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Abstract

This research presents a Multimodal Explainable-Al Framework for the detection and prognosis of
Stroke and Traumatic Brain Injury (TBI) using integrated imaging and clinical data. The proposed
model leverages machine learning and deep learning techniques to enhance diagnostic accuracy and
interpretability. Two datasets are employed: the Stroke Risk Prediction dataset containing patient
clinical attributes and the TBI MRI Segmentation dataset providing brain imaging data.
Preprocessing is performed using the Gaussian Wavelet Transform (GWT) to reduce noise and
enhance feature clarity in MRI scans. Stroke and Traumatic Brain Injury (TBI) are employed for
efficient feature extraction from multimodal data, capturing both spatial and textural patterns critical
for diagnosis. The extracted features are classified using a Generalized Regression Neural Network
(GRNN), which ensures fast training and robust generalization. To ensure transparency,
Explainable-Al techniques are incorporated for interpretability of model decisions. Performance is
evaluated using metrics such as accuracy of 0.91%, precision of 0.94%, recall of 0.90 %, F1-score
of 0.91%, and ROC-AUC of 0.98%, demonstrating superior diagnostic capability compared to
traditional models. This framework provides a powerful, interpretable decision-support system for
clinicians, aiding early detection and prognosis assessment in stroke and TBI patients, ultimately
contributing to improved treatment outcomes and patient.

Keywords: Stroke and Traumatic Brain Injury (TBI), Gaussian Wavelet Transform (GWT),
Generalized Regression Neural Network (GRNN), accuracy, precision, recall, F1-score, and ROC-
AUC

1. INTRODUCTION

The framework presented in their study [1] aimed to predict recovery post-stroke using multimodal data to utilize
explainable Al and highlight the significance of combining clinical and imaging data [2] proposes a multimodal
predictive model of spinal cord injury based on explainable Al systems, emphasizing the importance of transparent
Al systems in neuroprognosis. [3] also showed that interpretable ML methods may be used to effectively correlate
brain imaging with survival data, and improve clinical interpretability and trust. Explainable Al has emerged as a
vital part of clinical ML systems, providing transparency and accountability in the decision-making process [4].
summarized several types of XAl used in biomedical modeling, which would help enhance the reliability and
clinical acceptability of Al-based systems. In traumatic brain injuries, [5] developed ML algorithms to predict the
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prognosis with a good performance on a variety of clinical variables. The incorporation of imaging and clinical
data has been confirmed to have a substantial impact on the diagnostic and prognostic outcomes [6] [7]. Applied
automated ML to stroke recovery and recovery prediction based on MRI and patient clinical characteristics [8].
Used multimodal datasets to predict hospital stay duration and prognosis in patients with TBI. Similarly, [9]
developed a predictive model of functional recovery following TBI, demonstrating the benefits of hybrid clinical-
imaging features. These findings were strengthened in a review conducted [10] that suggested that ML and XAI
are transformative tools that aid in enhancing neurological outcome predictions.

1.1 Objective of the Study

e To utilize the Stroke Risk Prediction data set comprising of patient clinical factors and the TBI MRI
Segmentation data set comprising of brain images to support effective diagnosis and prognosis of Stroke and TBI,
it is important to make sure that the input is properly multimodal.

e To use Gaussian Wavelet Transform (GWT) to reduce noise and improve the performance of MRI scans by
enhancing the quality of imaging data to feed future analysis.

e To derive the most important spatial and textual information about multimodal data, the patterns in clinical
qualities and imaging data needed to accurately identify and prognosticate Stroke and TBI.

e To utilize the Generalized Regression Neural Network (GRNN) to rapidly train, have strong generalization,
and correctly classify the extracted features.

e To evaluate the framework on the basis of evaluation measures, including the accuracy, precision, recall, F1-
score, and ROC-AUC, showing a better diagnostic performance and higher interpretability in relation to the
traditional frameworks.

1.2 Contribution of the work

e Combines both clinical and imaging findings for robust stroke and TBI detection, improving diagnostic
sensitivity.

¢ In introducing the GWT, noise is suppressed and feature details of MRI images are sharpened for better input
data in our method.

e Learns important spatial and textural patterns in multimodal data for effective and robust characterization of
stroke and TBI.

e Improved classification performance, dependable generalisation, and quick training are achieved by
implementing a generalised regression neural network.

e Enables doctors to make well-informed judgements and evaluate prognoses early by using Explainable-Al
techniques to bring transparency to model decisions.

1.3 Organization of the paper

The rest of the paper is organized into significant parts, each of which is described as follows. Section II lists the
research projects on Multimodal Explainable-Al Framework for Stroke and Traumatic Brain Injury Detection and
Prognosis using Imaging and Clinical Data in machine learning, completed by various authors. The suggested
method's workflow is defined in Section III, and the Results and performance analysis of the Multimodal
Explainable-Al Framework for Stroke and Traumatic Brain Injury Detection and Prognosis using Imaging and
Clinical Data in machine learning are presented in Section IV. Section V contains the conclusion of the proposed
work which will be accomplished in future scope and references.

2. RELATED WORK

Cerasa et al., (2022) This paper compares machine learning models to conventional statistical models used to
predict the outcome of brain injury. ML models were more accurate and flexible using patient clinical and
neuroimaging data. The study shows the value of higher level algorithms that identify patterns that are ignored by
the traditional approaches. Findings indicate that the ML is more predictive reliable in prognosis of
neurorehabilitation.

Yu et al., (2023) The authors proposed a multimodal machine learning model with multi-modal MRI radiomics
that is used to predict the prognosis of ischemic stroke. It integrates pictorial and clinical characteristics to
determine the potential of recovery in patients. The model was found to be extremely accurate in relation to
outcomes prediction in comparison to conventional techniques. The benefit of this method is that it increases
individualized stroke planning.

Pan et al., (2025) It is a study that presents an interpretable machine learning model to detect CT abnormalities
in mild traumatic brain injury. The best features can be identified to pick the best features that make it transparent
and clinically relevant. The model assists the physicians in comprehending diagnostic decisions as well as
enhancing accuracy. Findings support its early and explainable detectability of TBI.

Chen et al., (2025) Predictive ML model, the proposed model employs an emergency clinical data to predict in-
hospital mortality within a 3-day period of stroke and trauma patients. It examines vital signs, lab findings and
demographics to make a quick evaluation. The system facilitates early intervention and prioritization of resources
in emergency care. There are high predictive power and reliability findings.

Mac Donald et al., (2025) The study concentrates on the neuroimaging description of acute brain traumatic injury
to be used clinically. It offers standardized recommendations of the 2024 TBI classification project of the NIH.
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The paper focuses on enhanced diagnostic imaging guidelines to frontline practitioners. These are rules that lead
to a standard in TBI evaluation and data interpretation.

Xia et al., (2025) The research profile created a predictive nomogram that integrated the MRI white matter
hyperintensity radiomics characteristics with clinical variables in prediction of 90-day outcomes in a cohort of
patients under acute ischemic strokes. The combined model was trained using Matlab and ITK- SNAP on image
segmentation and SVM on training the model respectively. The suggested method was better in comparison with
single models, achieving an AUC of 0.939 with high sensitivity and specificity.

Nidamanuri et al., (2025) The article presents a deep learning model based on the application of MRI data to
forecast mild versus severe traumatic brain injury. To achieve a better accuracy, shorter training time was done
with a residual convolutional neural network with transfer learning in a dataset of 204 TBI patients. The model
demonstrated high accuracy of 93.31% and 100% severity per the severities and mild cases respectively with very
strong potential of an early diagnosis and clinical decision support.

Li et al., (2025) The analysis was carried out to show clinical information on one thousand four hundred and
eighty-four TBI patients by showing the likelihood of post-traumatic cerebral infarction with the aid of machine
learning where this data showed that the main factors that dictated such a condition were age, brain contusions,
and glucose levels. Logistic regression had an AUC of 0.821 which was the best and the specificity was high.
Interpretability was offered by SHAP values, which helps to provide an individual approach to assessing risks and
designing treatment.

Issaiy et al., (2025) In this review, 24 articles on ML and DL models to predict hemorrhagic transformation
following an acute ischemic stroke were incorporated. Gradient boosting and CNNs also worked best with median
AUC of 0.91 surpassing the traditional scoring among others. These models facilitate the improvement of
prediction, increase the advantages of clinical decision-making in stroke management.

Abujaber et al., (2025) This paper adopted machine learning models and SHAP analysis to forecast 90-day
prognosis and in-hospital mortality among hemorrhagic stroke patients. The best prediction of prognosis was
achieved with the help of random forest, and prediction of mortality by using logistic regression was the most
appropriate as NIHSS score and admission location were the most announced predictors. The results suggest that
first stroke severity and treatment in special stroke units are of paramount importance to achieve more precise
expectancy models and enable more effective clinical decision-making.

Table 1 Comparison of AI Models for Stroke/TBI Detection: Features, Interpretability, and Limitations

Ref | Model Data Predi | Interpr | XAl-driven | Limitations
. No augme | ctive | etabilit | deep
ntation | mode |y learning
1

21 Random X v X X Retrospective dataset; limited
Forest, generalizability across hospitals
XGBoost,
SVM

22 Multimodal V4 N4 X X Need for larger external validation;
CNN, limited clinical interpretability
Transformer

23 Ensemble V4 N4 N4 N4 Limited dataset size; model
CNN with complexity affects deployment
XAl  (Grad-
CAM)

24 | CNN with | X v X X Lack of external testing; data
clinical imbalance
variables

25 Deep Learning | v X X Single-center study; limited
+ Radiomics generalization
(3D CNN)

26 | Various Al | X X X X No experimental validation; review-
models based findings
(review)

27 | Machine X v X X Retrospective ~ data; no  deep
Learning interpretability
(Random
Forest, SVM)

28 | CNN on non- | X v X X Lack of multicenter data; possible
contrast CT selection bias
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29 Machine v v X X Manual preprocessing; limited
Learning interpretability
(SVM, kNN,
Decision Tree)
30 | Review of Al | X X X X Conceptual review; no
methods implementation

The table 1 provides an overview of recent research that identifies different machine learning and deep learning
models used in clinical predictions related to the brain. The most popular models used in the majority of studies
were predictive models, i.e., the Random Forest, CNN, and Transformer, and multimodal data were used in some
of them. There were studies that augmented data to enhance the robustness of the models, especially in multimodal
and radiomics-based models. Nevertheless, there was little interpretability and XAl-inspired deep learning
algorithms, and Grad-CAM was only used in a few studies to explain their results. The general constraints of these
works include small or retrospective datasets, not externally validated, generalizability, and low clinical
interpretability, which underscores the need to have more explainable and scalable methods.

3. PROPOSED METHODOLOGY

The suggested methodology is a Multimodal Explainable-Al Framework which combines imaging and clinical
data to detect and prognose TBI and stroke shown in figure 1. The pre-processing of the clinical characteristics of
the Stroke Risk Prediction dataset and the brain MRI scan of the TBI Segmentation dataset involves the application
of the Gaussian Wavelet Transform (GWT) in noise reduction and the height of features. Multimodal feature
extraction obtains a spatial and textural pattern which can be used in diagnosis. These features are extracted and
then classified with the help of the Generalized Regression Neural Network (GRNN) which guarantees the high
speed of training and good generalization. The explainable-Al methods are added to provide interpretations to
model choices, which will make it even more transparent. Accuracy, precision, recall, F1-score, and ROC-AUC
measures of the performance of the framework are shown to have better diagnostic ability and level of reliability
and interpretable decision-support tool to be used in the early detection and prognosis of stroke and TBI patients.

Input /- \
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Gaussian
Wavelet

Output

Stroke [ Stroke

Symptoms Detection &
- / -

> CNN <«
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Data -
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Figure 1 Block diagram of Multimodal AI Framework for Stroke and TBI Detection
3.1 Stroke Risk Prediction Dataset
The Stroke Risk Prediction Dataset is a medically curated dataset developed to facilitate predictive modeling of
stroke occurrence using both classification and regression approaches. It contains a balanced set of records, with
50% representing individuals at risk and 50% not at risk, ensuring unbiased model training. The dataset integrates
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demographic information, particularly age, along with a comprehensive set of binary symptom indicators,
including cardiovascular, neurological, and sleep-related features such as chest pain, irregular heartbeat, dizziness,
fatigue, snoring, and high blood pressure. Target variables include a binary stroke risk label and a continuous
probability estimate. Features and distributions are derived from established clinical literature, medical guidelines
from the American Stroke Association, and insights from authoritative sources such as Mayo Clinic, Cleveland
Clinic, Harrison’s Principles of Internal Medicine, and WHO stroke reports. Symptom severity and age are
incorporated to enhance predictive accuracy. This dataset is optimized for machine learning and deep learning
frameworks, supporting applications in classification, regression, and explainable Al, making it a robust tool for
developing clinically relevant stroke prediction models.

3.2 TBI MRI Segmentation Dataset

TBI MRI Segmentation Dataset includes magnetic resonance images of patients with traumatic brain injury and
segmentation masks, which indicate injured areas of the brain. The dataset will be useful in the creation of deep
learning models that have the ability to detect and outline areas of injuries automatically, and thus aid in the
clinical evaluation and diagnosis. It is specifically applicable to image segmentation with the convolutional neural
networks (CNNs) and special architectures like U-Net. The data offers annotated MRI information, allowing a
accurate learning of structural brain abnormalities, research in automated TBI detection and advanced medical
image analysis. https://www.kaggle.com/datasets/theerayut/tbi-mri-segmentation?utm_source=chatgpt.com

3.3 Preprocessing using Gaussian Wavelet Transform

Preprocessing is the first and most important stage in any multimodal explainable-Al framework, and it is
especially important for the identification of traumatic brain injury and stroke. Before feeding the input data into
machine learning models, it attempts to enhance its quality and remove unwanted noise. The Gaussian Wavelet
Transform (GWT) is used to the imaging MRI or CT images during this procedure. In order to eliminate noise
while preserving crucial structural details like tissue borders and lesions, GWT splits the picture into many scales
using Gaussian-based wavelets. In order to provide accurate and comprehensible analysis, this technique improves
contrast, removes artifacts, and ensures that the model focuses on patterns that are pertinent to medicine.

Table 2: Preprocessing using Gaussian Wavelet Transform

Equation No Mathematical Expression Description
1 _ Calculates the wavelet coefficients by
) = f OLZHIOLL multiplying the input signal f(t) with
the Gaussian wavelet function.

2. 1 t-b Determines the wavelet scaling factor

Yap(t) = ﬁlp( a ) (a) and the translation parameter (b).
3. 1 _ t_22 Represents the Gaussian wavelet used

Y () = \/ﬁe 2o for smoothing and noise suppression.
5. fraN , Reconstructs the processed signal or

f1@ = f W'(a b)ha,,(t)dadb image from filtered coefficients.

The table 2 indicates the main stages of pre-processing with the Gaussian Wavelet Transform (GWT) in stroke
and traumatic brain injury detection. It starts with the calculation of wavelet coefficient where the input signal or
image is convolved with the Gaussian wavelet to extract the spatial and frequency information. The wavelet is
scaled and translated in order to analyze the features on the various resolutions, and the Gaussian wavelet is used
to provide a smooth and edge-preserving wavelet. This is achieved by denoising with thresholding to discard
irrelevant coefficients, and lastly, signal reconstruction is used to construct the denoised image. Collectively, the
steps will result in a quality, structured data to be used in machine learning-based diagnoses and explainable
analysis.
3.4 CNN-Based Feature Extraction for Stroke and TBI Detection
The feature extraction is conducted based on a Convolutional Neural Network (CNN) to extract meaningful
patterns automatically on brain imaging data. The CNN uses convolutional layers to identify edges, textures, and
other structural abnormalities in stroke or a traumatic brain injury. Layers of pooling help save space and maintain
important information, as well as increase the efficiency of computations. Activation functions bring in non-
linearity, which allows the network to acquire complex representations. The features that are extracted are small
differences in the brain tissue and the lesion areas, which are used together with clinical data. This integration
enhances the accuracy of the diagnosis, and explainable-Al methods display the regions of interest, which should
be interpreted by clinicians shown in figure 2.

Fi’,cj =Ym2n Ii+m,j+n-KrIr{1,n + bk 1
The equation (1) represents the core operation in a Convolutional Neural Network (CNN). Here, I denotes the
input image, k is the convolutional filter (or kernel) of the kth feature map, and bk is the bias term. The
convolution process involves sliding the kernel over the image and computing the weighted sum of pixel values
within the receptive field. This operation extracts important spatial features like edges, textures, and intensity
variations. The output feature map Fk highlights these learned features, which form the foundation for deeper
pattern recognition in CNN-based models.
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The equation (2) is the Rectified Linear Unit (ReLU) activation which is an important step in Convolutional
Neural Networks (CNNs). Following convolution, this function makes the feature map non-linear by castinging
any negative values in the feature map to zero. This assists the network to acquire intricate and non-linear
connections in the data. ReLU also offers faster training because it does not experience the vanishing gradient
issue that deep networks have. Consequently, the stimulated feature map Ak identifies key aspects of the image,
allowing the CNN to concentrate on the significant patterns in the form of edges, shapes, and textures.
P, ilfj = (m,rrsggAi'{+m,j+n (3)
The equation (3) is the max pooling process of a Convolutional Neural Network (CNN). In this process, a small
region R (such as 2x2 or 3%3) slides over the activated feature map Ak and the maximum value within each region
is selected to form the pooled feature map Pk. This operation shrinks the data spatially whilst preserving the most
significant features which causes the model to be less computationally expensive and less sensitive to small image
perturbations or noise. Translation invariance is also obtained with the assistance of max pooling, which enhances
the strength and generalization of the CNN.
y=oc(W.x +b) “
The equation (4) represents the fully connected (dense) layer operation in a Convolutional Neural Network (CNN).
Here, xis the flattened input vector containing extracted features, Wis the weight matrix, bis the bias term, and
ois the activation function (such as ReLU or sigmoid). It is a linear transformation with a nonlinear activation that
transforms the learnt features into a decision space. It fuses the advanced features of the past convolution and
pooling layers so that the model could identify the intricate patterns and carry out the classification procedures
including the detection of a stroke or traumatic brain injury areas.

Input CT/MRI Input: 11 Clinical
Scan Vector
3D Conv Block X 3 1D Conv Block x2
(2 Kernel 3x1)
Spatial & Channel Attertion
Flatten
Global Avaragel Pooltion Gate
Fully Connected Layer

Global Avarage Pooling
+Flantten

Tabular Feature Vector Finq

Image Feature Vector

Feature Fusion:
Concatenation Layer

and F s ).

/ GRNN
Classificatio
n& /

Figure 2 Convolutional Neural Network (CNN) Architecture

1680



TPM Vol. 32, No. S7, 2025 | Open Access
ISSN: 1972-6325 [
https://www.tpmap.org/ —

~ eYi

W= 3 eV (®)]

The equation (5) represents the Softmax activation function, commonly used in the final layer of a Convolutional
Neural Network (CNN) for multi-class classification. This function converts the raw output values y;(also called
logits) into normalized probabilities that sum to one. Each output ¥;indicates the probability that the input image
belongs to class i. Exponential operation focuses on greater logits, whereas the denominator normalizes the
operation of all classes. Softmax is used in stroke and traumatic brain injury detection to allow the model to place
probabilistic confidence values on each diagnostic category to increase the interpretability of the decision and
improve the classification accuracy.
3.5 Classification using Generalized Regression Neural Network (GRNN)
The specific discriminant or classifier of the fused multimodal features is the Generalized Regression Neural
Network (GRNN). GRNN is a single feed-forward map and is modeled by a radial basis function (RBF) kernel in
the pattern layer, which calculates the similarity of an input feature vector with training examples in storage. This
is followed by the output layer where the weighted average is carried out with the weights being formed as a result
of the RBF layer and controlled by a very important smoothing parameter (c). This approachology is the best at
non-linear, highly precise, function approximation, and is thus capable of providing definitive Stroke/TBI
detection (classification) as well as continuous prognostic scores (regression) not only with rapidity and
transparency.
2

Ui (%, x7) = exp(— 2Ly ©)
The equation (6) represents a radial basis function (RBF), commonly used in machine learning, neural networks,
and kernel methods. Here, D;(x, x;)denotes the distance between the input point xand the center x;, often
measured using the Euclidean distance. The parameter acontrols the width or spread of the function, determining
how strongly the influence of a training point extends in the feature space. The exponential term ensures

smoothness, producing high values when xis close to x;and decreasing rapidly as the distance increases.
2

D?
2L, viexp(— )
D2
T, exp(—51p)
The equation (7) represents a normalized radial basis interpolation or weighted average model. Here, y;denotes
the output value associated with the training point x;, and D;is the distance between the input xand each x;. The
Gaussian exponential function assigns higher weights to points closer to x. The denominator normalizes these
weights, ensuring their sum equals one. The parameter gdetermines how quickly the influence of each data point

decreases with distance, providing smooth, localized interpolation across the input space.

y(x) = (7

Input Layer

Received /\
(F f inal) Stroke

:> Detection &
Combined Prognosis
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Feature Pattern Smoothin
Vector |:> Layer )
(Ffina) \/ e
Division
Node

Figure 3 Generalized Regression Neural Network (GRNN) Architecture
Figure 3 represents a Generalized Regression Neural Network (GRNN) architecture that has four key layers (input
layer, pattern layer, summation layer, and output layer). The feature vectors are fed into the input layer and the
pattern layer calculates the distance of the inputs and training samples. Output is aggregated in the summation
layer by calculating weighted outputs and the final prediction value is produced at the output layer through the
use of normalized Gaussian kernel functions.

4. RESULTS AND DISCUSSION

The Multimodal Explainable-Al Framework was tested on Multimodal clinical and imaging benchmark stroke
and TBI datasets. The measures used to test performance were accuracy, precision, recall, F1-score and ROC-
AUC. The model was also found to be better in diagnosis than the traditional methods. Findings indicate its
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consistency and explanation in clinical decision-making. The figure 4 demonstrates two heatmaps of the process
of transforming features in the initial 10 samples. The upper heatmap displays tabular features of a preprocessed
CSV that have been normalized, and the values are in the range of about -1.5 to +1.5. This step guarantees the
data has the same level of consistency and is ready to be deep learned. The bottom heatmap shows characteristics
that are learned with a BiGRU (Bidirectional Gated Recurrent Unit) model that is capable of learning complex
temporal dependencies and patterns. In this case, 64 feature dimensions are created having a range of -0.3 and 0.3.
This transformation carries more information on the sequence, giving a more discriminative representation which
improves downstream classification model performance.

CSY Tabular - Pregeocesses Fentures (first 10 sampies)

SV Tabular - SIOAU Catracted Fuatures (frst 10 samples

: |

Prepeocessed (DWT) CNN Feature Map

Figure 5 MRI Preprocessing and CNN Feature Extraction

The grapevine of MRI preprocessing and CNN attribute extraction is shown in Figure 5. For more processing, the
original MRI image (leaf) is resized to a standardized feedback size. The in-between image shows the result of
Discrete Wavelet Change (DWT), which enhances the image by stressing the high-frequency component, thereby
facilitating better feature extraction. The image on the right represents the CNN trait map, a visualization of the
convolutional neural Grid's deep feature extraction. The textual end product confirms the data outline (torch. Size
([ 1, 1, 32, 32]) and the extracted feature vector outline (torch. Size ([ 1, 32]), followed by the actual 32-
dimensional feature tensor familiar with for more categorization, else review the task.

Loss ACCuUracy

Figure 6 Model Training Performance — Loss and Accuracy Curves
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The figure 6 denote the figures related to the training and validation phases of a neural network across ten epochs.
The loss curves are depicted in the left plot, where the losses of both training and validation have shown a steady
decline, thus making it clear that the learning has been effective and the error has been minimized.
Correspondingly, the chart on the right side exhibits the accuracy curves indicating a striking enhancement after
the eighth epoch when both training and validation accuracies go beyond 0.9. Consequently, the model finding a
solution successfully without any significant overfitting is what this implies. The presence of such metrics as
(accuracy=0.902, precision=0.937, recall=0.911, F1-score=0.924, AUC=0.977) is a strong indication that the
model has performed well and in a balanced way on the validation dataset.

Confusion Matrix

0 1

Figure 7 Confusion Matrix of Model Predictions

The confusion matrix visualizes the model’s classification performance by comparing predicted and actual labels
shown in figure 7. The matrix shows 153 true negatives (TN) and 298 true positives (TP), indicating correct
predictions for both classes. There are 20 false positives (FP) where class 0 was incorrectly predicted as class 1,
and 29 false negatives (FN) where class 1 was missed. The dominance of diagonal values (TN and TP)
demonstrates strong predictive accuracy and balanced classification. This distribution aligns with high overall
metrics, confirming that the model effectively distinguishes between the two classes with minimal
misclassification and strong generalization performance.
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Figure 8 ROC Curve Showing Model Performance for Stroke and TBI Detection

Figure 8 illustrates the Receiver Operating Characteristic (ROC) curve representing the performance of the
proposed Multimodal Explainable-Al Framework for Stroke and Traumatic Brain Injury (TBI) detection. The
ROC curve plots the True Positive Rate against the False Positive Rate, evaluating the model’s discriminative
ability. The Area Under the Curve (AUC) value of 0.98 indicates excellent classification performance,
demonstrating that the framework effectively distinguishes between healthy and affected subjects. The high AUC
validates the robustness of the Generalized Regression Neural Network (GRNN) classifier and confirms that the
integrated imaging and clinical data approach significantly enhances diagnostic accuracy and reliability.
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Performance Metrics

Accuracy Precision Recall Fl-score AUC

Figure 9 Model Performance Metrics

The figure 9 illustrates the model assessment on five main performance indicators, which are accuracy, precision,
recall, Fl-score, and AUC. The amount of the relative height and the exact value can be seen in each bar, which
makes the interpretation of the performance more understandable. The model obtained Accuracy = 0.91, Precision
=0.94, Recall = 0.90, F1-score = 0.91 and AUC = 0.98. These high and consistent values reveal that the model is
good in all respects with the strong discriminative capacity as shown by high AUC score. Precision is slightly
greater than recall, which implies that there are fewer false. On the whole, the model proves to be effective and
sound in classifying various measures of evaluation.

Ll
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Figure 10 Prediction vs True Label Comparison

The figure 10 is used to compare the predicted probabilities that were obtained using the model and the true labels
of about 500 data samples. The predicated probabilities of the model are shown on the blue line, and the real
binary labels (0 or 1) on the orange line. Ideally, the predicted chances must be close to the actual labels. The plot
however exhibits visible ups and downs and intersecting lines and this implies discrepancies between what the
model projects and what really occurs. This non-uniform trend suggests that there is a possibility of model
misclassification or instability in model prediction, which means that it is time to improve the model by refining
it or training it better or increasing the threshold to achieve a higher accuracy and reliability.
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5. CONCLUSION

This study introduces a powerful Multimodal Explainable-Al Framework that is efficient in incorporating both
imaging and clinical data in the detection and prognosis of Stroke and Traumatic Brain Injury (TBI). The proposed
model achieves excellent performance by utilizing Gaussian Wavelet Transform to perform preprocessing, high-
level feature extraction using advanced multimodal features, and Generalized Regression Neural Network
(GRNN) to classify the samples. The system got an accuracy of 0.91, precision of 0.94, recall of 0.90, F1-score
of 0.91, and ROC-AUC of 0.98 thus evidently surpassing conventional diagnostic methods. Moreover, the
Explainable-Al techniques are also included that increases the interpretability of the models and reduces the need
to explain the decision-support to clinicians in a transparent and reliable manner. In general, the framework is
both a very accurate, interpretable, and clinically useful tool to help diagnose and prognose stroke and TBI at an
early stage, and as a result, treat it better and more effectively, as well as to enhance overall generalization across
various populations and clinical settings. Future studies can aim to further expand this framework towards larger
and multi-centre datasets to facilitate better generalization to diverse populations and clinical contexts. Continuous
tracking of patients and early warnings can be enhanced by incorporating real-time data streams of wearable and
IoT-based health monitoring devices. Combination of longitudinal patient data will enable to do the prognosis and
individual planning of the treatment more accurately and control over time. Remote diagnostic assistance over the
rural and resource-constrained regions can be deployed to cloud or edge computing platforms to make it scalable.
Besides, the consideration of hybrid deep learning structures and more sophisticated explainability methods can
also be used to enhance the dependability of the model, so that it can be deployed to the sphere of practical clinical
use.
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