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Abstract  

This research presents a Multimodal Explainable-AI Framework for the detection and prognosis of 

Stroke and Traumatic Brain Injury (TBI) using integrated imaging and clinical data. The proposed 

model leverages machine learning and deep learning techniques to enhance diagnostic accuracy and 

interpretability. Two datasets are employed: the Stroke Risk Prediction dataset containing patient 

clinical attributes and the TBI MRI Segmentation dataset providing brain imaging data. 

Preprocessing is performed using the Gaussian Wavelet Transform (GWT) to reduce noise and 

enhance feature clarity in MRI scans. Stroke and Traumatic Brain Injury (TBI) are employed for 

efficient feature extraction from multimodal data, capturing both spatial and textural patterns critical 

for diagnosis. The extracted features are classified using a Generalized Regression Neural Network 

(GRNN), which ensures fast training and robust generalization. To ensure transparency, 

Explainable-AI techniques are incorporated for interpretability of model decisions. Performance is 

evaluated using metrics such as accuracy of 0.91%, precision of 0.94%, recall of 0.90 %, F1-score 

of 0.91%, and ROC-AUC of 0.98%, demonstrating superior diagnostic capability compared to 

traditional models. This framework provides a powerful, interpretable decision-support system for 

clinicians, aiding early detection and prognosis assessment in stroke and TBI patients, ultimately 

contributing to improved treatment outcomes and patient. 

Keywords: Stroke and Traumatic Brain Injury (TBI), Gaussian Wavelet Transform (GWT), 

Generalized Regression Neural Network (GRNN), accuracy, precision, recall, F1-score, and ROC-

AUC 

 

1. INTRODUCTION 

 

The framework presented in their study [1] aimed to predict recovery post-stroke using multimodal data to utilize 

explainable AI and highlight the significance of combining clinical and imaging data [2] proposes a multimodal 

predictive model of spinal cord injury based on explainable AI systems, emphasizing the importance of transparent 

AI systems in neuroprognosis.  [3] also showed that interpretable ML methods may be used to effectively correlate 

brain imaging with survival data, and improve clinical interpretability and trust. Explainable AI has emerged as a 

vital part of clinical ML systems, providing transparency and accountability in the decision-making process [4]. 

summarized several types of XAI used in biomedical modeling, which would help enhance the reliability and 

clinical acceptability of AI-based systems. In traumatic brain injuries, [5] developed ML algorithms to predict the 
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prognosis with a good performance on a variety of clinical variables. The incorporation of imaging and clinical 

data has been confirmed to have a substantial impact on the diagnostic and prognostic outcomes [6] [7]. Applied 

automated ML to stroke recovery and recovery prediction based on MRI and patient clinical characteristics [8]. 

Used multimodal datasets to predict hospital stay duration and prognosis in patients with TBI. Similarly, [9] 

developed a predictive model of functional recovery following TBI, demonstrating the benefits of hybrid clinical-

imaging features. These findings were strengthened in a review conducted [10] that suggested that ML and XAI 

are transformative tools that aid in enhancing neurological outcome predictions. 

1.1 Objective of the Study  

• To utilize the Stroke Risk Prediction data set comprising of patient clinical factors and the TBI MRI 

Segmentation data set comprising of brain images to support effective diagnosis and prognosis of Stroke and TBI, 

it is important to make sure that the input is properly multimodal. 

• To use Gaussian Wavelet Transform (GWT) to reduce noise and improve the performance of MRI scans by 

enhancing the quality of imaging data to feed future analysis. 

• To derive the most important spatial and textual information about multimodal data, the patterns in clinical 

qualities and imaging data needed to accurately identify and prognosticate Stroke and TBI. 

• To utilize the Generalized Regression Neural Network (GRNN) to rapidly train, have strong generalization, 

and correctly classify the extracted features. 

• To evaluate the framework on the basis of evaluation measures, including the accuracy, precision, recall, F1-

score, and ROC-AUC, showing a better diagnostic performance and higher interpretability in relation to the 

traditional frameworks. 

1.2 Contribution of the work  

• Combines both clinical and imaging findings for robust stroke and TBI detection, improving diagnostic 

sensitivity. 

• In introducing the GWT, noise is suppressed and feature details of MRI images are sharpened for better input 

data in our method. 

• Learns important spatial and textural patterns in multimodal data for effective and robust characterization of 

stroke and TBI. 

• Improved classification performance, dependable generalisation, and quick training are achieved by 

implementing a generalised regression neural network. 

• Enables doctors to make well-informed judgements and evaluate prognoses early by using Explainable-AI 

techniques to bring transparency to model decisions. 

 

1.3 Organization of the paper 

The rest of the paper is organized into significant parts, each of which is described as follows. Section II lists the 

research projects on Multimodal Explainable-AI Framework for Stroke and Traumatic Brain Injury Detection and 

Prognosis using Imaging and Clinical Data in machine learning, completed by various authors. The suggested 

method's workflow is defined in Section III, and the Results and performance analysis of the Multimodal 

Explainable-AI Framework for Stroke and Traumatic Brain Injury Detection and Prognosis using Imaging and 

Clinical Data in machine learning are presented in Section IV. Section V contains the conclusion of the proposed 

work which will be accomplished in future scope and references. 

 

2. RELATED WORK 

 

Cerasa et al., (2022) This paper compares machine learning models to conventional statistical models used to 

predict the outcome of brain injury. ML models were more accurate and flexible using patient clinical and 

neuroimaging data. The study shows the value of higher level algorithms that identify patterns that are ignored by 

the traditional approaches. Findings indicate that the ML is more predictive reliable in prognosis of 

neurorehabilitation. 

Yu et al., (2023) The authors proposed a multimodal machine learning model with multi-modal MRI radiomics 

that is used to predict the prognosis of ischemic stroke. It integrates pictorial and clinical characteristics to 

determine the potential of recovery in patients. The model was found to be extremely accurate in relation to 

outcomes prediction in comparison to conventional techniques. The benefit of this method is that it increases 

individualized stroke planning. 

Pan et al., (2025) It is a study that presents an interpretable machine learning model to detect CT abnormalities 

in mild traumatic brain injury. The best features can be identified to pick the best features that make it transparent 

and clinically relevant. The model assists the physicians in comprehending diagnostic decisions as well as 

enhancing accuracy. Findings support its early and explainable detectability of TBI. 

Chen et al., (2025) Predictive ML model, the proposed model employs an emergency clinical data to predict in-

hospital mortality within a 3-day period of stroke and trauma patients. It examines vital signs, lab findings and 

demographics to make a quick evaluation. The system facilitates early intervention and prioritization of resources 

in emergency care. There are high predictive power and reliability findings. 

Mac Donald et al., (2025) The study concentrates on the neuroimaging description of acute brain traumatic injury 

to be used clinically. It offers standardized recommendations of the 2024 TBI classification project of the NIH. 
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The paper focuses on enhanced diagnostic imaging guidelines to frontline practitioners. These are rules that lead 

to a standard in TBI evaluation and data interpretation. 

Xia et al., (2025) The research profile created a predictive nomogram that integrated the MRI white matter 

hyperintensity radiomics characteristics with clinical variables in prediction of 90-day outcomes in a cohort of 

patients under acute ischemic strokes. The combined model was trained using Matlab and ITK- SNAP on image 

segmentation and SVM on training the model respectively. The suggested method was better in comparison with 

single models, achieving an AUC of 0.939 with high sensitivity and specificity. 

Nidamanuri et al., (2025) The article presents a deep learning model based on the application of MRI data to 

forecast mild versus severe traumatic brain injury. To achieve a better accuracy, shorter training time was done 

with a residual convolutional neural network with transfer learning in a dataset of 204 TBI patients. The model 

demonstrated high accuracy of 93.31% and 100% severity per the severities and mild cases respectively with very 

strong potential of an early diagnosis and clinical decision support. 

Li et al., (2025) The analysis was carried out to show clinical information on one thousand four hundred and 

eighty-four TBI patients by showing the likelihood of post-traumatic cerebral infarction with the aid of machine 

learning where this data showed that the main factors that dictated such a condition were age, brain contusions, 

and glucose levels. Logistic regression had an AUC of 0.821 which was the best and the specificity was high. 

Interpretability was offered by SHAP values, which helps to provide an individual approach to assessing risks and 

designing treatment. 

Issaiy et al., (2025) In this review, 24 articles on ML and DL models to predict hemorrhagic transformation 

following an acute ischemic stroke were incorporated. Gradient boosting and CNNs also worked best with median 

AUC of 0.91 surpassing the traditional scoring among others. These models facilitate the improvement of 

prediction, increase the advantages of clinical decision-making in stroke management. 

Abujaber et al., (2025) This paper adopted machine learning models and SHAP analysis to forecast 90-day 

prognosis and in-hospital mortality among hemorrhagic stroke patients. The best prediction of prognosis was 

achieved with the help of random forest, and prediction of mortality by using logistic regression was the most 

appropriate as NIHSS score and admission location were the most announced predictors. The results suggest that 

first stroke severity and treatment in special stroke units are of paramount importance to achieve more precise 

expectancy models and enable more effective clinical decision-making. 

 

Table 1 Comparison of AI Models for Stroke/TBI Detection: Features, Interpretability, and Limitations 

Ref

. No 

Model Data 

augme

ntation 

Predi

ctive 

mode

l 

Interpr

etabilit

y 

XAI-driven 

deep 

learning 

Limitations 

21 Random 

Forest, 

XGBoost, 

SVM 

✗ ✓ ✗ ✗ Retrospective dataset; limited 

generalizability across hospitals 

22 Multimodal 

CNN, 

Transformer 

✓ ✓ ✗ ✗ Need for larger external validation; 

limited clinical interpretability 

23 Ensemble 

CNN with 

XAI (Grad-

CAM) 

✓ ✓ ✓ ✓ Limited dataset size; model 

complexity affects deployment 

24 CNN with 

clinical 

variables 

✗ ✓ ✗ ✗ Lack of external testing; data 

imbalance 

25 Deep Learning 

+ Radiomics 

(3D CNN) 

✓ ✓ ✗ ✗ Single-center study; limited 

generalization 

26 Various AI 

models 

(review) 

✗ ✗ ✗ ✗ No experimental validation; review-

based findings 

27 Machine 

Learning 

(Random 

Forest, SVM) 

✗ ✓ ✗ ✗ Retrospective data; no deep 

interpretability 

28 CNN on non-

contrast CT 
✗ ✓ ✗ ✗ Lack of multicenter data; possible 

selection bias 
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29 Machine 

Learning 

(SVM, kNN, 

Decision Tree) 

✓ ✓ ✗ ✗ Manual preprocessing; limited 

interpretability 

30 Review of AI 

methods 
✗ ✗ ✗ ✗ Conceptual review; no 

implementation 

 

The table 1 provides an overview of recent research that identifies different machine learning and deep learning 

models used in clinical predictions related to the brain. The most popular models used in the majority of studies 

were predictive models, i.e., the Random Forest, CNN, and Transformer, and multimodal data were used in some 

of them. There were studies that augmented data to enhance the robustness of the models, especially in multimodal 

and radiomics-based models. Nevertheless, there was little interpretability and XAI-inspired deep learning 

algorithms, and Grad-CAM was only used in a few studies to explain their results. The general constraints of these 

works include small or retrospective datasets, not externally validated, generalizability, and low clinical 

interpretability, which underscores the need to have more explainable and scalable methods. 

 

3. PROPOSED METHODOLOGY 

 

The suggested methodology is a Multimodal Explainable-AI Framework which combines imaging and clinical 

data to detect and prognose TBI and stroke shown in figure 1. The pre-processing of the clinical characteristics of 

the Stroke Risk Prediction dataset and the brain MRI scan of the TBI Segmentation dataset involves the application 

of the Gaussian Wavelet Transform (GWT) in noise reduction and the height of features. Multimodal feature 

extraction obtains a spatial and textural pattern which can be used in diagnosis. These features are extracted and 

then classified with the help of the Generalized Regression Neural Network (GRNN) which guarantees the high 

speed of training and good generalization. The explainable-AI methods are added to provide interpretations to 

model choices, which will make it even more transparent. Accuracy, precision, recall, F1-score, and ROC-AUC 

measures of the performance of the framework are shown to have better diagnostic ability and level of reliability 

and interpretable decision-support tool to be used in the early detection and prognosis of stroke and TBI patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Block diagram of Multimodal AI Framework for Stroke and TBI Detection 

3.1 Stroke Risk Prediction Dataset 

The Stroke Risk Prediction Dataset is a medically curated dataset developed to facilitate predictive modeling of 

stroke occurrence using both classification and regression approaches. It contains a balanced set of records, with 

50% representing individuals at risk and 50% not at risk, ensuring unbiased model training. The dataset integrates 
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demographic information, particularly age, along with a comprehensive set of binary symptom indicators, 

including cardiovascular, neurological, and sleep-related features such as chest pain, irregular heartbeat, dizziness, 

fatigue, snoring, and high blood pressure. Target variables include a binary stroke risk label and a continuous 

probability estimate. Features and distributions are derived from established clinical literature, medical guidelines 

from the American Stroke Association, and insights from authoritative sources such as Mayo Clinic, Cleveland 

Clinic, Harrison’s Principles of Internal Medicine, and WHO stroke reports. Symptom severity and age are 

incorporated to enhance predictive accuracy. This dataset is optimized for machine learning and deep learning 

frameworks, supporting applications in classification, regression, and explainable AI, making it a robust tool for 

developing clinically relevant stroke prediction models. 

3.2 TBI MRI Segmentation Dataset 

TBI MRI Segmentation Dataset includes magnetic resonance images of patients with traumatic brain injury and 

segmentation masks, which indicate injured areas of the brain. The dataset will be useful in the creation of deep 

learning models that have the ability to detect and outline areas of injuries automatically, and thus aid in the 

clinical evaluation and diagnosis. It is specifically applicable to image segmentation with the convolutional neural 

networks (CNNs) and special architectures like U-Net. The data offers annotated MRI information, allowing a 

accurate learning of structural brain abnormalities, research in automated TBI detection and advanced medical 

image analysis. https://www.kaggle.com/datasets/theerayut/tbi-mri-segmentation?utm_source=chatgpt.com 

3.3 Preprocessing using Gaussian Wavelet Transform 

Preprocessing is the first and most important stage in any multimodal explainable-AI framework, and it is 

especially important for the identification of traumatic brain injury and stroke. Before feeding the input data into 

machine learning models, it attempts to enhance its quality and remove unwanted noise. The Gaussian Wavelet 

Transform (GWT) is used to the imaging MRI or CT images during this procedure. In order to eliminate noise 

while preserving crucial structural details like tissue borders and lesions, GWT splits the picture into many scales 

using Gaussian-based wavelets. In order to provide accurate and comprehensible analysis, this technique improves 

contrast, removes artifacts, and ensures that the model focuses on patterns that are pertinent to medicine. 

 

Table 2: Preprocessing using Gaussian Wavelet Transform 

Equation No Mathematical Expression Description 

1. 
𝑊(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡 

Calculates the wavelet coefficients by 

multiplying the input signal 𝑓(𝑡) with 

the Gaussian wavelet function. 

2. 
𝜓𝑎,𝑏(𝑡) =

1

√𝑎
𝜓(

𝑡 − 𝑏

𝑎
) 

Determines the wavelet scaling factor 

(a) and the translation parameter (b). 

3. 
𝜓 (𝑡) =

1

√2𝜋𝜎
𝑒

−
𝑡2

2𝜎2 
Represents the Gaussian wavelet used 

for smoothing and noise suppression. 

5. 
𝑓′(𝑡) = ∫ 𝑊′(𝑎, 𝑏)𝜓𝑎,𝑏(𝑡)𝑑𝑎𝑑𝑏 

Reconstructs the processed signal or 

image from filtered coefficients. 

 

The table 2 indicates the main stages of pre-processing with the Gaussian Wavelet Transform (GWT) in stroke 

and traumatic brain injury detection. It starts with the calculation of wavelet coefficient where the input signal or 

image is convolved with the Gaussian wavelet to extract the spatial and frequency information. The wavelet is 

scaled and translated in order to analyze the features on the various resolutions, and the Gaussian wavelet is used 

to provide a smooth and edge-preserving wavelet. This is achieved by denoising with thresholding to discard 

irrelevant coefficients, and lastly, signal reconstruction is used to construct the denoised image. Collectively, the 

steps will result in a quality, structured data to be used in machine learning-based diagnoses and explainable 

analysis. 

3.4 CNN-Based Feature Extraction for Stroke and TBI Detection 

The feature extraction is conducted based on a Convolutional Neural Network (CNN) to extract meaningful 

patterns automatically on brain imaging data. The CNN uses convolutional layers to identify edges, textures, and 

other structural abnormalities in stroke or a traumatic brain injury. Layers of pooling help save space and maintain 

important information, as well as increase the efficiency of computations. Activation functions bring in non-

linearity, which allows the network to acquire complex representations. The features that are extracted are small 

differences in the brain tissue and the lesion areas, which are used together with clinical data. This integration 

enhances the accuracy of the diagnosis, and explainable-AI methods display the regions of interest, which should 

be interpreted by clinicians shown in figure 2. 

𝐹𝑖,𝑗
𝑘 = ∑ ∑ 𝐼𝑖+𝑚,𝑗+𝑛.𝑛𝑚 𝐾𝑚,𝑛

𝑘 + 𝑏𝑘                                                                    (1) 

The equation (1) represents the core operation in a Convolutional Neural Network (CNN). Here, 𝐼 denotes the 

input image, 𝑘 is the convolutional filter (or kernel) of the 𝑘𝑡ℎ feature map, and 𝑏𝑘 is the bias term. The 

convolution process involves sliding the kernel over the image and computing the weighted sum of pixel values 

within the receptive field. This operation extracts important spatial features like edges, textures, and intensity 

variations. The output feature map 𝐹𝑘 highlights these learned features, which form the foundation for deeper 

pattern recognition in CNN-based models. 

https://www.kaggle.com/datasets/theerayut/tbi-mri-segmentation?utm_source=chatgpt.com
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𝐴𝑖,𝑗
𝑘 = max (0, 𝐾𝑖,𝑗

𝑘 )                                                                            (2) 

The equation (2) is the Rectified Linear Unit (ReLU) activation which is an important step in Convolutional 

Neural Networks (CNNs). Following convolution, this function makes the feature map non-linear by castinging 

any negative values in the feature map to zero. This assists the network to acquire intricate and non-linear 

connections in the data. ReLU also offers faster training because it does not experience the vanishing gradient 

issue that deep networks have. Consequently, the stimulated feature map 𝐴𝑘 identifies key aspects of the image, 

allowing the CNN to concentrate on the significant patterns in the form of edges, shapes, and textures. 

𝑃𝑖,𝑗
𝑘 = 𝐴𝑖+𝑚,𝑗+𝑛

𝑘
(𝑚,𝑛)𝜖𝑅

𝑚𝑎𝑥                                                                      (3) 

The equation (3) is the max pooling process of a Convolutional Neural Network (CNN). In this process, a small 

region 𝑅 (such as 2×2 or 3×3) slides over the activated feature map 𝐴𝑘 and the maximum value within each region 

is selected to form the pooled feature map 𝑃𝑘. This operation shrinks the data spatially whilst preserving the most 

significant features which causes the model to be less computationally expensive and less sensitive to small image 

perturbations or noise. Translation invariance is also obtained with the assistance of max pooling, which enhances 

the strength and generalization of the CNN. 

𝑦 = 𝜎(𝑊. 𝑥 + 𝑏)                                                             (4) 

The equation (4) represents the fully connected (dense) layer operation in a Convolutional Neural Network (CNN). 

Here, 𝑥is the flattened input vector containing extracted features, 𝑊is the weight matrix, 𝑏is the bias term, and 

𝜎is the activation function (such as ReLU or sigmoid). It is a linear transformation with a nonlinear activation that 

transforms the learnt features into a decision space. It fuses the advanced features of the past convolution and 

pooling layers so that the model could identify the intricate patterns and carry out the classification procedures 

including the detection of a stroke or traumatic brain injury areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Convolutional Neural Network (CNN) Architecture 
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𝑦𝑖̂ =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑗
                                                                 (5) 

The equation (5) represents the Softmax activation function, commonly used in the final layer of a Convolutional 

Neural Network (CNN) for multi-class classification. This function converts the raw output values 𝑦𝑖(also called 

logits) into normalized probabilities that sum to one. Each output 𝑦̂𝑖indicates the probability that the input image 

belongs to class 𝑖. Exponential operation focuses on greater logits, whereas the denominator normalizes the 

operation of all classes. Softmax is used in stroke and traumatic brain injury detection to allow the model to place 

probabilistic confidence values on each diagnostic category to increase the interpretability of the decision and 

improve the classification accuracy. 

3.5 Classification using Generalized Regression Neural Network (GRNN) 

The specific discriminant or classifier of the fused multimodal features is the Generalized Regression Neural 

Network (GRNN). GRNN is a single feed-forward map and is modeled by a radial basis function (RBF) kernel in 

the pattern layer, which calculates the similarity of an input feature vector with training examples in storage. This 

is followed by the output layer where the weighted average is carried out with the weights being formed as a result 

of the RBF layer and controlled by a very important smoothing parameter (σ). This approachology is the best at 

non-linear, highly precise, function approximation, and is thus capable of providing definitive Stroke/TBI 

detection (classification) as well as continuous prognostic scores (regression) not only with rapidity and 

transparency. 

ψi(x, xi) = exp(−
𝐷𝑖

2(𝑥,𝑥𝑖)

2𝜎2 )                                                                    (6) 

The equation (6) represents a radial basis function (RBF), commonly used in machine learning, neural networks, 

and kernel methods. Here, 𝐷𝑖(𝑥, 𝑥𝑖)denotes the distance between the input point 𝑥and the center 𝑥𝑖, often 

measured using the Euclidean distance. The parameter 𝜎controls the width or spread of the function, determining 

how strongly the influence of a training point extends in the feature space. The exponential term ensures 

smoothness, producing high values when 𝑥is close to 𝑥𝑖and decreasing rapidly as the distance increases. 

y(x) =
∑ yiexp(−

Di
2

2σ2)M
i=1

∑ exp(−
Di

2

2σ2)M
i=1

                                                                            (7) 

The equation (7) represents a normalized radial basis interpolation or weighted average model. Here, 𝑦𝑖denotes 

the output value associated with the training point 𝑥𝑖, and 𝐷𝑖is the distance between the input 𝑥and each 𝑥𝑖. The 

Gaussian exponential function assigns higher weights to points closer to 𝑥. The denominator normalizes these 

weights, ensuring their sum equals one. The parameter 𝜎determines how quickly the influence of each data point 

decreases with distance, providing smooth, localized interpolation across the input space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Generalized Regression Neural Network (GRNN) Architecture 

Figure 3 represents a Generalized Regression Neural Network (GRNN) architecture that has four key layers (input 

layer, pattern layer, summation layer, and output layer). The feature vectors are fed into the input layer and the 

pattern layer calculates the distance of the inputs and training samples. Output is aggregated in the summation 

layer by calculating weighted outputs and the final prediction value is produced at the output layer through the 

use of normalized Gaussian kernel functions. 
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AUC. The model was also found to be better in diagnosis than the traditional methods. Findings indicate its 
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consistency and explanation in clinical decision-making. The figure 4 demonstrates two heatmaps of the process 

of transforming features in the initial 10 samples. The upper heatmap displays tabular features of a preprocessed 

CSV that have been normalized, and the values are in the range of about -1.5 to +1.5. This step guarantees the 

data has the same level of consistency and is ready to be deep learned. The bottom heatmap shows characteristics 

that are learned with a BiGRU (Bidirectional Gated Recurrent Unit) model that is capable of learning complex 

temporal dependencies and patterns. In this case, 64 feature dimensions are created having a range of -0.3 and 0.3. 

This transformation carries more information on the sequence, giving a more discriminative representation which 

improves downstream classification model performance. 

 

 
Figure 4 Pre-processed and BiGRU Extracted Features Visualization 

 

 
Figure 5 MRI Preprocessing and CNN Feature Extraction 

 

The grapevine of MRI preprocessing and CNN attribute extraction is shown in Figure 5. For more processing, the 

original MRI image (leaf) is resized to a standardized feedback size. The in-between image shows the result of 

Discrete Wavelet Change (DWT), which enhances the image by stressing the high-frequency component, thereby 

facilitating better feature extraction. The image on the right represents the CNN trait map, a visualization of the 

convolutional neural Grid's deep feature extraction. The textual end product confirms the data outline (torch. Size 

([ 1, 1, 32, 32]) and the extracted feature vector outline (torch. Size ([ 1, 32]), followed by the actual 32-

dimensional feature tensor familiar with for more categorization, else review the task. 

       

 
Figure 6 Model Training Performance – Loss and Accuracy Curves 
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The figure 6 denote the figures related to the training and validation phases of a neural network across ten epochs. 

The loss curves are depicted in the left plot, where the losses of both training and validation have shown a steady 

decline, thus making it clear that the learning has been effective and the error has been minimized. 

Correspondingly, the chart on the right side exhibits the accuracy curves indicating a striking enhancement after 

the eighth epoch when both training and validation accuracies go beyond 0.9. Consequently, the model finding a 

solution successfully without any significant overfitting is what this implies. The presence of such metrics as 

(accuracy=0.902, precision=0.937, recall=0.911, F1-score=0.924, AUC=0.977) is a strong indication that the 

model has performed well and in a balanced way on the validation dataset. 

 

 
Figure 7 Confusion Matrix of Model Predictions 

The confusion matrix visualizes the model’s classification performance by comparing predicted and actual labels 

shown in figure 7. The matrix shows 153 true negatives (TN) and 298 true positives (TP), indicating correct 

predictions for both classes. There are 20 false positives (FP) where class 0 was incorrectly predicted as class 1, 

and 29 false negatives (FN) where class 1 was missed. The dominance of diagonal values (TN and TP) 

demonstrates strong predictive accuracy and balanced classification. This distribution aligns with high overall 

metrics, confirming that the model effectively distinguishes between the two classes with minimal 

misclassification and strong generalization performance. 

 
Figure 8 ROC Curve Showing Model Performance for Stroke and TBI Detection 

Figure 8 illustrates the Receiver Operating Characteristic (ROC) curve representing the performance of the 

proposed Multimodal Explainable-AI Framework for Stroke and Traumatic Brain Injury (TBI) detection. The 

ROC curve plots the True Positive Rate against the False Positive Rate, evaluating the model’s discriminative 

ability. The Area Under the Curve (AUC) value of 0.98 indicates excellent classification performance, 

demonstrating that the framework effectively distinguishes between healthy and affected subjects. The high AUC 

validates the robustness of the Generalized Regression Neural Network (GRNN) classifier and confirms that the 

integrated imaging and clinical data approach significantly enhances diagnostic accuracy and reliability. 
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Figure 9 Model Performance Metrics 

The figure 9 illustrates the model assessment on five main performance indicators, which are accuracy, precision, 

recall, F1-score, and AUC. The amount of the relative height and the exact value can be seen in each bar, which 

makes the interpretation of the performance more understandable. The model obtained Accuracy = 0.91, Precision 

= 0.94, Recall = 0.90, F1-score = 0.91 and AUC = 0.98. These high and consistent values reveal that the model is 

good in all respects with the strong discriminative capacity as shown by high AUC score. Precision is slightly 

greater than recall, which implies that there are fewer false. On the whole, the model proves to be effective and 

sound in classifying various measures of evaluation. 

 
Figure 10 Prediction vs True Label Comparison 

The figure 10 is used to compare the predicted probabilities that were obtained using the model and the true labels 

of about 500 data samples. The predicated probabilities of the model are shown on the blue line, and the real 

binary labels (0 or 1) on the orange line. Ideally, the predicted chances must be close to the actual labels. The plot 

however exhibits visible ups and downs and intersecting lines and this implies discrepancies between what the 

model projects and what really occurs. This non-uniform trend suggests that there is a possibility of model 

misclassification or instability in model prediction, which means that it is time to improve the model by refining 

it or training it better or increasing the threshold to achieve a higher accuracy and reliability. 

 

5. CONCLUSION 

 

This study introduces a powerful Multimodal Explainable-AI Framework that is efficient in incorporating both 

imaging and clinical data in the detection and prognosis of Stroke and Traumatic Brain Injury (TBI). The proposed 

model achieves excellent performance by utilizing Gaussian Wavelet Transform to perform preprocessing, high-

level feature extraction using advanced multimodal features, and Generalized Regression Neural Network 

(GRNN) to classify the samples. The system got an accuracy of 0.91, precision of 0.94, recall of 0.90, F1-score 

of 0.91, and ROC-AUC of 0.98 thus evidently surpassing conventional diagnostic methods. Moreover, the 

Explainable-AI techniques are also included that increases the interpretability of the models and reduces the need 

to explain the decision-support to clinicians in a transparent and reliable manner. In general, the framework is 

both a very accurate, interpretable, and clinically useful tool to help diagnose and prognose stroke and TBI at an 

early stage, and as a result, treat it better and more effectively, as well as to enhance overall generalization across 

various populations and clinical settings. Future studies can aim to further expand this framework towards larger 

and multi-centre datasets to facilitate better generalization to diverse populations and clinical contexts. Continuous 

tracking of patients and early warnings can be enhanced by incorporating real-time data streams of wearable and 

IoT-based health monitoring devices. Combination of longitudinal patient data will enable to do the prognosis and 

individual planning of the treatment more accurately and control over time. Remote diagnostic assistance over the 

rural and resource-constrained regions can be deployed to cloud or edge computing platforms to make it scalable. 

Besides, the consideration of hybrid deep learning structures and more sophisticated explainability methods can 

also be used to enhance the dependability of the model, so that it can be deployed to the sphere of practical clinical 

use. 
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