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Abstract- The spread of coronavirus in South Africa was characterised by extreme temporal 
dynamics, resulting in uncertainties in estimation and forecasting. A probabilistic approach can 
effectively address these uncertainties. We propose a combined forecasting model that integrates 
a Markov-switching autoregressive process with a truncated generalised extreme value (TGEV) 
distribution. Exploratory data analysis indicates that daily confirmed cases exhibit a fat-tailed, 
non-normal distribution characterised by notable regime shifts. The proposed MS-AR-TGEV 
model demonstrates superior predictive accuracy as indicated by performance metrics, including 
root mean square error (RMSE), mean absolute percentage error (MAPE), and continuous ranked 
probability score (CRPS); resulting in an effective model for forecasting COVID-19-related 
uncertainties in South Africa. The findings corroborate earlier research indicating that hybrid 
models demonstrate enhanced efficacy in forecasting time series that is characterised by intricate 
non-linear dynamics. The proposed model aids health sector personnel and government in 
planning and forecasting future epidemics that exhibit behaviour analogous to COVID-19.
Keywords: Coronavirus, Ensemble Model Output Statistics, Forecasting, GeneralisedExtreme 

Value distribution, Markov switching model 

1.INTRODUCTION

The year 2020 will be remembered as a catastrophic period for humanity on Earth. In December 2019, a new type 

of coronavirus (2019-nCoV) was reported to be responsible for a pneumonia outbreak of unknown cause in 

Wuhan, Hubei province of China (Huang et al., 2020). The first death was reported on 10th January 2020, and it 

soon turned into a global pandemic (Sohrabi et al., 2020) affecting millions of people worldwide. The 

World Health Organization (WHO) confirmed that the virus belonged to the coronavirus family, which led 

countries to employ an array of measures to protect the health of their people; and these measures ranged 
from travel ban, quarantine, event cancellations and postponements, social distancing, mass testing, strict and 

moderate lockdowns (Acter et al., 2020). The economic and social repercussions of this virus were significantly 
more severe than the loss of life, particularly in developing and underdeveloped nations, and the potential impact 

of this virus on the African continent was alarming. The recommendations and practices regarding the use of 
public face masks during the ongoing coronavirus pandemic have varied significantly and were subject to rapid 
changes. The public's use of masks in public spaces has been a subject of controversy, particularly since April 

3, 2020; and, this use of masks is significantly more common in various Asian countries, which have 
historically managed to limit the spread of the 2003 SARS epidemic within communities (Hung, 2003). 

Additionally, extensive mask usage is a key characteristic of the relatively effective response to the coronavirus 

(Young et al. 2020).
Nontheless, this study examines the extreme temporal dynamics of the coronavirus epidemic in South Africa 
(SA) in the time range of 05 March 2020 to 01 March 2023. An early look at basic day-lag maps shows that the 

way the epidemic spreads is similar in different places, suggesting that simple models can be useful for 

understanding how the epidemic spreads, particularly when it comes to the peak number of confirmed infections 

and when it happens. Therefore, we consider this modelling to be probabilistic, leading to uncertainty in 

forecasting, prediction, or estimation. When researchers create forecasts for an uncertain future, they must 

evaluate the associated weaknesses to help decision-makers understand these vulnerabilities.
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 The natural weaknesses in forecasts point to an ideal world where they should be probabilistic. That is to say, they 

should be probability distributions across future occurrences or amounts (Gneiting and others, 2014). Probabilistic 

predictions might seem like density forecasts measuring prediction uncertainties, prediction intervals, or quantiles. 

They represent a straightforward correction to the ideal dynamic as proposed by Gneiting and others (2014). But,

for planning reasons, it is very crucial to assess vulnerabilities surrounding demand projections to prevent the 

construction of unneeded infrastructure and to guarantee that future demand is satisfied to help to subdue the

coronavirus. Tay and Wallis (2000) described density forecasts for predicting a random variable's value in the 

future as assessments of the likelihood of different possible future values for that variable. It is crucial to evaluate 

the suitability of an alternative coronavirus source in a particular region before making investments; hence one of 
the objective of this study is to develop an effective forecasting model for newly reported coronavirus cases and to

quantify extreme quantiles of coronavirus spread in South Africa. We assimilate a Markov-switching 

autoregressive (MS-AR) model with a truncated, generalised extreme value distribution (TGEV) and employ the

ensemble method introduced by Baran et al. (2021) to accomplish this objective. This approach facilitates the 

acquisition of reliable estimates and addresses issues of uncertainty. The coronavirus disease has been designated a 

pandemic by the World Health Organisation, which represents a significant global public health crisis. The 

combination of a Markov switching model with a truncated, generalised extreme value distribution facilitates the

identification of coronavirus trends as the regime shifts. We subsequently utilise the ensemble model output 

statistics (EMOS) to deliver a comprehensive predictive distribution of the analysed coronavirus trends by 

calibrating the ensemble forecasts of coronavirus spreads (waves). We therefore, fit a generalised extreme value

distribution truncated at zero as the distribution of the predictions. This truncation resolves one of the crucial 

drawbacks of GEV-based EMOS models, which sometimes may lead to negative predictions for the COVID-19

spread (waves) and somewhat retains the attractive properties of the original distribution. But in a nutshesll, the 
spread of the virus is deemed positive hence truncation approach of the GEV to avoid misleading results. With this, 
we seek to contribute to the statistical and public health literature by applying a novel charter that combines 
EMOS with the Markov-switching autoregressive model, together with the truncated generalised extreme 
value distribution to model and predict the outbreak of coronavirus for South Africa probabilistically. The MS-AR 

model is important for detecting and describing regime-dependent phenomena for the coronavirus, as it can extract 

changes in different states. Since this model permits parameters to fluctuate among distinct hidden states, it is 

supposedly ideal for cases when the dynamics of a system undergo sudden changes (Makatjane and Xaba, 2016). 

Through this lens, it is possible, for instance, to differentiate between peak and trough transmission times of 

coronavirus. By adapting to these 

variations, the MS-AR model becomes more adaptable and accurate in predictions, unlike autoregressive (AR) 
models that exclusively rely on unchanging parameters. As a bonus, its probabilistic structure sheds light on the 
likelihood of regime transitions, which helps with public health crisis prediction and action timing. Finally, we can 
more accurately portray the heavy-tailed character of coronavirus case distributions by using the truncated generalised 

extreme value distribution, which improves the model's capacity to handle extreme values in the data. The truncated 

distribution is helpful because it can handle the unevenness and sharp peaks often found in high frequency data such 
as daiyl confirmed coronavirus spread cases, and by cutting off the distribution at zero, it makes sure that the

predictions are always non-negative. Because it accounts for changing pandemic dynamics, the non-stationary TGEV 

version allows parameters to change over time, which enhances predicting performance even more. This enhances its 

usefulness in predicting the danger levels and return durations of future epidemic peaks. Finally, a full range of 

possible outcomes is created by fine-tuning the initial group predictions with the ensemble model output statistics, 

which is a powerful method for analysing data after it has been collected. Unlike set predictions, EMOS changes the 

ensemble outputs using statistical distributions like TGEV to account for uncertainty and accuracy in the predictions. 

It enables the model to provide trustworthy prediction intervals, which aid stakeholders in evaluating both the 

anticipated number of instances and the corresponding confidence levels. When used with predictions from multiple 

models, EMOS reduces errors, considers differences between models, and improves accuracy, all of which help make 

better forecasts. Forecasts are guaranteed to be accurate, well-calibrated, and probabilistically informative when 

EMOS is combined with MS-AR and TGEV. 

2.LITERATURE REVIEW

Literature related to the coronavirus pandemic and the consequences thereof is reviewed. The world fights 

against this crisis, and no one is certain about the future consequences and impact they will have. Lu et al. (2020) 

evaluated responses of Asian countries to identify key factors that played a role in their effective coronavirus

management. The results highlighted various measures such as early detection, rapid testing, contact tracing, 

strict quarantine protocols, public health campaigns, and effective communication strategies. Kawohl and Nordt 

(2020) conducted statistical analyses to investigate the association between COVID-19, unemployment, and 

suicide. The results of these authors suggest that there is a complex and multifaceted relationship between the 

three associated factors. 

katle
Highlight
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A Bayesian structural time series models were also executed by Xie (2022) to capture the dynamics of 

the pandemic and incorporate various factors such as government interventions, population characteristics, and 

testing capacity. The results of the study show underlying patterns of coronavirus transmission and accurate 

forecasts of future case numbers. Rossouw et al. (2021), on the other hand, used a Markov switching dynamic 
regression (MSDR) model to analyse data from various sources, including surveys and economic indicators, 
to identify distinct regimes or states of happiness and investigate the transitions between these states. The 

results reveal significant shifts in happiness levels before and during the pandemic, indicating the influence of 

coronavirus on individuals' subjective experiences. de-Oliveira et al. (2021) employed GAM (herein 
referenced generalised additive model) functions to capture the nonlinear relationship between predictor 
variables and pandemic outcomes, allowing for a more accurate assessment of control measures. Furthermore, 

Markov-switching models were applied to identify distinct regimes or states of pandemic control and examine 
the transistion between these states over time. In addition, Al-Zoughool et al. (2022) used the stochastic 
continuous-time Markov chain model to simulate various lockdown scenarios and evaluate their impact on the 

spread of coronavirus and associated outcomes. The results of these authors suggest that the timing and duration 
of lockdown measures significantly influence the number of infections and the burden on the healthcare system. 

Lee et al. (2021) alos utilised the Sparse HP filter to contact rate data to identify abrupt changes that are not 
captured by conventional smoothing techniques. Somyanonthanakul et al. (2022) thereafter utilised time series 
modelling to capture the temporal dependencies and trends in coronavirus data, allowing for accurate forecasting. 

Their study provided factors that contribute to the spread of coronavirusand aid in developing effective 
forecasting models. Qu et al. (2022) also combined statistical modelling techniques with intelligent systems to 
develop a comprehensive structure for forecasting coronavirus outcomes. The results of this study provided 
valuable insights into the relationships between environmental factors and coronavirus outcomes, enabling better 

predictions of new cases and deaths. Douwes-Schultz et al. (2023) employed a Markov switching model to 

classify the outbreak into three distinct states, capturing different phases of the pandemic. The analysis is based on 

hospital admission data, which provides insights into the severity and spread of the virus. The results of these 
authors shed light on the transitions between these states and provide valuable information on the patterns of 
coronavirusoutbreaks and their impact on healthcare resources. Haimerl and Hartl (2023) employed regime 

switching model to capture the underlying factors driving changes in infection rates, such as policy interventions,

behavioural changes, and the impact of new variants. The results provide insights into the different states of the 

pandemic and the effectiveness of control measures in containing the spread of the virus. Finally, He et al. (2020) 
utilised the Susceptible-Exposed-Infectious-Recovered (SEIR) model to analyse the progression and dynamics of 
COVID-19. The study analysed interactions among susceptible, exposed, infectious, and recovered individuals to 
elucidate the dynamics of the pandemic, encompassing infection rates, the efficacy of control measures, and the 
effects of interventions.

2.1 Research Highlights and Key Findings 

This paper offers a unique forecasting system combining a truncated generalised extreme value distribution and 

EMOS with a Markov-switching Autoregressive model to probabilistically forecast the spread of coronavirus in 

South Africa. The model addresses key limitations in time series forecasting by including different behaviours 

during various phases of the outbreak, like low and high transmission periods, and by modelling the distribution 

of daily confirmed cases that have extreme values but cannot be negative. Importantly, the research measures 

uncertainty in both mild and severe outbreak situations; hence, it improves epidemic preparation and public health 

decision-making. The inclusion of the TGEV distribution lets one realistically estimate extreme values—e.g., 

epidemic peaks—without unreasonable negative projections. The EMOS, on the other hand, improves the 

calibration of predictive distributions, thereby strengthening and increasing the accuracy of the predictions. Table 

1, below, summarises the highlights and results. 

Table 1: Performance and Contributions of the MS-AR–TGEV–EMOS Model 
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Characteristic Highlights Findings Contributions 

Regime Shift Detection Captures distinct 

epidemic phases via 

MS-AR 

Identifies significant 

shifts in virus 

transmission 

Enables early detection 

of transitions between 

low and high case 

periods 

Tail Event Forecasting TGEV models extremes 

while truncating 

negative values 

Peaks in cases are 

accurately predicted 

Improves accuracy and 

realism in extreme 

outbreak forecasting 

Model Calibration EMOS refines 

probabilistic forecasts 

Enhances the sharpness 

and reliability of 

prediction intervals 

Ensures well-calibrated 

forecasts for public 

health planning 

Statistical Validation High p-values in 

goodness-of-fit tests 

(CRPS, RMSE) 

Demonstrates model 

robustness and 

predictive skill 

Confirms the statistical 

reliability of forecasts 

Asymmetry in Spread Shape parameters show 

fat tails and left-

skewness 

Confirms severity of 

surges over declines 

Provides risk insight 

into rapid outbreak 

escalation 

Policy Implication 

Support 

Scenario-based 

forecasts derived from 

the MS–AR-TGEV 

model 

Helps plan interventions 

during volatile periods 

Supports data-driven 

decisions in health and 

emergency response 

2 Methods and Procedures 

Our World in Data (https://www.ourworldindata/coronavirus-source-data) reports a daily number of confirmed 

coronavirus cases that are accessible to the public. We utilise this data from March 5, 2020, to October 18, 2023. 

We get data from the daily number of confirmed cases in South Africa. 

2.1 Trend Test 

We use the non-parametric Mann-Kendall (M-K) test statistic, Sen’s slope estimator, and time series plots to 

analyse the long-term trend and variability of the daily spread of coronavirus in South Africa. According to Wi et 

al 2016), this test is commonly used, and the test statistic is defined as 

( )
1

1 1
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n n

i jj j
S  

−

= +
= −     (1.1) 

where  is the number of extreme values. If S  is positive, then there is an increasing trend, but if S is negative, 

then there is a decreasing trend, and ( )sgn i j −  is a sign function given by 
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Under the null hypothesis of no trend, the theoretical mean of S is 0, and its variance is given by 

( )( )
1

( ) ( 1)(2 5 1 2 5 /18
g
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=
 = − + − − +
   (1.3) 

Where g  is the number of tied groups pt  and is the number of data points in the tied group. 

2.2 Sen’s Slope Estimator 

The Sen’s slope nonparametric estimator method is used to evaluate the trend of the time series data. The slope 

of data pairs can be initially estimated by using 

.
j k

i

X X
Median k j

j k


− 
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− 
 (1.4) 

In Equation (1.4), jX  and kX are the values of a time series at time j  and k  respectively.Whiletime j  is after

time ( )k k j− . The median of  values of i is the Sen’s slope estimator test. A negative i  value represents 

a decreasing trend, a positive i value represents anincreasing trend over time. 

2.3 Markov Switching Autoregressive Models 
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A special class of these Markov switching models (MSM) is the Markov Switching Autoregressive model. Given 

a time series t{X : t 1,2,3,...,n}= , an MS-AR model provides an approximation to the system representation in

the form (Hamilton, 2010) 
( ) ( ) ( ) ( )
0 1 1

t t t tS S S S

t t p t p tX X X    − −= + + + + (1.5) 

where, ( ) ( ) ( ) ( ) ( )1

0 1 9, , , , 0,S S S s p    +   signifies the AR(p) model's unknown parameters that 

define how the observable process changes in the regime  1,S M  while, t is a series of independent and 

identically distributed Gaussian variables with a mean of zero and a variance of one that is not affected by the 

Markov chain tS .To be more precise, we assume two states modelling and hence the underlying MS-AR (p) 

model is given by 
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where the transition matrix isgiven by 

11 21

12 22

p p
P

p p

 
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 

. 

2.4 Proposed Non-stationary GEV-based EMOS Model 

We are now looking at the ensemble model output statistics (EMOS) model of Lerch and Thorarinsdottir (2013), 

which is based on a GEV distribution, instead of the Truncated Normal EMOS method. The main change from 

the stationary GEV distribution is the inclusion of varying scale and shape parameters with time or maybe with 

tother factors Masingi and Maposa, 2021; Syafrina et al, 2019). So, we fit a non-stationary GEV distribution to 

the residuals from regime 1 of Equation (1.6). This distribution is defined as 

( ) ( )( )
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In the simplest case, the following regression structures could be examined for the location and scale parameters 
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enabling the form parameter to stay the same and the time to change in a way that is quadratic (Panagoulia et al. 

(2014). For 0x  , the cumulative density function (CDF) for this truncated GEV (TGEV) distributionis given by 

( )
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where the negative values are obviously excluded from the support set of the TGEV distribution. For 1   and 

( )0 00 | , , 1G     , the ( ), ,TGEV    distribution has a finite mean of
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where   and   denote the gamma and the lower incomplete gamma function defined by 

( ) 2
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the Euler–Mascheroni constant. 

2.5 Training Data Selection and Verification Scores 

This text examines the estimation of the score function as outlined by Gneiting and Raftery (2007). The optimal 

score principle entails the optimisation of an appropriate scoring method applied to a carefully chosen training 

dataset, which facilitates the estimation of unknown parameters in EMOS models. The standard EMOS modelling 

approach employs rolling training periods, whereby model parameters are computed for a designated date using 

ensemble predictions and corresponding validation observations from the prior calendar days. Considering the 

length of the training period, two classical methods exist for selecting the geographical distribution of the training 

data (Thorarinsdottir and Gneiting, 2010). The global (regional) method estimates a single set of parameters for 

the whole ensemble domain by using ensemble forecasts and observations from all health facilities in South Africa 

during the training period. The local estimate, using solely the training data from the designated station, yields 

varying parameter estimates for numerous centres (Lerch and Baran, 2017). The logarithmic score (logS) (Good, 

1952) and the continuous ranked probability score (CRPS) (see, for instance, Wilks, 2011) represent the two most 

prevalent scoring systems.The first one is the negative logarithm of the predictive probability density function 

(PDF) calculated at the actual observation; the second one, for a predictive cumulative distribution function (CDF) 

F  and a real value (actual observation) x , is defined as 

( ) ( )  
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where X and 
'X are independent random variables that follow F  and have a finite initial moment, and HI is 

the indicator function of set H .It is important to note that LogS and CRPS are negatively oriented scores; meaning 

that lower values indicate superior model performance. The CRPS can now be expressed in closed form, which 

enhances the efficiency of optimisation techniques. For TN, LN, and GEV laws, the studydirects the reader to the 

work of Friederichs and Thorarinsdottir (2012) for additional information. The Conditional Risk Premium Score 

(CRPS) of a Truncated Generalised Extreme Value (TGEV) distribution, which comes from a Generalised 

Extreme Value (GEV) cumulative distribution function (CDF), is the same as 
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for 

 

≠

 

ξ0. To compare the predictive performance of the EMOS models for high coronavirus spread in 

South Africa, we consider a threshold-weighted continuous ranked probability score (twCRPS) of Gneiting (2011) which 

is given in Equation (1.12) as 

( ) ( )   ( )
2

,
x x

twCRPS F x F y I y dy


−

 = −
   (1.12) 

where 

 

(

 

ωy

 

≥

 

)0 is a weight function. Setting 

 

(

 

ωy≡

 

)1 resulted in the CRPS in Equation (1.12).With the help

of ( )  y r
y I


= , one can address the coronavirus spread above a given threshold r ; where the thresholds

correspond approximately to 90th, 95th and 99th percentiles of the coronavirus spread observations of all considered 

health centres in South Africa. 

3 APPLICATION ON CORONAVIRUS DATA 

This section presents an empirical analysis of real-world data, using daily confirmed coronavirus cases in South 

Africa from March 5, 2020, to March 1, 2023. This collection comprises 1,092 samples. We employed a Markov-

switching autoregressive (MS-AR) model with a distinctive statistical distribution to analyse the changes in 

coronavirus cases and forecast potential epidemic surges in South Africa. Figure 1 presents a time series plot in 

the left panel, illustrating both upward and downward trends, as well as seasonal variations. The highest point 

occurred between December 2021 and January 2022. This result indicates that the series is non-stationary. The 

quantile-quantile (Q-Q) plot presented in Figure 1 further supports these findings. The Q-Q plot indicates that the 

distribution of newly confirmed coronavirus cases deviates from a normal distribution. The series adheres to a fat-

tailed distribution. The kurtosis values presented in Table 1, all exceeding three, support the conclusions regarding 

the fat tail phenomenon; hence, the conclusion that the distribution of new confirmed cases in South Africa 

exhibits leptokurtic characteristics. Wong and Collins (2020) noted that the spread of the coronavirus exhibited a 

fat-tail distribution. These researchers aimed to determine if the virus propagation exhibited an exponential trend, 

and they employed three distinct methods to demonstrate that the tail behaves like a fat tail: 1) a zip plot, 2) a 

meplot, and 3) statistical estimators of the tail index. The Omicron variant is responsible for the increase in new 

confirmed coronavirus infections, alongside less stringent public health and social measures (WHO, 2022). As of 

early April, South Africa has reported 1,369 cases of the Omicron sub-variant BA.2, 703 cases of BA.4, and 222 

cases of BA.5. BA.4 and BA.5 remain the primary concerns due to their significant mutations, which complicate 

the understanding of their impact on immunity. 

Figure 1: Time series plot for Confirmed Daily coronavirusCases 

Table 1 provides a summary of the statistics related to confirmed cases of the coronavirus in South Africa. We 

analysed these statistics to further clarify the characteristics of the new coronavirus cases over a specified 

timeframe. The data indicates that the average number of new cases is on the rise, suggesting that the daily reported 

positive cases of the coronavirus in South Africa are increasing. The unconditional standard deviation stands at a 

notable 5099.562. This value indicates that the daily reported cases of the coronavirus exhibit considerable 

variation, resulting in a substantial number of cases. The reported kurtosis is notably high (7.579), and the 



TPM Vol. 32, No. S2, 2025 Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

343 

distribution exhibits a negative skewness of -1.8608, which confirms the presence of fat-tailed behaviour and 

asymmetry in the newly confirmed coronavirus cases in South Africa. Khan et al. (2021), in their investigation of 

extreme value theory and the coronavirus, identified fat-tailed behaviour in the NIFTY-50 that they analysed. 

Furthermore, Makatjane and Moroke (2022) revealed that high-frequency data, such as daily confirmed 

coronavirus cases, exhibit asymmetry and features fat tails. 

Table 1: Descriptive statistics for Confirmed New Cases 

Central Tendency Measures Normality Tests 

Mean Std dev Skewness Kurtosis SW KS Jb 

New Cases 3707.862 5099.562 -1.8608 7.579523 0.824(0.001) 0.984(0.001) 1584.4(0.001) 

NB: values in () are probability values of JB, S-W and A-D 

3.1 Results and Discussion 

This section is divided into two parts: trend analysis and model fitting. 

3.1.1 Trend Analysis Results 

The Mann-Kendall test statistic and Sen's slope estimator are employed to examine the long-term trends of daily 

confirmed coronavirus cases in South Africa. Table 2 elucidates the results through the Mann-Kendall test statistic 

and Sen’s slope. The results of the Mann-Kendall test indicated that the number of newly confirmed daily 

coronavirus cases exhibits a significant long-term monotonic decreasing trend, as evidenced by a negative value. 

The Sen's slope value indicates notable decreasing magnitudes of trends, aligning with the findings of the Mann-

Kendall test. The decline is due to South Africa taking strong actions, such as setting up coordination systems at 

all levels, introducing control measures for key response areas, and enforcing public health and social rules. These 

measures encompassed movement restrictions, curfews, and the closure of businesses, educational institutions, 

and places of worship (WHO, 2020). Anne (2020) articulated three reasons that elucidate why the coronavirus 

has exhibited a lower mortality rate on the African continent compared to other regions. 

These include: On 14 February, Egypt became the first country in Africa to confirm a case of coronavirus. 

Concerns arose that the emerging virus might rapidly strain the already vulnerable health systems across the 

continent. Consequently, from the outset, many African governments implemented significant measures to 

mitigate the virus's spread. Public health measures were implemented, including the avoidance of handshakes, 

frequent hand washing, social distancing, and the introduction of face mask usage. Certain countries, such as 

Lesotho, took action prior to the reporting of any cases. On 18 March 2020, Lesotho declared a state of emergency, 

subsequently closed schools, and initiated a three-week lockdown approximately ten days later, in alignment with 

several other southern African nations. Lesotho identified its initial confirmed cases shortly after the lockdown 

was lifted in early May (Anne, 2020). A survey conducted in August by PERC across 18 countries revealed high 

public support for safety measures, with 85% of respondents indicating they wore masks in the previous week. 

The reinforcement of strict public health and social measures allowed African Union (AU) member states to 

contain the virus between March and May. The report indicated that a "minor loosening of restrictions" in June 

and July correlated with a rise in reported cases throughout the continent. Since that time, a significant reduction 

in confirmed cases and fatalities has been observed in approximately half of the continent, potentially associated 

with the conclusion of the southern hemisphere winter. The youthful demographic in many African nations may 

have contributed to limiting the transmission of coronavirus. Globally, the majority of fatalities have occurred 

among individuals aged over 80, whereas Africa possesses the youngest population in the world, with a median 

age of 19 years. The pandemic predominantly affects younger populations, with approximately 91% of 

coronavirus infections in sub-Saharan Africa, including South Africa, occurring in individuals under 60 years of 

age, and over 80% of these cases being asymptomatic (WHO, 2022). 

Table 2 Mann-Kendall test statistic and Sen’s slope estimator 

Variable M-K Test Statistic Kendall’s Tau ̂  p-Value Sen’s Slope 

New Cases -11.6255 -0.23496 0.001 -1.918 

3.1.2 Markov-Switching Autoregressive-Non-Stationary TGEV 

The study initially trains MS(k)-AR(p) using the ratio of 80% training and 20% validation sets to start our analysis. 

The goal here is to filter the coronavirus data to identify regime shifts and apply the upper regime, which is 

characterised by high variability, to our non-stationary TGEV distribution. We calculate the parameters for twelve 

AR(1) models subject to two regimes—MS(2)-AR(1) to MS(2)-AR(12)—using a method called expectation-

maximisation. We use Final Prediction Error (FPE) and Predicted Residual Error Sum of Squares (PRESS) from 

Barron (2020), Bayesian Information Criterion (BIC) from Schwarz (1978), and Akaike Information Criterion 
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(AIC) from Akaike (1976) to select a simple lag length. Based on the outcomes of these criteria, we judge one's 

lag length to be parsimonious. Therefore, we proceed with a non-stationary MS(2)-AR(1) model, and Table 3 

presents these findings. 

Table 3. Two-Regime MS (2)-AR (1) 

Regime 1 

Parameter Coefficients Std. error t-value p-value 

1̂ -179400 20353 -8.8144 0.001 

1̂ -1.5663 2.1663 -0.723 0.470 

1̂ 4271.4 27.098 157.6292 0.001 

Regime2 

2̂ -392820 14892 -26.378 0.001 

2̂ 3.8722 1.244 3.1127 0.002 

2̂ 5433.6 26.071 208.4155 0.001 

Transition Probabilities 

11 0.994P =  12 0.005P =

21 0.006P =  22 0.995P =

The two identified regimes exhibit differing interpretations in health and economic contexts. The variance in 

regime two surpasses that of regime one by 1162.2. The conditional distribution demonstrates considerable 

volatility and susceptibility to regime shifts, with an estimated daily count of 209 confirmed new coronavirus 

cases in South Africa. Upon transitioning the newly confirmed coronavirus to the second regime, the average 

daily confirmed cases declined to 392,820. This indicates that, during regime two, the likelihood of the virus 
transitioning to regime one is currently 0.006. The average duration of each regime supports this behaviour; 
where, regime one is expected to last for approximately 29 days and 4 hours, while regime two is projected to last 

for 57 days. We identified a significant regime shift in newly confirmed coronavirus cases in South Africa during 

the specified study period. Figure 2 displays the outcomes of filtered, smoothed, and predicted probabilities. 

Yang and Shaman (2022) attribute this regime shift to several coronavirus variants, namely Beta, Delta, and 

Omicron BA1. Despite South Africa's lower per capita case numbers relative to many other nations, the true 

extent of infections was likely much greater due to under-detection. In Gauteng, the estimated infection-detection 

rate during the initial pandemic wave was 4.59% (95% CI: 2.62–9.77%). The rate experienced a slight increase to 

6.18% (95% CI: 3.29–11.11%) during the Beta wave and to 6.27% (95% CI: 3.44–12.39%) during the Delta 

wave. The estimates correspond with serological data. A sero-survey at the population level in Gauteng indicated 

a seropositivity rate of 68.4% among unvaccinated individuals following the Delta wave (Madhi et al., 2022). 

The number of reported cases at that time was about 6% of the population, and because some infections were 

missed in sero-surveys due to people losing antibodies and getting reinfected, it suggests that the total detection 

rate was below 10%. 
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Figure 2: Filtered, smoothed and predicted probabilities 
Assuming that the residuals from the upper regime of the fitted Ms(2)-AR(1) are of i.i.d sequence over a time

span of n periods, a block maxima method (BMM) is applied to this sequence where the time span is ideally

a calendar period.Figure 3 presents selected daily block maxima that are fitted to the proposed TGEV. The red 
dots in this figure are the extreme values of new confirmed corona virus cases. 

Figure 3: Block Maxima Source: Researcher's Own Computation 

Table 4 displays the parameter estimates along with their corresponding standard errors for the non-stationary 

truncated Generalised Extreme Value (TGEV) distribution applied to the block maxima of confirmed COVID-19 

cases in South Africa. The estimated shape parameter ( )0.378991 = is positive, suggesting that the fitted

distribution is classified within the Fréchet class (Type II extreme value distribution). This classification is 

appropriate for modelling heavy-tailed phenomena, consistent with Chan's (2016) findings of a similar positive 
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shape parameter in the context of statistically modelling extreme values for dependent variables. This result 

indicates a significant probability of extreme values, highlighting the potential for severe virus outbreaks. The 

location parameter is modelled as a linear function of time ( ) ( )0 1t t  = + , with the intercept

( )0 277190.9 = indicating the baseline of extreme values and the slope ( )1 5037.35 = reflecting temporal 

trends. The estimated scale parameter ( )3.7022 = indicates the variability in block maxima.The asymptotic 

variance-covariance matrix helps clarify the estimates' reliability. The variances of the location parameters, 

especially the slope, are notably high, raising concerns regarding the stability and significance of the trend 

component. The relationships between parameters, like the negative link between the location intercept and slope, 

hint at possible problems in clearly identifying the model. A significant positive covariance between the shape 

and scale parameters indicates a potential interdependence in estimating tail heaviness and spread. The findings 

indicate that, despite some estimation challenges, a non-stationary TGEV distribution is appropriate for modelling 

extreme COVID-19 cases in South Africa. The model effectively shows the extreme values in the data, and its 

ability to adjust to changes over time highlights its importance in changing disease situations. 

Table 4Truncated GEV distribution Estimates 

Block Maxima ̂ se ( )̂ ̂  se ( )̂ 0̂ se ( )0̂ 1̂ se ( )1̂

12 156 0.378991 0.1073862 277190.9 2420.4853 5037.3515 190656.3 3.7022 5.2803 

Asymptotic Variance Covariance 

0.0115318 259.9267 -437.2455 218895 

259.926746 5858749 -18651610 -704.7218 

-437.245452 -18651610 25374910 -2481.263 

Even though strong COVID-19 spikes are uncommon, the positive shape parameter and heavy-tailed distribution 

suggest that South Africa is vulnerable to them. This tail risk emphasises health sector preparedness. Critical care 

infrastructure, personnel, and emergency resources must be scalable and robust to case spikes in hospitals and 

health systems. Unanticipated extremes might overburden health resources, compromising patient treatment and 

increasing mortality. The likely (albeit statistically uncertain) rising trend in the location parameter implies that 

future waves may be more severe, especially if caused by novel mutations or public health failings. Moreover, 

extreme COVID-19 and other outbreaks threaten South Africa's vulnerable economy. Renewing lockdowns, 

mobility restrictions, or public health demands may disrupt labour markets, lower productivity, and hurt tourism, 

retail, and other industries. Policy planning and fiscal forecasting methods may have underestimated future shocks 

due to a non-stationary risk profile. We therefore need to invest in contingency finances, flexible social assistance, 

and health infrastructure as a risk mitigation strategy. The findings illustrate the connection between epidemic 

extremes and socioeconomic resilience in South Africa. 

For model diagnosis, TGEV residual values are exponentially distributed. Most of them exhibit straight lines, 

indicating that the TGEV is a suitable model for new South African coronavirus infections. Chinhamu et al. (2015) 

observed similar findings. More block sizes improve GEV distribution data fit. Therefore, the Fisher theorem is 

applicable only when the block size is defined (Fisher and Tippett, 1928). Since the shape parameter is estimated 

positively, the return level curve asymptotes to a limited level; therefore, the estimated curve is almost quadratic, 

while the estimate is near zero. After accounting for sample variability, the curve accurately represents empirical 

estimates. Finally, the density estimate of the data histogram looks consistent. Thus, the four diagnostic graphs 

support the fitted TGEV distribution. 
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3.2 Model Performance Analysis 

This section aims to identify the model that most accurately replicates the data while generating fewer forecasts. 

To do this, the studyused MAE, MAPE, RMSE, CRPS, and Bias, which are recognised methods for measuring 

errors in statistics. Confirmed new coronavirus cases in nine provinces of South Africa are non-exchangeable. For 

post-processing, the studybenchmarked with truncated normal and GEV, ultimately employing EMOS to combine 

the forecasts of MS-AR and TGEV. The studycalibrated the ensemble forecasts for the calendar year 2020 using 

a 30-day training period, which we derived from a comprehensive preliminary analysis (see Baran and Lerch, 

2015). Table 5 shows a summary of the verification metrics, coverage, and the average width of the 77.78% (i.e., 

one standard uncertainty) central prediction intervals for different EMOS models, the raw ensemble, and the MS-

AR-TGEV model. Although the MS-AR-TGEV model is significantly outperformed by the raw ensemble in terms 

of average CRPS, MAE, and RMSE values, it perfectly predicts extreme values as demonstrated by low mean 

twCRPS values. The calibration of the raw ensemble forecasts is inadequate—weighted ensemble forecasts are 

too tight, which results in a lack of uncertainty coverage and under-dispersed prediction intervals. By contrast, the 

MS-AR-TGEV model gives much wider intervals that account for the better coverage. The EMOS post-processing 

leads to a clear improvement in the calibration and forecast quality of the raw ensemble. All EMOS-based 

predictions consistently perform significantly better than both the raw ensemble and MS-AR-TGEV, particularly 

in terms of the mean twCRPS for the extreme coronavirus spread.  

Table 5. Model Performance 

Forecast CRPS MAE MAPE BIAS RMSE twCRPS ( 9r = ) Cover 

Training Set 

MS-AR 0.738 0.799 1.247 0.376 1.357 0.150 83.59 

GEVD 0.741 0.913 1.002 0.436 1.362 0.149 80.44 

MS-AR-GEVD 0.737 0.802 1.037 0.537 1.355 0.145 81.21 

Truncated normal 0.736 0.710 1.038 0.497 1.356 0.145 82.13 

Truncated GEV 0.901 0.622 1.041 0.468 1.373 0.175 68.22 

Ensemble 1.046 0.613 1.037 0.517 1.822 0.173 82.54 

MS-AR-Truncated GEV 0.803 0.599 0.979 0.315 1.352 0.163 84.87 

Test Data 

MS-AR 0.102 0.437 1.001 0.376 0.978 0.010 92.19 

GEVD 0.102 0.513 1.079 0.436 1.362 0.010 93.16 

MS-AR-GEVD 0.112 0.441 1.067 0.537 1.001 0.010 94.84 

Truncated normal 0.127 0.428 1.986 0.497 0.991 0.010 92.89 

Truncated GEV 0.931 0.522 1.732 0.468 0.976 0.011 95.84 

Ensemble 0.099 0.424 1.007 0.517 1.876 0.010 48.16 

MS-AR-Truncated GEV 0.098 0.425 1.008 0.315 1.000 0.012 97.38 
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4 CONCLUSION 

The uncertainties regarding the spread of coronavirus present considerable global challenges, especially for public 

health systems and policymakers who must rapidly address changing outbreak dynamics. The accurate prediction 

and forecasting of daily COVID-19 cases are essential for timely interventions and the efficient allocation of 

healthcare resources. This study enhances the forecasting of coronavirus spread in South Africa through the 

development of a hybrid probabilistic model that combines a Markov-Switching Autoregressive (MS(k)-AR(p)) 

process with a non-stationary Truncated generalised Extreme Value (TGEV) distribution.This combined MS-AR–

TGEV system successfully identifies changes in transmission patterns and the extreme spikes in cases. The results 

show that the MS(2)-AR(1)-TGEV model predicts better, especially in uncertain and changing situations, making 

it a more reliable choice than traditional models. The findings present a practical solution for epidemic monitoring 

in South Africa and offer a generalisable methodology for forecasting future outbreaks characterised by complex, 

non-linear, and extreme behaviours, akin to those observed during the COVID-19 pandemic. 

This study presents several recommendations aimed at enhancing epidemic forecasting and preparedness. Public 

health authorities should use probabilistic models, like the MS(2)-AR(1)-TGEV framework, in their regular 

monitoring systems because they are better at measuring uncertainty and predicting severe outbreak situations. 

The model's regime-switching and tail detection capabilities render it appropriate for early warning systems and 

strategic resource allocation in times of increased risk. The model's adaptability renders it applicable to other 

infectious diseases that demonstrate comparable non-linear and extreme behaviours. Regular retraining of the 

model with real-time data is advisable to maintain accuracy, particularly during times of variant emergence or 

policy changes. Furthermore, enhancing analytical capacity via focused training in ensemble forecasting and 

extreme value theory will allow health agencies to more effectively use these models. Policymakers should use 

scenario-based forecasts from this model to inform proactive interventions, including the implementation or 

relaxation of lockdown measures, the deployment of medical supplies, and the management of public health 

communications. 
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