

# SELECTIVE SEROTONIN RE UPTAKE INHIBITORS AND GLYCEMIC OUTCOMES: A COMPARATIVE CLINICAL ANALYSIS OF SERTRALINE AND FLUOXETINE IN DIABETIC DEPRESSION

# DR. AMBER SHAMS\*

MRCPI (OBS & GYNAE), ROYAL COLLEGE OF PHYSICIANS OF IRELAND (RCPI) PROFESSIONAL DIPLOMA IN GYNAECOLOGY & OBSTETRICS MBBS, LIAQUAT UNIVERSITY OF MEDICAL AND HEALTH SCIENCES, JAMSHORO, PAKISTAN FCPS-I (GYNAE & OBS), EMAIL: drambershams@gmail.com

# FAHAD SAAD Z. ALANAZI

ASSISTANT PROFESSOR DEPARTMENT OF FAMILY AND COMMUNITY MEDICINE NORTHERN BORDER UNIVERSITY ARAR, SAUDI ARABIA

# DR. MUHAMMAD IRFAN SAFI RIZVI

MBBS, MPHIL, DIPLOMA IN DIABETOLOGY, RYK MEDICAL COLLEGE, RAHIM YAR KHAN, PAKISTAN

#### **Abstract**

**Background:** Depression is a common comorbidity in individuals with type 2 diabetes mellitus (T2DM), collectively referred to as "diabetic depression." This dual disease burden significantly worsens glycemic control, increases cardiovascular risk, and impairs quality of life. Among antidepressants, selective serotonin reuptake inhibitors (SSRIs) are frequently used first-line agents, yet their metabolic profiles vary. This study provides a comparative evaluation of two widely prescribed SSRIs—sertraline and fluoxetine—with a focus on their glycemic, lipid, anthropometric, and psychiatric effects in diabetic patients.

**Objective:** To synthesize current clinical and pre-clinical evidence on the metabolic and psychiatric outcomes of sertraline and fluoxetine in patients with comorbid T2DM and depression, and to guide individualized antidepressant selection based on metabolic risk profiles.

Methods: A structured literature review was conducted, incorporating randomized controlled trials, meta-analyses, clinical guidelines, and pre-clinical studies. Comparative endpoints included changes in HbA1c, fasting blood glucose, lipid profiles, body weight, BMI, and depressive symptomatology (BDI-II scores). Mechanistic insights and adverse event profiles were also explored.

## **Results:**

Both sertraline and fluoxetine demonstrated significant improvements in depressive symptoms and glycemic indices. Sertraline was associated with modest weight and waist circumference reductions, significantly lowered serum triglycerides, and stimulated counter-regulatory hormonal responses, including catecholamines and glucagon—posing a potential risk for hypoglycemia. In contrast, fluoxetine led to greater weight loss (~4.27 kg), improved insulin sensitivity through PI3K-AKT pathway modulation, and exhibited a lower propensity for inducing hypoglycemia.

Conclusions: Both SSRIs are effective for diabetic depression; however, their metabolic profiles differ. Sertraline may benefit patients with dyslipidemia but requires close monitoring for hypoglycemia. Fluoxetine may be preferable for patients with obesity or those requiring aggressive weight management. Individualized treatment based on comorbidities, metabolic goals, and tolerability is essential for optimizing outcomes in diabetic depression. Keywords: Type 2 diabetes mellitus, diabetic depression, sertraline, fluoxetine, SSRIs,

**Keywords:** Type 2 diabetes mellitus, diabetic depression, sertraline, fluoxetine, SSRIs, glycemic control, lipid profile, insulin sensitivity, weight loss, hypoglycemia risk

#### 1. INTRODUCTION

Diabetes mellitus (DM) and depression are two highly prevalent chronic conditions that impose significant burdens on global health. The coexistence of these illnesses, often termed "diabetic depression," is known to worsen glycemic control, increase the risk of complications, and elevate mortality rates. Epidemiological studies suggest that depression affects up to 16%–40% of individuals with DM, and the incidence of depression in diabetic patients can be up to twice that of the general population. Furthermore, an estimated economic burden of depressive disorders in the United States can reach up to US\$83.1 billion, reflecting substantial healthcare and societal costs.



Within this context, the use of antidepressant pharmacotherapy is not only directed at alleviating mental health symptoms but also for its potential influence on metabolic parameters. Among the various classes of antidepressants, selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed as first-line agents due to their favorable tolerability profiles and safety records. However, individual SSRIs may differ in their metabolic effects. This article focuses on the comparative clinical analysis of two widely prescribed SSRIs—sertraline and fluoxetine—in the treatment of diabetic depression. The primary aim is to evaluate their impact on glycemic control parameters, lipid profiles, anthropometric indices, and depressive symptoms in patients with type 2 diabetes mellitus (T2DM) and comorbid depression.

A growing body of clinical evidence suggests that the metabolic and hormonal effects of these drugs could influence overall treatment outcomes in diabetic depression. While both sertraline and fluoxetine have demonstrated efficacy in reducing depressive symptoms, emerging research indicates potential differences in their effects on weight, insulin sensitivity, and lipid metabolism. This analysis synthesizes current research, including randomized controlled trials (RCTs), meta-analyses, and pre-clinical studies, to provide clinicians and researchers with a detailed comparative evaluation of these two agents.

#### 2. LITERATURE REVIEW AND METHODS

#### 2.1 Overview of Literature Sources

This article is based on a comprehensive review of multiple research documents that address the use of second-generation antidepressants and SSRIs in the management of depression among patients with DM. The reviewed materials include clinical practice guidelines, systematic reviews, network meta-analyses, and randomized controlled trials. Specific documents examined encompassed:

- A clinical practice guideline by the American College of Physicians that outlines the pharmacologic management of depression and provides recommendations for second-generation antidepressants.
- A systematic review and network meta-analysis comparing the impact of various antidepressants, including SSRIs, on glycemic outcomes in patients with T2DM and depression.
- Individual studies evaluating the metabolic effects and adverse event profiles of fluoxetine and sertraline in diabetic populations, including anthropometric outcomes (e.g., weight, BMI, waist circumference) and glycemic indices (e.g., HbA1c, fasting blood glucose).
- Pre-clinical studies exploring the effect of sertraline on hormonal regulation, particularly regarding hypoglycemia and adrenomedullary responses in animal models.

## 2.2 Methodological Approach

The review methodology involved systematically extracting data and narratives from the provided sources. Each study was carefully examined for critical information on study design, patient inclusion criteria, interventions, and outcome measures. Comparative endpoints included:

- Change in glycemic control parameters (HbA1c, fasting plasma glucose, and 2-hour post-prandial blood glucose).
- Variations in serum lipid profiles (triglycerides, total cholesterol, LDL cholesterol).
- Anthropometric changes (weight loss, BMI reduction, waist circumference).
- Measures of depressive symptom improvement assessed via validated scales such as the Beck Depression Inventory-II (BDI-II).

For clarity and precision, every claim in this manuscript is supported by a citation referencing the appropriate chunk ID from the source materials (e.g., for sertraline anthropometric outcomes and for fluoxetine metabolic effects). Data from a head-to-head randomized controlled trial comparing sertraline versus fluoxetine directly in diabetic depression patients provides a critical comparative framework for this review .

A series of visualizations, including tables have been integrated into this article to provide descriptive summaries and to facilitate an understanding of the comparative clinical profiles of sertraline and fluoxetine.

## 3. Sertraline in Diabetic Depression

#### 3.1 Glycemic Control and Anthropometric Outcomes

Sertraline, a widely prescribed SSRI, has been studied extensively for its impact on both depressive symptoms and metabolic parameters in T2DM patients. Clinical trials investigating its effects have documented statistically significant improvements in anthropometric measures. For instance, a prospective clinical trial reported that a daily dose of 50 mg sertraline administered for 12 weeks resulted in:

- A 2.5% reduction in body weight from baseline,
- A significant weight loss of approximately 2 kg,
- A decrease in body mass index from 30.41 kg/m² to 29.6 kg/m², and
- A reduction in waist circumference by an average of 7 cm.

These improvements not only indicate potential cardiovascular and metabolic benefits for T2DM patients but may also facilitate better glycemic outcomes through enhanced insulin sensitivity.

## 3.2 Lipid Profile Modulation

In addition to glycemic control, sertraline exhibits favorable effects on lipid metabolism. One randomized controlled trial found that over a 12-week treatment period, sertraline significantly reduced serum triglyceride



levels compared to placebo and, in head-to-head comparisons, offered notable advantages over fluoxetine in this specific regard. The reduction in triglyceride levels is clinically relevant, considering that dyslipidemia is a common comorbidity in patients with diabetes and is a predictor of cardiovascular complications.

# 3.3 Hormonal Effects and Risk of Hypoglycemia

Pre-clinical research using diabetic rat models has provided insight into the hormonal effects of sertraline. Studies have demonstrated that sertraline administration results in:

- A significant reduction in blood glucose levels in both normal and diabetic rats,
- An increase in the release of adrenomedullary catecholamines (e.g., epinephrine and norepinephrine),
- A potential stimulation of glucagon secretion after prolonged treatment.

The increase in catecholamines suggests an enhancement of the counterregulatory mechanisms against hypoglycemia. However, this poses a dual risk: while the drug may favorably reduce glucose, it simultaneously increases the risk of hypoglycemia, particularly if patients continue their antidiabetic medications at unadjusted doses. Therefore, it is recommended that clinicians monitor glycemic levels closely and consider adjustments in antidiabetic therapy when initiating sertraline treatment.

#### 3.4 Adverse Effects Profile

Common adverse effects associated with sertraline include nausea, decreased appetite, and sexual dysfunction, which are consistent with the broader SSRI class. Moreover, the risk of hypoglycemia, as noted above, is an important consideration in diabetic populations. Patients may experience "masked" hypoglycemic symptoms due to sertraline-induced alterations in the neuroendocrine response, necessitating vigilant clinical monitoring.

## 3.5 Summary Table: Sertraline Clinical Effects

| Outcome Parameter         | Observed Change with Sertraline                                   |  |
|---------------------------|-------------------------------------------------------------------|--|
| Body Weight               | Reduction of ~2 kg; 2.5% loss                                     |  |
| Body Mass Index (BMI)     | Decreased from 30.41 to 29.6 kg/m <sup>2</sup>                    |  |
| Waist Circumference       | Decrease by ~7 cm                                                 |  |
| HbA1c and Fasting Glucose | Improvement in glycemic parameters                                |  |
| Serum Triglycerides       | Significant reduction compared to fluoxetine                      |  |
| Hormonal Changes          | Increased catecholamines and glucagon                             |  |
| Adverse Effects           | Nausea, decreased appetite, sexual dysfunction, hypoglycemia risk |  |

Table 1: Summary of sertraline's clinical impact on glycemic, anthropometric, and hormonal parameters in diabetic depression.

## 4. Fluoxetine in Diabetic Depression

#### 4.1 Glycemic and Metabolic Effects

Fluoxetine, another prominent SSRI, has been evaluated for its metabolic effects in patients with T2DM. A metaanalysis of randomized placebo-controlled trials documented that fluoxetine therapy results in significant weight loss of approximately 4.27 kg compared to placebo, along with modest improvements in glycemic control parameters such as a reduction in fasting plasma glucose (FPG) and a decrement in HbA1c of about 0.78%. The weight loss effect is considered a dominant predictor of improved glycemic outcomes, as reductions in adiposity typically enhance insulin sensitivity.

## 4.2 Mechanistic Insights: Appetite and Cellular Signaling Pathways

Fluoxetine's effects on weight loss are attributable primarily to its action in suppressing appetite and reducing energy intake. Furthermore, experimental studies have elucidated that fluoxetine regulates glucose and lipid metabolism through the PI3K-AKT signaling pathway. In diabetic rat models, fluoxetine was shown to reduce fasting blood glucose (FBG), total cholesterol, and triglyceride levels by upregulating components of the PI3K-AKT pathway, thereby enhancing glucose uptake and improving insulin sensitivity. This mechanism underscores the dual antidepressant and antidiabetic properties of fluoxetine.

#### 4.3 Impact on Lipid Profile and Cardiovascular Risk Factors

In clinical evaluations, fluoxetine therapy has demonstrated a modest but significant impact on lipid profiles, contributing to reductions in triglyceride levels and total cholesterol. These effects are particularly beneficial in diabetic patients, where dyslipidemia commonly exacerbates cardiovascular risk. However, compared to sertraline, the evidence from certain trials indicates that fluoxetine's lipid-modulating effects may be less pronounced, particularly in terms of lowering serum triglycerides.

#### 4.4 Adverse Effects Profile

Like other SSRIs, fluoxetine is generally well tolerated. Reported side effects include gastrointestinal disturbances, headache, and insomnia, with some patients experiencing a reduction in appetite. In contrast to sertraline, there is relatively limited evidence linking fluoxetine to significant hormonal changes that could lead to hypoglycemia. Nonetheless, clinicians are advised to monitor patients for any signs of adverse events, particularly in those with longstanding diabetes or other comorbidities.

#### 4.5 Summary Table: Fluoxetine Clinical Effects



| Outcome Parameter   | Observed Change with Fluoxetine                    |  |
|---------------------|----------------------------------------------------|--|
| Weight Loss         | Reduction of ~4.27 kg (significant)                |  |
| Glycemic Control    | Reduction in FPG and modest drop in HbA1c (~0.78%) |  |
| Lipid Profile       | Modest reduction in triglycerides and TC           |  |
| Mechanism of Action | Appetite suppression and PI3K-AKT modulation       |  |
| Adverse Effects     | Nausea, headache, insomnia, decreased appetite     |  |

Table 2: Summary of fluoxetine's impact on metabolic and glycemic parameters in diabetic depression.

## 5. Comparative Analysis of Sertraline and Fluoxetine

#### 5.1 Overview of Comparative Data

A head-to-head randomized controlled trial comparing sertraline and fluoxetine in patients with comorbid depression and T2DM provides valuable insights into their relative efficacy and safety profiles. This study evaluated 40 patients, with 20 patients assigned to each group. Over a 12-week intervention period, both drugs were effective in reducing depressive symptoms and improving key glycemic parameters such as HbA1c, fasting blood sugar (FBS), and 2-hour post-prandial blood glucose levels.

## 5.2 Comparative Efficacy in Depression and Glycemic Control

Both sertraline and fluoxetine demonstrated statistically significant improvements in depression severity, as measured by the Beck Depression Inventory-II (BDI-II), along with comparable enhancements in glycemic control. Although the reductions in HbA1c and FBS were similar between the groups, the data did not reveal a statistically significant difference between the two SSRIs in terms of these primary metabolic outcomes. This suggests that both agents, when appropriately dosed, are viable options for managing depressive symptoms in diabetic patients.

## **5.3 Differential Impact on Lipid Parameters**

One notable distinction between the two agents emerged in their effect on serum triglyceride levels. According to the comparative trial, sertraline resulted in a statistically significant reduction in serum triglycerides (P = 0.04) compared to fluoxetine. This finding is of clinical importance, given that elevated triglyceride levels are a risk factor for cardiovascular events in diabetic patients. The greater lipid-lowering effect of sertraline may thus provide an additional benefit in reducing cardiovascular risk.

#### 5.4 Mechanistic Considerations and Adverse Effects

The mechanistic differences between the drugs are also evident from pre-clinical studies. Sertraline's influence on hormonal regulation—specifically its capacity to stimulate adrenomedullary responses—suggests a complex interplay between glucose reduction and an increased risk of hypoglycemia. In contrast, fluoxetine's primary mechanism appears to center on appetite suppression and modulation of the PI3K-AKT signaling pathway, with fewer reported hormonal perturbations. Adverse effect profiles for both drugs were largely consistent with those observed for SSRIs, with gastrointestinal disturbances, decreased appetite, and sexual dysfunction being the most common.

#### **5.5** Comparative Visualization: Outcome Metrics

Below is a table summarizing the key outcome metrics from the head-to-head study:

| Outcome Parameter               | Sertraline Outcome                           | Fluoxetine Outcome                         |
|---------------------------------|----------------------------------------------|--------------------------------------------|
| Depression Severity (BDI-II)    | , ,                                          | Significant reduction; similar improvement |
| HbA1c Reduction                 | Similar drop in HbA1c                        | Similar drop in HbA1c                      |
| Fasting Blood Sugar (FBS)       | Comparable improvement                       | Comparable improvement                     |
| 2-Hour Post-Prandial<br>Glucose | Comparable reductions                        | Comparable reductions                      |
| Serum Triglycerides             | Significant reduction (P = 0.04)             | Modest reduction                           |
| Weight and BMI                  | Favorable reduction in weight and Bivil      | Significant weight loss effect (~4.27 kg)  |
| Adverse Effects                 | Risk of hypoglycemia, nausea, sexual effects | Nausea, insomnia, decreased appetite       |

Table 3: Comparative outcome metrics for sertraline versus fluoxetine in diabetic depression.

## 6. Clinical Implications and Recommendations

#### 6.1 Individualized Therapeutic Decisions

The comparative analysis of sertraline and fluoxetine suggests that both SSRIs are effective in reducing depressive symptoms and improving glycemic control in patients with T2DM. However, clinicians should consider the following factors when making individualized treatment decisions:



## **Metabolic Profile Considerations:**

- o For patients with dyslipidemia or elevated triglyceride levels, sertraline may be the preferred agent due to its significant lipid-lowering effects.
- o In patients where weight loss is paramount, fluoxetine's robust appetite-suppressive effects and significant weight reduction (approximately 4.27 kg) may offer an added advantage.

#### Risk of Hypoglycemia:

- o The hormonal effects of sertraline, notably its stimulation of the adrenomedullary response, place patients at an increased risk of hypoglycemia. Careful monitoring of blood glucose levels and potential reduction of antidiabetic medication dosages are recommended when using sertraline.
- o Fluoxetine appears to exhibit a lower propensity for causing hypoglycemia, making it a safer choice for patients with fluctuating glycemic profiles.

#### **Adverse Effect Profiles:**

 Both agents share common SSRI side effects such as nausea, headache, and sexual dysfunction. However, patient-specific tolerability and preference must be considered, as these adverse effects can impact adherence to therapy.

#### **6.2 Monitoring and Follow-Up Strategies**

An integrated, multidisciplinary approach is paramount in managing patients with diabetic depression. The following monitoring strategies are recommended:

## • Glycemic Monitoring:

o Frequent measurement of HbA1c, fasting plasma glucose (FPG), and post-prandial blood glucose levels is advised, especially during the initial phases of SSRI therapy.

#### • Lipid Profiling:

o Regular assessments of serum triglycerides, total cholesterol, and LDL cholesterol can help in determining the cardiovascular risk and the lipid-lowering benefits of the chosen antidepressant.

#### • Anthropometric Measurements:

o Monitoring changes in body weight, Body Mass Index (BMI), and waist circumference is crucial to evaluate the broader metabolic impact of treatment.

#### • Psychiatric Evaluation:

o Reassessing depressive symptoms using validated scales such as the BDI-II at baseline, mid-treatment, and post-treatment to ensure ongoing efficacy and to adjust the therapeutic regimen as needed.

#### **6.3 Recommendations for Clinical Practice**

Based on the evidence synthesized from the reviewed literature, the following clinical recommendations can be made for managing diabetic depression:

#### **Selection of SSRI Agent:**

- Ocnsider sertraline for patients with elevated triglyceride levels or those who may benefit from modest weight and waist circumference reductions, while exercising vigilance for hypoglycemia.
- Opt for fluoxetine in patients who would benefit from significant weight loss and for those with a relatively stable glycemic profile to lower the risk of hypoglycemia.

#### Adjustment of Antidiabetic Therapy:

- With sertraline treatment, reduce the dosage of concurrent antidiabetic medications in patients exhibiting signs of hypoglycemia and closely monitor glucose levels.
- In all cases, collaboration with endocrinologists is recommended to optimize both psychiatric and metabolic outcomes.

# **Regular Monitoring and Patient Education:**

- o Educate patients on the signs of hypoglycemia and the importance of consistent monitoring, particularly in the early stages of SSRI initiation.
- o Encourage lifestyle modifications, including diet and exercise, as adjuncts to pharmacotherapy to maximize the benefits of either SSRI.

## **Multidisciplinary Care:**

o Implement a coordinated care model where psychiatrists, endocrinologists, and primary care providers work collaboratively to tailor treatment plans that address both mental health and metabolic control.

#### 7. CONCLUSION

The comparative clinical analysis of sertraline versus fluoxetine in patients with diabetic depression reveals that both SSRIs are effective in reducing depressive symptoms and improving glycemic outcomes. Notably:

- **Sertraline** is associated with significant reductions in serum triglycerides and favorable anthropometric improvements but may increase the risk of hypoglycemia due to its effect on adrenomedullary responses. Its use requires vigilant glycemic monitoring and possible adjustments in antidiabetic medication dosages.
- **Fluoxetine** exhibits robust weight loss effects and effectively improves glycemic control through mechanisms such as appetite suppression and modulation of the PI3K-AKT signaling pathway. Its adverse effect profile appears comparatively moderate, with a lower associated risk of hypoglycemia.



Both agents display comparable efficacy in alleviating depressive symptoms as measured by standardized psychiatric scales. However, the modest differences in lipid modulation and metabolic mechanisms highlight the need for individualized treatment decisions based on patient-specific profiles and comorbidities.

#### **Key Findings:**

- **Efficacy in Depression:** Both sertraline and fluoxetine reduce depressive symptoms effectively, as evidenced by significant improvements in BDI-II scores.
- **Glycemic Control:** Improvements in HbA1c, fasting plasma glucose, and post-prandial blood glucose are comparable between the two drugs.
- **Anthropometric Benefits:** Sertraline is linked to reductions in weight, BMI, and waist circumference, while fluoxetine provides significant weight loss benefits.
- **Lipid Modulation:** Sertraline demonstrates a statistically significant reduction in serum triglycerides, which may be an added benefit for cardiovascular risk management.
- Adverse Effects: The risk of hypoglycemia is higher with sertraline due to its hormonal effects, necessitating careful clinical monitoring.

## **Summary of Recommendations:**

- **Individualize SSRI Selection:** Choose sertraline for patients needing lipid modulation with careful glycemic monitoring; select fluoxetine for those who require significant weight loss.
- Monitor Metabolic Parameters: Regularly assess glycemic control, lipid profiles, and anthropometric measures to tailor therapy effectively.
- Adjust Antidiabetic Regimens: Consider potential adjustments in antidiabetic medications, especially in patients on sertraline therapy.
- Adopt a Multidisciplinary Approach: Integrate care among psychiatry, endocrinology, and primary care to optimize patient outcomes.

In conclusion, the evidence suggests that both sertraline and fluoxetine have a role in the management of diabetic depression, but subtle differences in their metabolic effects should guide personalized treatment strategies. Future research involving larger sample sizes and longer follow-up periods is warranted to further elucidate these differences and to refine clinical guidelines for this complex patient population.

## REFERENCES

## • Bayani, M.A., Roshan, A.T., Moudi, S., & Ahangar, H.G. (2023).

Sertraline and fluoxetine in adult patients with comorbid depression and type II diabetes mellitus: A randomized controlled trial. Jundishapur Journal of Chronic Disease Care, 12(3), 117–124.

## Rachdi, C., Damak, R., Romdhane, F.F., & Ouertani, H. (2019).

Impact of sertraline on weight, waist circumference and glycemic control: A prospective clinical trial on depressive diabetic type 2 patients. Primary Care Diabetes, 13(4), 312–319. DOI: 10.1016/j.pcd.2018.09.003

## • Kesim, M., Tiryaki, A., Kadioglu, M., & Muci, E. (2011).

The effects of sertraline on blood lipids, glucose, insulin and HBA1C levels: A prospective clinical trial on depressive patients. Journal of Research in Medical Sciences, 16(12), 1525–1532. PMCID: PMC3434892

#### • Tharmaraja, T., Stahl, D., & Hopkins, C.W.P. (2019).

The association between SSRIs and glycemia: A systematic review and meta-analysis of RCTs. Biopsychosocial Medicine, 13(1), 1–12.

## Tovilla-Zárate, C.A., Pérez-Mandujano, A., et al. (2019).

Vortioxetine vs sertraline in metabolic control, distress and depression in Mexican T2DM patients. Annals of Translational Medicine, 7(22), 656.

PMCID: PMC6944547

#### Shahsavand Ananloo, E., Ghaeli, P., & Kamkar, M.Z. (2013).

Comparing the effects of fluoxetine and imipramine on total cholesterol, triglyceride, and weight in patients with major depression. DARU Journal of Pharmaceutical Sciences, 21, 4. DOI: 10.1186/2008-2231-21-4

# • Gehlawat, P., Gupta, R., Rajput, R., & Gahlan, D. (2013).

Diabetes with comorbid depression: Role of SSRI in better glycemic control. Asian Journal of Psychiatry, 6(5), 364–368. DOI: 10.1016/j.ajp.2013.01.010

#### • Serretti, A., & Mandelli, L. (2010).

Antidepressants and body weight: A comprehensive review and meta-analysis. Journal of Clinical Psychiatry, 71(10), 1259–1272.

## • Gülseren, L., Gülseren, S., Hekimsoy, Z., & Mete, L. (2005).

Comparison of fluoxetine and paroxetine in type II diabetes mellitus patients. Archives of Medical Research, 36(3), 250–255.DOI: 10.1016/j.arcmed.2004.12.018

## • Roopan, S., & Larsen, E.R. (2017).

Use of antidepressants in patients with depression and comorbid diabetes mellitus: A systematic review. Acta Neuropsychiatrica, 29(3), 127–136. DOI: 10.1017/neu.2016.61



#### Jeremiah, O.J. (2022).

Insulin resistance and antidepressant effectiveness: Insight from clinical and pre-clinical studies. RCSI Repository (Thesis).

## • McIntyre, R.S., Park, K.Y., Law, C.W.Y., Sultan, F., & Adams, A. (2010).

The association between conventional antidepressants and the metabolic syndrome: a review. CNS Drugs, 24(9), 741–753.DOI: 10.2165/11533280-000000000-00000

## • Chávez-Castillo, M., Ortega, Á., Nava, M., & Fuenmayor, J. (2018).

Metabolic risk in depression and treatment with SSRIs: Are SSRIs worsening cardiometabolic outcomes? Vessel Plus, 2, 2.

## Goodnick, P.J. (2001).

Use of antidepressants in treatment of comorbid diabetes mellitus and depression. Annals of Clinical Psychiatry, 13(1), 31–41.

DOI: 10.3109/10401230109147127

## • Habib, M., Shaker, S., El-Gayar, N., & Aboul-Fotouh, S. (2015).

Effects of fluoxetine and imipramine on vascular abnormalities and TLR-4 in diabetic rats. PLoS ONE, 10(4), e0120559.DOI: 10.1371/journal.pone.0120559

## • Katon, W.J., Lin, E.H.B., Von Korff, M., et al. (2010).

Collaborative care for patients with depression and chronic illnesses. New England Journal of Medicine, 363(27), 2611–2620. DOI: 10.1056/NEJMoa1003955

# • Andersohn, F., Schade, R., Suissa, S., & Garbe, E. (2009).

Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. American Journal of Psychiatry, 166(5), 591–598. DOI: 10.1176/appi.ajp.2008.08071065

## • Knol, M.J., Twisk, J.W., Beekman, A.T., Heine, R.J., Snoek, F.J., & Pouwer, F. (2006).

Depression as a risk factor for the onset of type 2 diabetes mellitus: a meta-analysis. Diabetologia, 49(5), 837–845. DOI: 10.1007/s00125-006-0159-x