

A COMPARATIVE STUDY OF SELF-EFFICACY AND LIFE SATISFACTION AMONG FIRST GENERATION POST GRADUATE STUDENTS OF MASS COMMUNICATION IN SOLAPUR, MAHARASHTRA

DR. JAKKAN MADHUKAR DIGAMBAR

ASSISTANT PROFESSOR DEPARTMENT OF MASS COMMUNICATION SCHOOL OF SOCIAL SCIENCES PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

DR. SHAIKH HAJIMALANG AKABAR

ASSISTANT PROFESSOR DEPARTMENT OF APPLIED PSYCHOLOGY SCHOOL OF SOCIAL SCIENCES PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

MR. VISHNU KHADAKHADE

ASSISTANT PROFESSOR DEPARTMENT OF APPLIED PSYCHOLOGY SCHOOL OF SOCIAL SCIENCES PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

DR. BAPU BABASAHEB CHANDANSHIVE

ASSISTANT PROFESSOR DEPARTMENT OF COMMUNICATION STUDIES, NEW ARTS, COMMERCE AND SCIENCE COLLEGE, AHILYANAGA

MR. BALAJI SAGGAM

VIDEO EDITOR DEPARTMENT OF MASS COMMUNICATION SCHOOL OF SOCIAL SCIENCES PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

Abstract

The present study aims to examine the self-efficacy and life satisfaction among first generation post graduate students of Mass communication residing in Solapur district, Maharashtra. To perform this study, total 200 samples (100 from Rural and 100 from Urban) were selected through random sampling method. In the study, only first-generation postgraduate individuals between the age ranges of 22 – 35 years were selected as a participant. The present study completed with four objectives;1. Compare the mean levels of self-efficacy between first-generation mass communication postgraduates in rural and urban areas. 2. Compare the mean levels of life satisfaction between firstgeneration postgraduate individuals in rural and urban areas. 3. Examine the relationship between self-efficacy and life satisfaction of first-generation mass communication postgraduates in rural and urban participants. 4. Determine whether the relationship between self-efficacy and life satisfaction associated significantly in urban participants. To explore this study, the data was collected through survey method by using standardized questionnaires like self-efficacy and life satisfaction scale. At the end of the study, self-efficacy significantly differs between urban and rural students of mass communication post graduate, with urban individuals having higher self-efficacy than rural students, Also, there is a significant difference in life satisfaction between urban and rural populations at the 5% level. The difference is not significant at the 1% level, meaning the evidence is moderate but not highly strong. Urban individuals report slightly higher life satisfaction than rural individuals. Additionally, a strong positive correlation between self-efficacy and life satisfaction among the first generation post graduate participants. Ultimately, there was detected a strong positive correlation between self-efficacy and life satisfaction in urban in these students. The present study has addressed the disparities in the factors of self-efficacy and life satisfaction among the rural and urban first generation post graduate participants due to environmental and socioeconomic factors. Further, this study highlighted the importance of special mentorship programs for rural participants for better improvement in their self-efficacy and life satisfaction through Community building programs and Developing their wellbeing and resilience skills.

Keywords: Self-efficacy, life satisfaction, first generation, Mass communication, post graduate students, Rural and Urban.

INTRODUCTION

A concept of Self-efficacy is introduced by psychologist Albert Bandura that refers to an individual's belief in their ability to get success in specific situations or performing a task. It plays an important role in how people approach towards their goals, challenges as well as their daily life (Bandura, A. (1997). On the other hand, Life satisfaction describes about the fulfilled contents of life in which individuals feel about their lives as a whole. So, both self-efficacy and life satisfaction are important indicators of mental well-being and personal growth.

In recent years, there has been growing interest in understanding how self-efficacy and life satisfaction are interconnected. Especially, among young adults who are experiencing the transition phase from education to the workforce. The journey of first-generation postgraduate individuals—those who are the first in their families to pursue advanced degrees—is marked by both ambition and adversity. Nowadays, higher education opened doors to new opportunities, these individuals often directed to unknown territory without the better knowledge or familial guidance that their peers might rely on. This lack of inherited academic or professional "roadmaps" can shape their self-efficacy or their confidence in overcoming challenges and achieving their goals within determined timeframe. Simultaneously, their life satisfaction, a holistic sense of fulfillment can fluctuate based on how they perceive their progress in personal, academic and career domains (Terenzini P. T., Nora et al 1996).

Research suggests that self-efficacy is not just about individual own capability, but it is deeply combined with environmental and social contexts. For instance, access to mentors, institutional resources and peer networks can increase their confidence. On the contrary, if those things are lacking then it may lead to self-doubt and low confidence. In India, First-generation postgraduates, particularly those in rural areas often face bunch of barriers such as limited access to research facilities, well and reputed educational institutes, financial difficulties, career counseling, lack of institutional facilities like free internet connectivity and computer labs for doing research or project work. These obstacles can create tension and learned compromising attitudes in their belief and abilities. Conversely, urban contemporary might combine with overcrowded academic environments, financial pressures and social isolation despite of available better infrastructure. As a result, such disparities create an important question like How do these opposite environments shape self-efficacy? how does this influence their overall life satisfaction? Life satisfaction among postgraduate students is further influenced by cultural expectations. In many communities, being the first person to pursue higher education carries immense pride but also immense pressure to succeed. At the same time, failure or setbacks may feel particularly destructive and unworthiness feelings. It effects on not just personally but as a perceived disappointment in their family. This pressure can create a conflict. Such as, while academic achievement enhances self-efficacy and the fear of failure may decreased it. Rural students, often fixed in intertwined communities and this experience pressure it more acutely due to communal visibility of their achievements (Soria, K. M., & Stebleton, M. J. (2012). Urban students, while relatively unnamed that always may face competitive academic cultures that prioritize individual success over collective well-being. The rural-urban divide also impacts socioeconomic dynamics. Rural areas may offer lower living costs but fewer part-time job opportunities relevant to their fields that forcing students to balance survival jobs with academic demands. Additionally, In Urban areas, even though availability of much job opportunities. But it often come with high living expenses that leading to financial stress. These economic realities directly affect life satisfaction, as financial instability can block out their academic accomplishments.

There is a lot of research and literature currently available on first-generation students, but that literature does not include studies of people who have completed postgraduate education. Because, most studies focused on undergraduates that leaving a gap in understanding the unique struggles of postgraduate individuals.

This study tries to address this gap by examining how rural and urban environments effects on the relationship between self-efficacy and life satisfaction. By doing this study, it aims to inform policies that create a provision to the distinct needs of this group, such as specific mentorship programs, financial resources or community-building initiatives. Ultimately, empowering first-generation postgraduates is not just about academic success—it is about developing resilience and well-being that extends beyond the classroom. Notably, (In India, some college and universities providing the facility of earn and learn scheme while the students are taking the education, but the wages per hour is very less such as Rs.40-50/- per hour with the cap of 3-4 hours in a day. By this, students can work 20-22 days in a month and earn only Rs.2200 – 2400 per month that is purely insufficient to tackle the current inflammation). This study will highlight the importance of developing some supports system to strengthen their empowerment

Objectives

- 1. Compare the mean levels of self-efficacy between first-generation postgraduates of mass communication residing in rural and urban areas.
- 2. Compare the mean levels of life satisfaction between first-generation postgraduates of mass communication residing in rural and urban areas.
- 3. Examine the relationship between self-efficacy and life satisfaction in rural and urban participants.

4. Determine whether the relationship between self-efficacy and life satisfaction associated significantly in urban participants.

Hypotheses

- 1. H₁: First-generation postgraduates of mass communication in rural areas will report significantly lower mean self-efficacy scores compared to urban participants.
- 2. H₂: First-generation postgraduate mass communication in rural areas will report significantly lower mean life satisfaction scores compared to their urban participants.
- 3. H₃: There will be a strong positive correlation between self-efficacy and life satisfaction across the total sample.
- 4. H₄: There will be significant relationship between self-efficacy and life satisfaction in urban participants showing a stronger correlation than rural participants.

REVIEW OF LITERATURE:

Rural-Urban Differences

The rural—urban divide is a basic and unique feature of educational inequality in India. Students from rural areas typically getting limited access to high-quality schooling, digital learning infrastructure and exposure to academic role models (Deshpande, 2011). Consequently, first-generation postgraduate students from rural backgrounds often enter higher education with lower self-efficacy and a reduced sense of belonging (Raj & Thomas, 2020).

In their comparative study across Maharashtra and Uttar Pradesh universities, Patil and Wagh (2021) observed that rural first-generation postgraduates exhibited significantly lower academic self-efficacy scores than their urban counterparts. In their study, limited English proficiency, socio-economic constraints and poor campus integration were cited as major obstacles. Urban students benefited from greater pre-college exposure, social networks and access to supportive peers, enhancing their perceived competence and satisfaction.

Furthermore, According to Nambissan, (2014), rural students often experience double marginalization such as socioeconomic disadvantage combined by cultural displacement when migrating to urban universities. These factors lead stress negatively which affects both self-efficacy and life satisfaction. However, supportive peer communities and mentorship programs have shown reducing effects (Bharadwaj & Sharma, 2018). Rural students participating in mentorship programs demonstrated improvements in self-efficacy and a sense of community belonging, ultimately increasing life satisfaction.

A study in Indonesia by Rahmawati and Lestari (2019) revealed that rural first-generation students had lower confidence and life satisfaction than their urban peers due to perceived social inferiority. These findings emphasized on structural inequities in resource distribution profoundly shape psychological outcomes across contexts.

First-Generation vs Continuing-Generation Postgraduates

A comparison between first-generation and continuing-generation postgraduates provides a useful understanding for analyzing educational needs and psychological resilience. In continuing-generation students, those with one or both parents holding a degree—benefit from inherited academic knowledge, financial stability and familiarity with higher education processes (Ward et al., 2012). On the contrary, First-generation students face uncertainty in addressing proper institutional identity, career pathways and expectations.

In the view of Mahapatra & Sharma, 2020; Kumar & Jha, 2021, research across Indian universities consistently demonstrates that first-generation postgraduates score lower on both self-efficacy and life satisfaction scales compared to continuing-generation peers The gap is particularly evident in academic self-regulation, help-seeking behavior and goal clarity. Continuing-generation students tend to approach academic challenges with confidence derived from familial modeling (Gupta & Singh, 2020).

However, the difference narrows when institutional environments are inclusive. Bharadwaj and Sharma (2018) found that mentorship, language support, and peer integration programs significantly improved self-efficacy among first-generation students, reducing the life-satisfaction gap. This suggests that the disadvantage is not inherent but contextually shaped by institutional culture.

Globally, Pascarella et al. (2004) and Stephens et al. (2012) demonstrated similar trends: first-generation students experience greater anxiety, less perceived control, and lower well-being. Yet, they also exhibit strong aspirational motivation—a drive to uplift family status through education—which can, under supportive conditions, enhance both efficacy and satisfaction. Indian first-generation postgraduates often frame academic success as a collective family achievement, linking self-efficacy to intergenerational mobility rather than individual accomplishment (Kumar, 2020)

This collectivist orientation alters the meaning of self-efficacy, it becomes a moral responsibility to succeed rather than completely a personal belief in capability. While this opinion can motivate persistence, it may also create stress, especially when family expectations are high (Thorat & Naik, 2019). Thus, the balance between self-driven and family-driven motivation critically shapes life satisfaction outcomes.

Gender Differences within First-Generation Students

Gender is the important dimension in understanding self-efficacy and life satisfaction among first-generation postgraduates. In India, women pursuing higher education, especially from rural or conservative backgrounds, often face additional societal pressures and safety concerns (Sarkar, 2018).

Empirical studies reveal that female first-generation students exhibit lower self-efficacy in public speaking, digital literacy, and leadership tasks but higher efficacy in interpersonal and collaborative settings (Nayak & Pradhan, 2020). Societal gender norms, early socialization, and unequal domestic responsibilities contribute to these disparities.

A study by Choudhary and Singh (2019) at Delhi University found that male first-generation students scored significantly higher on general and academic self-efficacy scales, while female students reported greater life satisfaction when social support was strong. Interestingly, among women who experienced mentorship or lived in university hostels, self-efficacy increased markedly, closing the gender gap. This indicates the importance of exposure and community for women's empowerment.

At the postgraduate level, gender differences also intersect with the rural-urban divide. Female rural students often face dual barriers: conservative familial attitudes and limited institutional safety mechanisms (Patil & Wagh, 2021). These factors diminish both efficacy and satisfaction. However, exposure to inclusive campus environments—particularly in metropolitan universities—enhances autonomy and well-being (Mahapatra & Sharma, 2020).

Internationally, studies such as Klassen (2004) and Lent et al. (2018) show consistent gendered trends: women tend to underestimate their academic capabilities despite comparable performance. Yet, in collectivist societies, female self-efficacy is strongly mediated by relational support systems, such as family encouragement and peer trust (Kaya & Yıldırım, 2017).

Research Gaps

- 1. Very few studies are conducted in Maharashtra and India.
- 2. No study has highlighted on self-efficacy and life satisfaction in first generation post graduate students in Solapur and rarest in Maharashtra and very few in India.
- 3. No study has conducted to explore the distinction between self-efficacy and life satisfaction in rural and urban context in Maharashtra.

Therefore, this study provides a specific understanding of self-efficacy and life satisfaction in first generation post graduate students in residing in rural and urban areas of Maharashtra.

METHODS

This study used a quantitative, cross-sectional research design to compare self-efficacy and life satisfaction between first-generation postgraduate individuals of Mass communication residing in rural and urban areas. The design is comparative (rural vs. urban groups) and correlational (exploring relationships between variables) such as in self-efficacy and life satisfaction. Data is collected at a single time point to assess differences and associations. The study uses a descriptive and inferential approach. Because, in Descriptive, it was needed to summarize mean scores, standard deviations (SD) and demographic characteristics of the sample.

Also, in Inferential, it was strongly required to test hypotheses about group differences such as in rural vs. urban and relationships between self-efficacy and life satisfaction among the participants in both the areas. In the present study, a stratified random sampling technique was used. Because, in the stratification, total 200 sample of mass communication post graduates was divided into two strata: rural (n = 100) and urban (n = 100). Further, all the 200 samples from rural and urban were selected through random selection technique. Within each stratum, participants were selected randomly from the first-generation postgraduate individuals. Particularly, In the present study, only first-generation postgraduate individuals were chosen as participants. Such as the samples who didn't have family history of higher education beyond undergraduate level). The sample was selected between the age ranges of 22 - 35 years only who were living in their residential places like rural or urban from at least 5 years.

In the present study, total (N = 200) Samples (100 rural, 100 urban) was determined. Because, a balanced sample always provides an equal representation of rural and urban groups and helpful in reducing bias as well as contributes to strong statistical comparisons (e.g., t-tests, ANOVA). Survey Method was used to collect the data from first generation post graduated population form rural and urban areas. For this, standardized questionnaires were used. In data collection process, the standardized questionnaires in paper pencil format was administered under direct and personal monitoring to avoid ambiguity while solving the tests. Because, conducting paper pencil survey with inperson meetings helped to clarify doubts and ensure high response rates. Before collecting the data, the participants are briefed about the study's purpose and confidentiality and their written consent was obtained accordingly. Ultimately, the questionnaires were distributed and completed under researcher supervision.

- In present study, two validated scales are used:

 1. Salf Efficiency Scale by Dr. G.P. Mothur and Dr. P.
- 1. Self-Efficacy Scale by Dr. G.P. Mathur and Dr. Rajkumar Bhatnagar with the reliability Cronbach's alpha = 0.85. This questionnaire contained with 22-item Likert scale (1 = Strongly Disagree to 5 = Strongly Agree).
- 2. Life Satisfaction Scale by Dr. Q.G. Alam and Dr. Ramji Shrivastava with the reliability Cronbach alpha = 082. This questionnaire contained with 60 –items including as (Yes = 2, Uncertain = 1 and No = 0).

Initially, total scores for self-efficacy and life satisfaction were computed by summing item responses. Then, Means and SD were calculated for both scales across rural and urban groups. Further, all the scores were entered into Microsoft Excel for initial organization.

Ultimately, after organizing all the data in excel sheet, the data was analyzed in advance excel tool and CMA software according to the hypothesis. In the present study, the data was analyzed by descriptive statistics, t-test, and Pearson correlation and regression analysis.

RESULTS

H₁: First-generation postgraduates of mass communication residing in rural areas will report significantly lower mean self-efficacy scores compared to urban participants

Table: 1. indicates mean difference of self-efficacy between Rural and Urban samples

Descriptive Statistics	Rural Self Efficacy	Urban Self Efficacy
Mean	3.29	3.6019
Standard Error	0.0322	0.0408
Median	3.27	3.59
Mode	3.13	3.59
Standard Deviation	0.3227	0.4088
Sample Variance	0.1041	0.1671
Kurtosis	-1.0248	-1.028
Skewness	0.058	0.1996
Range	1.27	1.5
Minimum	2.63	2.86
Maximum	3.9	4.36
Sum	329	360.19
Count	100	100

Figure 1. Indicates a mean variation in self-efficacy in both the areas

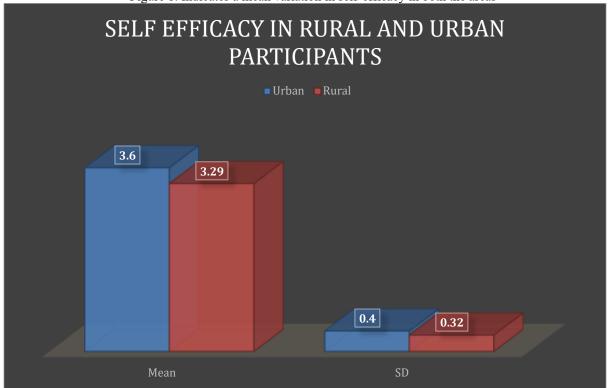


Table 2. Depicted t-test analysis of self-efficacy between rural and urban samples

t-Test: Two-Sample Assuming Unequal Variances		
	Urban	Rural
Mean	3.6019	3.29
Variance	0.167	0.1041
Observations	100	100
Hypothesized Mean Difference	0	
df	188	
t Stat	5.9877	
P(T<=t) one-tail	5.2976	
t Critical one-tail	1.6529	
P(T<=t) two-tail	1.0595	
t Critical two-tail	1.9726	

(Significance level = .01 to 0.5)

Mean comparison of self-efficacy between rural and urban samples:

The above table No. 1 depicted the mean and SD difference of self-efficacy between rural and urban participants. The mean and SD of self-efficacy between rural and urban participants was found respectively M=3.29, SD=0.32 and M=3.60, SD=0.40. The mean and SD of self-efficacy between rural and urban participants highlighted a significant difference. Similarly, table 2 indicates t-test analysis that clearly showing that t-static value 5.98 is much greater than t- critical value 1.97. This value supports to the significant difference of self-efficacy between rural and urban participants.

2. H_2 : First-generation postgraduate of mass communication residing in rural areas will report significantly lower mean life satisfaction scores compared to urban participants.

Table 3: indicates mean difference of Life Satisfaction between Rural and Urban samples

Descriptive Statistics	Urban Life Satisfaction	Rural Life Satisfaction
Mean	1.3124	1.2546
Standard Error	0.0181	0.0154
Median	1.28	1.205
Mode	1.48	1.15
Standard Deviation	0.1811	0.1545
Sample Variance	0.0328	0.0238
Kurtosis	-1.5450	-1.161
Skewness	0.1345	0.4723
Range	0.6	0.52
Minimum	1.03	1.03
Maximum	1.63	1.55
Sum	131.24	125.46
Count	100	100

Figure 2: Depicted a mean difference of life satisfaction between rural and urban samples

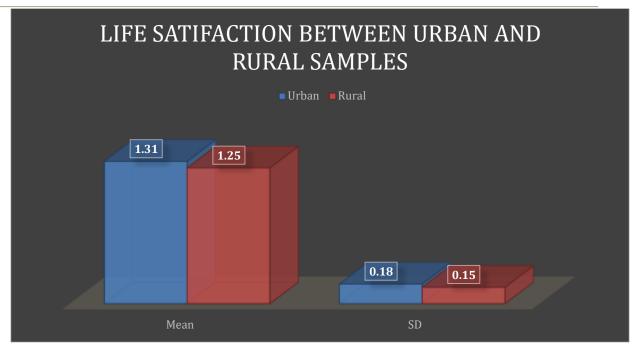
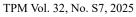


Table 4: Indicates a t-test analysis of life satisfaction between urban and rural participants

	Life Satisfaction – Urban Samples	Life Satisfaction- Rural Samples
Mean	1.3124	1.2546
Variance	0.0328	0.0238
Observations	100	100
Hypothesized Mean Difference	0	
df	193	
t Stat	2.4268	
P(T<=t) one-tail	0.0080	
t Critical one-tail	1.6527	
P(T<=t) two-tail	0.0161	
t Critical two-tail	1.9723	


Mean comparison of Life Satisfaction between rural and urban samples:

The above table No. 3 depicted the mean and SD difference of life satisfaction between rural and urban participants. The mean and SD of self-efficacy between rural and urban participants was found respectively M = 1.26, SD = 0.15 and M = 1.31, SD = 0.18. The mean and SD of life satisfaction between rural and urban participants highlighted a significant difference. Similarly, table 4 indicates t-test analysis that clearly showing that t-static value 2.42 is much greater than t- critical value 1.97. This value supports to the significant difference of life satisfaction between rural and urban participants.

H₃: There will be a strong positive correlation between self-efficacy and life satisfaction across the total sample.

Table: 5: Indicates a correlation between self-efficacy and life satisfaction among the samples **Correlation Report**

Parameter	Value	Parameter	Value
Y Axis Variable	Life Satisfaction	Rows Processed	200

ISSN: 1972-6325 https://www.tpmap.org/

Open Access

X Axis Variable Frequency Variable Sum of Frequencies Self Efficacy None 200 Rows Used in Estimation Rows with X Missing Rows with Freq Missing 200 0 0

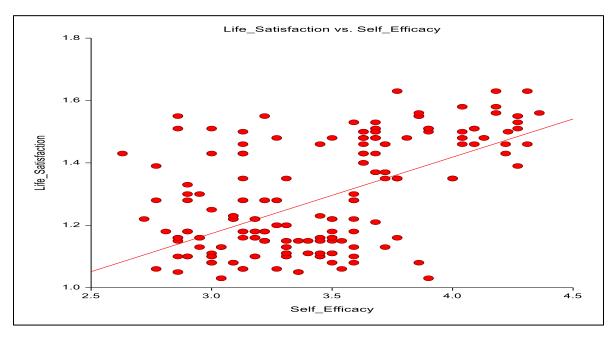
Column Summary Section

Variable	Count	Mean	Standard Deviation	Minimum	Maximum
Life Satisfaction	200	1.28	0.17	1.03	1.63
Self-Efficacy	200	3.45	0.40	2.63	4.36

Pearson Correlation Confidence Interval Section

Two-Sided Confidence Interval of ρ

Dagwan		R Distr 95% Confid		Normal Approximation 95% Confidence Limits	
Pearson Correlation	Count	Lower	Upper	Lower	Upper
0.5734	200	0.4713	0.6587	0.4722	0.6596

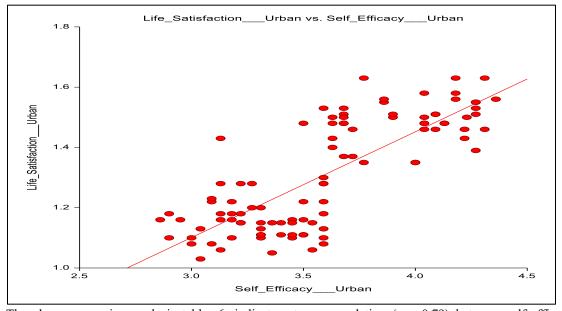

Pearson Correlation Test Section

H0: $\rho = 0$

Alternative Hypothesis	Pearson Correlation	Count	df	T-Value	P-Value	Reject H0 at $\alpha = 0.05$?
$\rho \neq 0$	0.5734	200	198	9.8477	0.0001	Yes

Correlation between self-efficacy and life satisfaction across the total sample:

Table.5: Indicates moderate correlation (r = 0.57) self-efficacy and life satisfaction within all the samples in rural and urban areas. Additionally, the following figure depicts the direction of correlation between self-efficacy ad life satisfaction among both types of samples.



H4: The strength of the relationship between self-efficacy and life satisfaction will be moderated by location (rural vs. urban), with urban participants showing a stronger correlation than rural participants.

Table 6: Indicates regression analysis between self-efficacy and life satisfaction in urban samples.

SUMMARY OU	JTPUT		The section of the se			Samples.
Regression Statistics						
Multiple R	0.7909					
R Square	0.6255					
Adjusted R Square	0.6217					
Standard Error	0.1114					
Observations	100					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	2.0329	2.0329	163.738	1.2562	
Residual	98	1.2167	0.0124			
Total	99	3.2496				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
_	0.050007	0.09928	0.5036	0.6156	-0.14701	0.24703
Intercept	0.050007	0.09928	0.5050	0.0150	0.17/01	0.21703

The above regression analysis table. 6, indicates strong correlation (r = 0.79) between self-efficacy and life satisfaction in urban samples.

DISCUSSION:

1. H₁: First-generation postgraduate of mass communication residing in rural areas will report significantly lower mean self-efficacy scores compared to urban participants

According to the table, the mean of Urban: 3.6019 and Rural: 3.29 was found respectively. It meant that the mean self-efficacy score is higher for urban participants.

Additionally, in t-test analysis, the value of t-Statistic (t Stat): 5.9877, p-value (Two-tailed): 1.0595×10^{-6} (which is approximately 0.00000106) and p-value (One-tailed): 5.2977×10^{-7} (which is approximately 0.00000053) as well as Critical t-value (Two-tailed, $\alpha = 0.05$): 1.9727 were detected. By considering the two tailed p-value which is obtained

p-value (0.0000106) was much smaller than 0.05 and 0.01 and that is evidence to reject the null hypothesis (H₀) at both $\alpha = 0.05$ and $\alpha = 0.01$. As a result, this indicates that the difference in self-efficacy between urban and rural participants is statistically significant.

Further, by Comparing the t- Statistic value with Critical t-value, it is indicating that the t-statistic (5.9877) is much greater than the critical t-value (1.9727 for $\alpha = 0.05$, two-tailed test), showing that the difference is statistically significant.

Ultimately, with the help of both $\alpha = 0.05$ and $\alpha = 0.01$, the test results indicate a statistically significant difference in self-efficacy between urban and rural groups that highlighted Urban participants have a higher mean self-efficacy score than rural participants.

Hence, we reject the null hypothesis (H₀) in favor of the alternative hypothesis (H₁).

2. H₂: First-generation postgraduates of mass communication residing in rural areas will report significantly lower mean life satisfaction scores compared to urban participants

According to the table, the mean of Urban and Rural participants was found M = 1.3124 and M = 1.2546 respectively Where the mean life satisfaction score is found higher for urban participants. Further, in t-test analysis, t-Statistic (t Stat): 2.4269, p-value (Two-tailed): 0.0161 and p-value (One-tailed): 0.0081 as well as Critical t-value (Two-tailed, $\alpha = 0.05$): 1.9723 was found respectively.

The above findings suggest that there is a statistically significant difference in life satisfaction between urban and rural groups by comparing the p-value with the significance level ($\alpha=0.05$ or 0.01). By considering significance level at ($\alpha=0.05$), The p-value (0.0161) is less than 0.05, meaning we reject the null hypothesis (Ho) at $\alpha=0.05$. This suggests a statistically significant difference in life satisfaction between urban and rural groups at the 5% level. Additionally, by Comparing t- statistic value with Critical t-value, the t-statistic (2.4269) is greater than the critical t-value (1.9723 for $\alpha=0.05$, two-tailed test), further confirming a significant difference at 5%. At $\alpha=0.05$, we reject Ho, meaning there is a statistically significant difference in life satisfaction between urban and rural groups. Urban individuals have slightly higher life satisfaction than rural individuals.

H₃: There will be a strong positive correlation between self-efficacy and life satisfaction across the total sample. In correlation analysis, Pearson Correlation Coefficient (r) = 0.5734 was found which indicates a moderate to strong positive correlation between self-efficacy and life satisfaction. A positive correlation means that as self-efficacy increases, life satisfaction also tends to increase. Further, 95% Confidence Interval using R Distribution: (0.4713, 0.6587). Since the confidence intervals do not contain zero, it further supports that the correlation is statistically significant. Additionally, p-Value < 0.0001 which is much smaller than $\alpha = 0.05$ and this p-value is significant at both 0.05 and 0.01 levels, we reject the null hypothesis (H₀) and conclude that there is a significant correlation.

H4: There will be significant correlation between life satisfaction and self-efficacy in Urban samples

In Correlation Analysis. Multiple R (Correlation Coefficient) = 0.7909 was detected that indicates a strong positive correlation between self-efficacy and life satisfaction among urban samples. Further, the urban Self-Efficacy Coefficient = 0.35047 was found which is (p < 0.001) that indicates highly significant. It is clearly showing that as the self-efficacy increases so the life satisfaction increased in urban samples.

CONCLUSION

- 1. Based on the statistical analysis, we conclude that self-efficacy significantly differs between urban and rural participants of first-generation post graduates of mass communication. However, urban post graduates having higher self-efficacy than rural post graduates.
- 2. There is a significant difference in life satisfaction between urban and rural participants of first-generation post graduates of mass communication at the 5% level. The difference is not significant at the 1% level, meaning the evidence is moderate but not highly strong. Urban individuals report slightly higher life satisfaction than rural individuals.
- 3. The analysis confirms a strong positive correlation between self-efficacy and life satisfaction across the total sample. This means that first generation post graduates with higher self-efficacy are more likely to have higher life satisfaction.
- 4. The results show a strong positive correlation between self-efficacy and life satisfaction in urban participants of first-generation post graduates of mass communication. As well as the regression model explains 62.55% of the variance, indicating a strong predictive relationship.

Limitations:

- 1. The present has been conducted to examine the self-efficacy and life satisfaction in first generation post graduates of mass communication in Solapur district in Maharashtra state only.
- 2. In the present study, sample size was 200 samples selected equally from rural and urban areas that has some geographical limitations.
- 3. Present study was focused on quantitative analysis, it could be better with the mixer of qualitative approach along with quantitative.

ISSN: 1972-6325 https://www.tpmap.org/

Open Access

Recommendations:

- 1. This study has addressed the disparities in the factors of self-efficacy and life satisfaction among the rural and urban participants of first-generation post graduates in mass communication.
- 2. The present study concluding that the environmental and socioeconomic factors would be contributed to the variation in self-efficacy and life satisfaction in both types of participants such as rural and urban.
- 3. The present study highlighted the importance of special mentorship programs for rural participants for better improvement in their self-efficacy and life satisfaction.
- 4. Community building programs would be helpful to strengthen the self-efficacy and life satisfaction among the rural participants.
- 5. Developing their wellbeing and resilience skill would be fruitful for the rural participants which could boost their self-efficacy and life satisfaction approach.

Funding:

There was no any kind of funds provided to conduct this study.

REFERENCES

- 1. Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman.
- 2. Terenzini, P. T., Springer, L., Yaeger, P. M., Pascarella, E. T., & Nora, A. (1996). First-generation college students: Characteristics, experiences, and cognitive development. Research in Higher Education, 37(1), 1–22.
- 3. Stephens, N. M., Fryberg, S. A., Markus, H. R., Johnson, C. S., & Covarrubias, R. (2012). Unseen disadvantage: How American universities' focus on independence undermines first-generation students. Journal of Personality and Social Psychology, 102(6), 1178–1197.
- 4. Soria, K. M., & Stebleton, M. J. (2012). First-generation students' academic engagement and retention. Journal of College Student Development, 53(4), 577–597.
- 5. Chen, X., & Soldner, M. (2013). STEM attrition: College students' paths into and out of STEM fields. National Center for Education Statistics.
- 6. Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction with Life Scale. Journal of Personality Assessment, 49(1), 71–75.
- 7. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.
- 8. Schwarzer, R., & Jerusalem, M. (1995). Generalized Self-Efficacy Scale. In J. Weinman, S. Wright, & M. Johnston (Eds.), Measures in health psychology: A user's portfolio (pp. 35–37). NFER-Nelson.
- 9. Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 125(2), 276–302.
- 10. Chemers, M. M., Hu, L., & Garcia, B. F. (2001). Academic self-efficacy and first-year college student performance and adjustment. Journal of Educational Psychology, 93(1), 55–64.
- 11. Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79–122.
- 12. Perna, L. W. (2006). Understanding the relationship between information about college prices and financial aid and students' college-related behaviors. American Behavioral Scientist, 49(12), 1620–1635.
- 13. Roscigno, V. J., Tomaskovic-Devey, D., & Crowley, M. (2006). Education and the inequalities of place. Social Forces, 84(4), 2121–2145.
- 14. Byun, S., Meece, J. L., & Irvin, M. J. (2012). Rural–nonrural disparities in postsecondary educational attainment revisited. American Educational Research Journal, 49(3), 412–437.
- 15. Lovitts, B. E. (2001). Leaving the ivory tower: The causes and consequences of departure from doctoral study. Rowman & Littlefield.
- 16. Gardner, S. K. (2009). Student and faculty attributions of attrition in high- and low-completing doctoral programs in the United States. Higher Education, 58(1), 97–112.
- 17. Crisp, G., Taggart, A., & Nora, A. (2015). Undergraduate Latina/o students: A systematic review of research identifying factors contributing to academic success outcomes. Review of Educational Research, 85(2), 249–274.
- 18. Engle, J., & Tinto, V. (2008). Moving beyond access: College success for low-income, first-generation students. Pell Institute for the Study of Opportunity in Higher Education.
- 19. Pike, G. R., & Kuh, G. D. (2005). First- and second-generation college students: A comparison of their engagement and intellectual development. Journal of Higher Education, 76(3), 276–300.
- 20. Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage Publications.
- 21. Bharadwaj, A., & Sharma, R. (2018). Academic self-efficacy and adjustment among first-generation college students in India. Indian Journal of Positive Psychology, 9(3), 372–377.
- 22. Bourdieu, P. (1986). The forms of capital. In J. G. Richardson (Ed.), Handbook of theory and research for the sociology of education (pp. 241–258). Greenwood Press.

- 23. Caprara, G. V., Steca, P., Gerbino, M., Paciello, M., & Vecchio, G. M. (2006). Looking for adolescents' well-being: Self-efficacy beliefs as determinants of positive thinking and happiness. Epidemiologia e Psichiatria Sociale, 15(1), 30–43.
- 24. Choudhary, S., & Singh, M. (2019). Self-efficacy, emotional resilience, and life satisfaction among postgraduate students. Indian Journal of Health and Wellbeing, 10(4), 420–426.
- 25. Deshpande, S. (2011). Caste and castelessness: Towards a biography of the "General Category". Routledge.
- 26. Gupta, D., & Singh, N. (2020). Educational mobility and the persistence of inequality: The case of first-generation learners in India. Social Change, 50(2), 256–271.
- 27. Hou, Y., Zhang, L., & Luo, F. (2021). Cultural values and life satisfaction among Chinese college students: The mediating role of self-efficacy. Asian Journal of Social Psychology, 24(3), 287–298.
- 28. Kaya, C., & Yıldırım, M. (2017). The mediating role of self-efficacy on the relationship between social support and life satisfaction. International Journal of Educational Psychology, 6(3), 247–265.
- 29. Klassen, R. M. (2004). A cross-cultural investigation of the efficacy beliefs of South Asian immigrant and Anglo Canadian nonimmigrant early adolescents. Journal of Educational Psychology, 96(4), 731–742.
- 30. Kumar, R. (2020). Self-efficacy and motivation among first-generation college students in India. Indian Journal of Psychology and Education, 10(1), 15–23.
- 31. Kumar, R., & Jha, S. (2021). Predictors of life satisfaction among postgraduate students: The role of self-efficacy and resilience. Journal of Indian Academic Research, 11(2), 98–109.
- 32. Lent, R. W., Brown, S. D., & Hackett, G. (2018). Social cognitive career theory at 25: Empirical status of the interest, choice, and performance models. Journal of Vocational Behavior, 115, 103316.
- 33. Mahapatra, S., & Sharma, P. (2020). Perceived social support and life satisfaction among first-generation college students. Indian Journal of Community Psychology, 16(2), 210–221.
- 34. Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98(2), 224–253.
- 35. Meeuwisse, M., Severiens, S. E., & Born, M. P. (2010). Learning environment, interaction, sense of belonging, and study success in ethnically diverse student groups. Research in Higher Education, 51(6), 528–545.
- 36. Nambissan, G. B. (2014). Education and social justice in the era of economic liberalization: Persistence and emergence of inequalities. Routledge India.
- 37. Nayak, A., & Pradhan, R. K. (2020). Enhancing self-efficacy and well-being among first-generation students: Intervention effectiveness study. Journal of Positive Psychology and Wellbeing, 4(2), 52–61.
- 38. Pascarella, E. T., Pierson, C. T., Wolniak, G. C., & Terenzini, P. T. (2004). First-generation college students: Additional evidence on college experiences and outcomes. The Journal of Higher Education, 75(3), 249–284.
- 39. Patil, A., & Wagh, V. (2021). Academic self-efficacy and subjective well-being among rural and urban postgraduate students. Indian Journal of Educational Studies, 8(1), 64–76.
- 40. Pavot, W., & Diener, E. (2008). The Satisfaction with Life Scale and the emerging construct of life satisfaction. The Journal of Positive Psychology, 3(2), 137–152.
- 41. Peteet, B. J., Montgomery, L., & Weekes, J. C. (2015). Predictors of imposter phenomenon among minority graduate students. Journal of Multicultural Counseling and Development, 43(3), 173–190.
- 42. Proctor, C., Linley, P. A., & Maltby, J. (2009). Youth life satisfaction: A review of the literature. Journal of Happiness Studies, 10(5), 583–630.
- 43. Rahmawati, F., & Lestari, S. (2019). Rural versus urban students' psychological well-being in Indonesia. Journal of Education and Learning, 13(2), 241–248.
- 44. Raj, S., & Thomas, J. (2020). Stress and life satisfaction among postgraduate students from rural and urban backgrounds. Indian Journal of Health and Wellbeing, 11(5), 612–618.
- 45. Sarkar, M. (2018). Gender, education, and empowerment: Women's self-efficacy in higher education. Indian Journal of Gender Studies, 25(1), 79–97.
- 46. Schunk, D. H., & DiBenedetto, M. K. (2016). Self-efficacy theory in education. In K. R. Wentzel & D. B. Miele (Eds.), Handbook of motivation at school (2nd ed., pp. 34–54). Routledge.
- 47. Suh, E., Diener, E., Oishi, S., & Triandis, H. C. (1998). The shifting basis of life satisfaction judgments across cultures: Emotions versus norms. Journal of Personality and Social Psychology, 74(2), 482–493.