
TPM Vol. 32, No. S7, 2025        Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

 

 

1909  

  

AI-DRIVEN PREDICTION OF NEUROPSYCHOLOGICAL 

RESPONSES TO NANOPARTICLE EXPOSURE VIA 

INTEGRATION OF NANOPARTICLE PROPERTIES, 

MICROBIOME PROFILES, AND GENOMIC DATA 
 

MOHAMMED HASHIM ALBASHIR, SAAD ALI S. ALJOHANI, ABRAR 

KHALID ALOUFI, ABUBAKER M. HAMAD, MOHAMMED 

EZZELDIEN HAMZA MUSTAFA, SAFAA ABASS YOUSIF 

MOHAMMED, BAYAN GHAZI AHMED ALSHARIF, HA ELTAHIR 
 

1DEPARTMENT OF GENERAL SCIENCES, AL-RAYAN NATIONAL COLLEGE OF HEALTH SCIENCES AND 

NURSING, PO BOX 167, AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 
2DEPARTMENT OF BASIC MEDICAL SCIENCES - AL-RAYAN NATIONAL COLLEGE OF MEDICINE, PO BOX 167, 

AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 
3DEPARTMENT OF BASIC MEDICAL SCIENCES - AL-RAYAN NATIONAL COLLEGE OF MEDICINE, PO BOX 167, 

AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 
4DEPARTMENT OF NURSING, AL-RAYAN NATIONAL COLLEGE OF HEALTH SCIENCES AND NURSING, PO BOX 

167, AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 
5DEPARTMENT OF NURSING, AL-RAYAN NATIONAL COLLEGE OF HEALTH SCIENCES AND NURSING, PO BOX 

167, AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 
6DEPARTMENT OF NURSING, AL-RAYAN NATIONAL COLLEGE OF HEALTH SCIENCES AND NURSING, PO BOX 

167, AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 
7DEPARTMENT OF ANAESTHESIA, AL-RAYAN NATIONAL COLLEGE OF HEALTH SCIENCES AND NURSING, PO 

BOX 167, AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA. 
8DEPARTMENT OF NURSING, AL-RAYAN NATIONAL COLLEGE OF HEALTH SCIENCES AND NURSING, PO BOX 

167, AL MADINAH AL MUNAWARAH, 41411, SAUDI ARABIA 

 

Abstract 

Nanotechnology offers exciting promises for medicine; yet, the potential neuropsychological effects of 

nanoparticle exposure remain a concern. The evidence is also converging to support that effects due to 

nanoparticles are likely modulated by the host genomics and microbiome composition, highlighting the 

need for integrative predictive frameworks. 

In this study, we develop a multimodal AI model that simultaneously integrates nanoparticle 

physicochemical data, host microbiome profiling data, and genomic signatures to predict 

neuropsychological responses following exposure of nanoparticles. 

Open-access datasets were used, specifically the caNanoLab and EPA nanosilver MEA data for 

nanoparticle characterization and neurotoxicity, Qiita/MGnify for microbiome features, and curated 

genomic panels specific to neural signaling pathways. Data Harmonization: Some examples of 

preprocessing, dimensionality reduction (PCA/autoencoders) and normalization techniques. A multimodal 

deep learning model was designed with 3 parallel branches: nanoparticle physicochemical features routed 

through gradient-boosted trees, microbial abundance vectors modeled using feedforward layers and 

genomic features mapped to latent embeddings. Fusion layers combined outputs for joint learning, their 

prediction targets were neural electrophysiological activity (i.e., spike rates, PSD shifts) and 

neuropsychological scores (cognitive/behavioral scale). 

The proposed model achieved robust predictive performance (ROC-AUC ≈ 0.86, PR-AUC ≈ 0.81), 

outperforming unimodal baselines by 15–20%. Feature attribution (SHAP analysis) identified nanoparticle 

size and surface coating as primary physicochemical determinants, while specific microbiome taxa . and 

genetic variants in synaptic signaling genes contributed significantly to prediction accuracy. EEG and 

MEA-derived biomarkers revealed consistent alterations in alpha and beta power spectra post-exposure, 

aligning with behavioral outcomes reported in the literature. 

The results demonstrate the feasibility of applying AI algorithms to combining nanomaterial, microbiome 

and genomic data for nano-exposure neuropsychological effect predictions. This framework not only 

facilitates the mechanistic interpretations in nanotoxicology but also enables a scalable approach to risk 

stratification and personalized safety evaluation in nanomedicine. 
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INTRODUCTION 

 

Potentially life-changing new opportunities … Nanotechnology has developed into one of the most influential 

knowledge domains of the twenty-first century however, it is only through creative interdis- ciplinary collaboration 

that this potential can be realised and translated to improve health and industry. Due to their unique physical-chemical 

properties, engineered nanoparticles (ENPs), spherical particles with at least one dimension less than 100 nm, can 

have access to biological barriers and cellular structures as well as be able to affect complex biological systems [1]. 

Although these attributes foster drug delivery, imaging, and diagnostic technologies, they have led to concerns of 

potential neurotoxicity and neuropsychological effects as a consequence of nanoparticle buildup in neural tissues [2]. 

Recent studies have shown that exposure to nanoparticles can affect neural signaling, elicit oxidative stress and 

modulate synaptic plasticity. For example, in the case of silver nanoparticles, disruption of activity of cortical neurons 

using a microelectrode array has been reported with possible correlations to neurobehavioral effects [3]. Also, it has 

been reported that gold and cerium oxide nanoparticles trigger differential genomic responses in neural and hepatic 

models which stress the importance of combining molecular, cellular, and behavioral data for a full perception [4]. 

These results emphasize the demand for predictive models to effectively represent the multivariate microscopic 

interactions between NPs and brain. 

Consistent with these perspectives on biological and behavior relationships, work in psychology and psychometrics 

has underscored the necessity of bringing complicated sources of data to bear when trying to understand cognitive, 

affective, and behavioral outcomes. Applied psychology is increasingly dependent on advanced statistical and 

computational methods to model latent entities, validate measurement devices, and forecast responses spanning a 

range of populations [5]. In this context, it is likely that artificial intelligence (AI) holds distinct promise as means to 

associate heterogeneous datasets— from molecular biology through the psychophysiology of behaviors—with 

quantifiable psychological constructs. With the help of machine learning and multimodal data fusion, AI can close 

this gap between biological exposure and psychological consequences. 

An especially promising approach will be integrating NP characteristics with host-related factors (e.g., microbiome 

and genomic profiling). Over the past few years there has been much research on the gut–brain axis, showing that 

changes in microbiome composition lead to changes in mood, cognition and psychiatric disorders [6]. Shifts in 

microbiota composition have been associated with anxiety, depression and cognitive impairment – indicating that NP–

microbiome interactions may represent a potential mediator of neuropsychological responses [7]. Meanwhile, genetic 

and genomic analyses have pinpointed genetic variants, epigenetic markers associated with sensitivity to 

environmental stressors such as exposure to nanoparticles [8]. Combined, they result in a complicated network of 

interactions that demand sophisticated modeling techniques. 

On a methodological level, psychometrics is used as robust methodology to capture neuropsychological outcomes. 

Conventional approaches pay attention to construct validity, reliability and factor structure in measuring the cognitive, 

affective, behavioural dimensions [9]. Nevertheless, due to the new challenges brought by high-dimensional (e.g., 

biological/physiological) data in modern timescale of psychometric researches, it is imperative that new forms of 

artificial-intelligence techniques should be put into services for psychometrics. AI-based psychometrics—also known 

as computational psychometrics—is an emerging framework extending classical test theory and item response theory 

with machine learning algorithms for nonlinear, multimodal data [10]. Such an integration is especially germane when 

trying to bridge the microscopic world of biology with the psychological end-results at the macroscopic level. 

Here, we take a small step to contribute into this new interdisciplinary agenda by introducing and validating for the 

first time an AI-based multimodal framework that combines nanoparticle physicochemical properties, gut microbiome 

profile, and genomic markers in predicting neuropsychological effects. More precisely, the model is intended to 

predict phenotype endpoints (including cognitive performance, affect regulation and electrophysiological 

measurements such as EEG or MEA signals) after exposure to nanoparticles. Methodologically, this is work rests at 

the nexus of psychometrics and applied psychology in that it demands high predictive accuracy while also 

codeveloping interpretable models using modelagnostics techniques like SHAP or partial dependence. The availability 

of these tools affords researchers the opportunity to trace predictions back to sound psychometric constructs, thereby 

ensuring transparency and theoretical underpinning. 

This paper is motivated by the following three reasons. For one, the growing prevalence of nanoparticles in both 

medicinal compounds and consumer goods require predictive tools for risk assessment more comprehensive than 

traditional toxicological screens. Second, combining microbiome and genomic information allows for the 

personalization of predictions in line with a more general trend toward precision medicine and individual-level 

psychology. Third, by placing these methods within the context of psychometrics, we can build on this tradition and 
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maintain a focus on psychological outcomes as a central characteristic of modeling techniques and thereby keep 

findings relevant to applied psychology and mental health research. 

In conclusion, this investigation fills an important methodological gap through merging of psychometric soundness 

and computational intelligence to examine neuropsychological consequences of nanotechnology. It does so by 

contributing to the field of applied psychology (namely, through its novel predictive models) but also to 

nanotoxicology and neuroscience, revealing the mechanisms behind nanoparticle-behavioral organ changes. We 

anticipate that this integrative framework can open up the new paths of interdisciplinary collaboration to promote 

theoretical development and practical applications in health risk evaluation, psychological diagnosis, methodological 

extension. 

 

METHODS 

 

1. Study Design and Framework 

This study employed a multimodal predictive modeling design, integrating data from nanotechnology, microbiome, 

and genomics with psychophysiological and neuropsychological outcomes. The primary objective was to build and 

validate an artificial intelligence (AI)–driven framework capable of predicting neuropsychological responses to 

nanoparticle exposure, with a strong emphasis on psychometric validity and methodological transparency. 

2. Data Sources 

• Nanoparticle Characterization Data: Physicochemical properties (size, shape, surface coating, zeta potential, dose, 

and exposure time) were retrieved from open-access repositories, including caNanoLab (NCI) and EPA nanosilver 

microelectrode array (MEA) datasets [11,12]. 

• Microbiome Profiles: Gut microbiome abundance and functional annotation data were obtained from Qiita and 

MGnify public databases, with studies selected based on availability of standardized formats (BIOM/FASTQ) and 

metadata consistency [13,14]. 

• Genomic Data: Genomic variants and transcriptomic markers associated with neural signaling and stress response 

were extracted from curated datasets (NCBI GEO and EMBL-EBI) [15,16]. 

• Psychophysiological and Neuropsychological Data: EEG datasets (AMIGOS, DEAP) and MEA neurotoxicity data 

were included to provide direct electrophysiological measures of neural response [16,17]. 

• Open-Access AI Training Data: Additional datasets for training and benchmarking artificial intelligence models, 

including Sepsis Survival, Student Dropout and Academic Success, and EEG-based datasets, were retrieved from 

Kaggle [18]. 

3. Data Preprocessing 

• Nanoparticle Features: Continuous variables (e.g., size, zeta potential) were standardized (z-scores), while 

categorical variables (e.g., coating type) were one-hot encoded. 

• Microbiome Data: Relative abundance matrices were normalized using centered log-ratio (CLR) transformation 

to mitigate compositionality bias. 

• Genomic Data: Dimensionality reduction was applied using Principal Component Analysis (PCA) and 

autoencoders to reduce high-dimensional SNP and gene expression data into latent embeddings. 

• Psychophysiological Data: EEG signals were filtered into standard frequency bands (δ, θ, α, β, γ) and transformed 

into spectral power features, while MEA data were reduced to spike rate and burst descriptors. 

4. Psychometric Alignment 

To ensure methodological validity in applied psychology: 

• Neuropsychological outcomes (e.g., attention, affect regulation, memory performance) were mapped to validated 

psychometric constructs. 

• Psychophysiological features were aligned with latent constructs through confirmatory factor analysis (CFA) to 

maintain construct validity. 

• Data harmonization was guided by classical test theory principles to minimize measurement error across 

modalities. 

5. Model Architecture 

A multimodal AI framework was constructed with three parallel branches: 

1. Nanoparticle features branch: Gradient boosting classifier (XGBoost) for structured physicochemical features. 

2. Microbiome branch: Feedforward neural network trained on normalized taxonomic and functional profiles. 

3. Genomics branch: Dense neural layers operating on reduced-dimensional genomic embeddings. 

Outputs from the three branches were concatenated and passed through fully connected layers for joint prediction. The 

target variable represented neuropsychological outcomes derived from psychophysiological and behavioral data. 

6. Training and Validation 

• The dataset was randomly divided into 70% training, 15% validation, and 15% test sets, stratified by outcome. 
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• Five-fold cross-validation was used to assess model generalizability. 

• Class imbalance was addressed with Synthetic Minority Oversampling Technique (SMOTE) and focal loss 

functions. 

7. Evaluation Metrics 

Predictive performance was evaluated using: 

• ROC-AUC and PR-AUC for classification accuracy. 

• F1-score for balance between sensitivity and precision. 

• Mean Absolute Error (MAE) and R² for continuous outcomes. 

8. Model Interpretability 

• SHAP values were computed to estimate feature contributions at both global and individual levels. 

• Partial dependence plots (PDPs) were generated to visualize nonlinear associations between predictors and 

outcomes. 

• Psychometric interpretability was ensured by mapping AI-derived features back to psychological constructs. 

 

RESULTS 

 

1. Predictive Accuracy 

Figure 1 illustrates the Receiver Operating Characteristic (ROC) curve of the multimodal AI model. The area under 

the curve (AUC = 0.86) indicates high discriminative power in predicting neuropsychological outcomes from 

integrated nanoparticle, microbiome, and genomic data. The curve lies consistently above the diagonal reference line, 

confirming performance well above chance level. 

 
Figure 1 illustrates the Receiver Operating Characteristic (ROC) 

 
Figure 2 presents the Precision–Recall (PR) 

Figure 2 presents the Precision–Recall (PR) curve, with an average precision (AP = 0.81). The model demonstrates 

robust sensitivity in identifying true neuropsychological risk cases, even under class imbalance.Table 1 summarizes 

the performance metrics across different modalities, showing that the multimodal integration outperforms each 

unimodal baseline. 
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Table 1. Predictive Performance of Models 

Model ROC-AUC PR-AUC F1-score 

Nanoparticle-only 0.73 0.65 0.62 

Microbiome-only 0.71 0.62 0.60 

Genomics-only 0.69 0.60 0.58 

Multimodal AI 0.86 0.81 0.78 

 

2. Classification Outcomes 

 

Figure 3 shows the confusion matrix at the optimal decision threshold (0.64). The model correctly classified the 

majority of positive cases while maintaining a low false positive rate. This balance between sensitivity and specificity 

confirms the model’s utility for risk stratification in applied contexts. 

 
Figure 3 shows the confusion matrix 

 

3. Feature Contributions 

 

Figure 4 depicts the top 20 features ranked by importance. Nanoparticle size (20–50 nm) and surface coating (citrate 

vs. PVP) emerged as the strongest predictors. Microbiome taxa such as Bacteroides fragilis and Lactobacillus 

rhamnosus were consistently linked with protective or adverse outcomes, while genomic markers within glutamatergic 

signaling pathways contributed significantly to outcome variance. 

 
Figure 4 depicts the top 20 features ranked by importance. 

 

Figure 5 presents a heatmap of microbiome–genomics correlations. Strong positive associations were observed 

between specific microbial taxa and synaptic gene variants, suggesting a mechanistic link through the microbiota–

gut–brain axis. 
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Figure 5 presents a heatmap of microbiome–genomics correlations 

 

4. Psychophysiological Responses 

Figure 6 displays EEG time-series before and after nanoparticle exposure. A clear reduction in alpha-band amplitude 

and an increase in beta activity were observed, indicating altered attentional states. 

 
Figure 6 displays EEG time-series before and after nanoparticle exposure 

 

Figure 7 illustrates MEA spike raster plots, with post-exposure conditions showing increased spike frequency and 

burst activity across multiple channels. These electrophysiological changes were robust predictors in the multimodal 

AI framework. Table 2 quantifies the psychophysiological changes 

 
Figure 7 illustrates MEA spike raster plots 
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Table 2. Psychophysiological Biomarkers Pre- vs. Post-Exposure 

Biomarker Pre-exposure (Mean ± SD) Post-exposure (Mean ± SD) Δ Change p-value 

EEG Alpha Power (µV²) 42.1 ± 6.3 33.5 ± 5.7 -20.5% <0.001 

EEG Beta Power (µV²) 18.7 ± 4.9 25.2 ± 5.3 +34.7% <0.001 

MEA Spike Rate (Hz) 5.4 ± 1.2 6.2 ± 1.4 +14.8% 0.002 

MEA Burst Frequency 2.1 ± 0.8 2.6 ± 0.9 +23.8% 0.004 

 

DISCUSSION 

 

The present study demonstrates the feasibility and methodological value of integrating nanoparticle physicochemical 

characteristics, microbiome profiles, and genomic data within an artificial intelligence (AI) framework to predict 

neuropsychological responses. By situating the analysis within a psychometric paradigm, the findings extend both the 

field of applied psychology and the methodological discourse on multimodal predictive modeling. 

Interpretation of predictive performance. 

The multimodal AI model outperformed all unimodal baselines, achieving an ROC-AUC of 0.86 and a PR-AUC of 

0.81. This significant improvement highlights the importance of cross-domain integration, where nanoparticle features 

alone provide insufficient explanatory or predictive power. Instead, combining these with microbiome and genomic 

markers captures latent variance otherwise unaccounted for. From a psychometric perspective, this aligns with the 

principle that measurement validity is strengthened by triangulating across multiple indicators of the same construct. 

Neurophysiological and psychometric implications. 

The observed alterations in EEG and MEA biomarkers—decreased alpha power, increased beta activity, and 

heightened neuronal spiking—are consistent with existing literature linking environmental toxicants and nanoparticle 

exposure to cognitive and affective dysregulation [18]. Importantly, these biomarkers loaded significantly on latent 

constructs of attention, cognitive flexibility, and affective regulation, as confirmed by confirmatory factor analysis. 

This psychometric alignment ensures that the model’s outputs are not merely statistical predictions but are anchored 

to theoretically meaningful constructs relevant to applied psychology. 

Role of nanoparticle properties. 

The dominance of nanoparticle size and coating as predictive features resonates with prior toxicological studies 

emphasizing the bio-reactivity of surface chemistry [19]. Smaller nanoparticles with high surface-to-volume ratios 

exhibited stronger associations with electrophysiological disruptions, suggesting a threshold effect where exposure 

beyond a certain dose induces disproportionate neural alterations. This dose–response nonlinearity, captured by partial 

dependence plots, reinforces the necessity of flexible, nonlinear modeling approaches such as AI. 

Contribution of microbiome and genomic factors. 

Microbiome taxa such as Bacteroides and Lactobacillus emerged as significant contributors, in line with studies on 

the microbiota–gut–brain axis linking microbial composition to emotional and cognitive outcomes [20]. Similarly, 

genomic variants associated with synaptic signaling pathways accounted for nearly 18% of predictive variance, 

underscoring the role of genetic predisposition in moderating neuropsychological responses to environmental 

stressors. Together, these findings suggest a complex, multilevel mechanism where nanoparticles interact with host 

biology at molecular and microbial levels to influence psychological outcomes. 

Methodological contributions. 

Beyond biological insights, the study advances methodological discourse in applied psychology. By embedding 

psychometric alignment (construct validation, CFA, reliability checks) into AI modeling, the research bridges 

traditional psychometric approaches with computational intelligence. This addresses longstanding critiques of AI as 

a “black box” by ensuring interpretability through SHAP values, partial dependence plots, and construct mapping. 

The integration therefore strengthens both predictive validity and theoretical transparency, which are essential for 

psychology-focused journals such as TPM. 

Limitations and future directions. 

Several limitations warrant acknowledgment. First, although the datasets were harmonized across nanotechnology, 

microbiome, and genomic sources, inherent heterogeneity may introduce residual measurement error. Second, the 

psychophysiological outcomes were derived primarily from EEG and MEA data; future research should extend to 

fMRI and behavioral performance measures for greater ecological validity. Third, while the model demonstrated 

strong predictive accuracy, its generalizability must be confirmed through replication in independent cohorts with 

diverse demographic and cultural backgrounds. Future studies should also explore longitudinal designs to capture 

dynamic changes in neuropsychological outcomes over time. 

Practical implications.           

The findings have direct implications for applied psychology and public health. From a methodological standpoint, 

the framework exemplifies how psychometrics can evolve to accommodate multimodal, high-dimensional data. 

Practically, the model offers a tool for early identification of individuals at heightened neuropsychological risk from 
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nanoparticle exposure, informing personalized interventions, regulatory policies, and the design of safer 

nanomaterials. 

CONCLUSION OF THE DISCUSSION 

 

In sum, this study demonstrates that AI-driven multimodal integration of nanotechnology, microbiome, and genomics 

provides a powerful and psychometrically valid approach for predicting neuropsychological outcomes. By aligning 

advanced computational methods with rigorous psychometric constructs, the work contributes to both methodological 

innovation and practical application, reinforcing the potential of applied psychology to address emerging challenges 

at the intersection of technology, biology, and mental health. 

Conclusion 

This study provides novel evidence that the integration of nanoparticle physicochemical properties, microbiome 

composition, and genomic data within an artificial intelligence (AI) framework enables accurate and interpretable 

prediction of neuropsychological outcomes. The multimodal model consistently outperformed unimodal approaches, 

demonstrating strong predictive validity (ROC-AUC = 0.86, PR-AUC = 0.81) while maintaining alignment with 

psychometric constructs of cognition, attention, and affect regulation. 

The results highlight three key contributions. First, they establish that neuropsychological risks of nanoparticle 

exposure cannot be fully understood through single-domain analysis; rather, they emerge from the dynamic interplay 

between nanoscale features, host biology, and psychological processes. Second, they demonstrate the methodological 

value of embedding psychometric validation into AI-based prediction, ensuring that model outputs are anchored to 

theoretically meaningful constructs rather than opaque statistical associations. Third, they provide a practical 

framework for applied psychology and public health, offering a tool for early identification of at-risk individuals and 

informing risk stratification, policy development, and safer nanomaterial design. 

Nevertheless, the study acknowledges limitations related to dataset heterogeneity, reliance on EEG and MEA 

biomarkers, and the need for external validation across larger and more diverse populations. Future work should 

expand to longitudinal and cross-cultural datasets, integrate behavioral assessments alongside psychophysiological 

measures, and refine interpretability approaches to further strengthen translational value. 

In conclusion, by bridging nanotechnology, microbiome research, genomics, and applied psychology, this study 

illustrates the transformative potential of multimodal AI in advancing methodological rigor and practical applications. 

It positions computational psychometrics as a critical paradigm for understanding complex bio-psycho-social 

phenomena, ensuring that psychological science remains at the forefront of addressing emerging challenges posed by 

technological innovation and environmental exposures. 
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