linear Regression [20] 0.985 0.866 0.003 

Random Forest [20] 1.014 0.878 -0.055 

XGBoost [20] 1.091 0.918 -0.223 

Elastic Net [20] 0.988 0.873 -0.001 

MLP Regressor [20] 1.259 1.059 -0.628 

AEFO-Att-MN (Proposed) 0.412 0.365 0.862 

 

Figure 7: AEFO-Att-MN outperforms traditional models in RMSE, MAE, and R² 

 

5. DISCUSSIONS 

The discussion presents evidence that different frameworks are not particularly good at generalizing. The discussion 

also introduced various ways AEFO-Att-MN could help with operational efficiency in general, as well as the flexibility 

of supply chains. The limitations of the suggested frameworks and models were presented to reveal that these 

frameworks could not generalize or assess validity. The end-to-end visibility indicated limited generalizability [10], 

while the PLS regression framework encountered issues with self-reporting and lack of validation across industries 

[11]. The validation of the risk-averse mixed-integer nonlinear model was limited to computational scenarios [12]; the 

QFD-MCDM framework was valid within a single case [13]. 

Similarly, the AIC information system was only usable within the one pharmaceutical supply chain [14]; to further, 

the Triple-P framework was more difficult to generalize because it was only validated through executive interviews 

[15]. The blockchain-AI framework is not as applicable to other industries or regions since it is only useful for Chinese 
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companies, and generalizability does not account for differences [16], England [17]. The ISM-Bayesian Network 

model was limited in wider applications due to sectors, regions, and levels of complexity in its framework [17]. 

Current models have high error rates and can only slowly adapt to nonlinear, changing patterns. The AEFO-Att-MN 

model is a modification to mitigate these errors through using attention-based memory and adaptive optimization for 

improving accuracy, stability, and robustness [20]. The AEFO-Att-MN deep learning framework increases resilience 

across supply chains by permitting better demand forecasts, less surplus and shortage, effectively managing inventory, 

optimizing lead time, hypothesizing risk, and facilitating intelligent and flexible operations. 

6. CONCLUSION 

 

The AEFO-Att-MN A model was significantly developed to improve operational efficiency and resiliency in the 

supply chain by exploring various frameworks and advanced techniques such as AI-based analytics and deep learning 

approaches. Examples of classical frameworks are end-to-end visibility, PLS regression, risk-averse mixed-integer 

nonlinear models, and AIC information systems as well as new deep learning framework efforts such as QFD-MCDM 

and the Triple-P framework developed herein to enable strategic planning for adversity, operational efficiencies, and 

resilience for supply chains. However, their applicability was frequently constrained to very specific and narrowly 

defined situations, often limited by self-reported data, focused on only one industry or case study, or limited to 

validation based on computational or interview-based research methods. This identifies an overarching need for a 

more general and cross-industry assessment of frameworks and structures. The AEFO-Att-MN deep-learning 

framework, however, demonstrated to effective improvements by forecasting demand effectively and efficiently, 

lowering excess and out-of-stock inventory situations, reduced effective lead-time, and predicting shipments at risk 

before it is occurring, enabling supply chain agility and intelligence. However, even with demonstrated improvements, 

there remains over the traditional frameworks with respect to adopting better outcomes across a broader geographical 

region, industries, and operationally varying levels of technological sophistication (robustness). Future research may 

focus on integrating cross-sector validation, real-time data analytics, and hybrid AI models to enhance supply chain 

resilience and promote intelligent, sustainable operations globally. 
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