

FACTORS AFFECTING INDIVIDUAL CUSTOMERS' DECISIONS TO PURCHASE ORGANIC FOOD: A CASE STUDY OF HANOI CITY

NGUYEN NGOC MINH

THANH DONG UNIVERSITY, HAI PHONG CITY, VIETNAM EMAIL: ngocminhgtc@gmail.com, ORCID: https://orcid.org/0009-0001-3787-4479

Abstract: As environmental pollution and food safety become top concerns for society, the popularity of organic food is steadily growing as a sustainable consumption trend in large cities like Hanoi. The study aims to identify and measure the factors that influence individuals' decisions to purchase organic food in Hanoi. Using 328 valid questionnaires and quantitative analysis with SPSS 26 software, the research results show that seven factors positively influence the purchase decision, listed in order of decreasing impact: subjective norms, environmental attitude, convenience and availability, consumption attitude, organic food knowledge, price, and perceived health benefits. Based on the findings, the study provides several management implications to help organic food suppliers develop policies that expand market share and boost customer loyalty, aiming to foster a green economy, responsible consumption, and environmental sustainability in Vietnam.

Keywords: Organic food, eco-friendly consumption, Hanoi city.

1. INTRODUCTION

In today's global situation, climate change, environmental pollution, and ecosystem degradation are major challenges to socio-economic progress. Issues such as extreme weather, loss of biodiversity, and air and water pollution have directly impacted human quality of life. Therefore, the concept of sustainable development and green consumption is increasingly gaining interest from countries, organizations, and communities. In particular, green consumption is not just a trend, but also a practical solution to balance consumption needs and environmental protection responsibilities. One of the areas that clearly demonstrates the trend toward green consumption is the food industry. Environmentally friendly food is often linked to criteria such as production processes that limit the use of harmful chemicals, reduce emissions, use biological or recycled packaging, and ensure safety factors for consumers' health. Research from numerous countries has shown that green food consumption behavior is affected by many factors, including environmental awareness, attitudes toward products, social norms, price, belief in quality, convenience while shopping, and marketing activities by businesses.

In Vietnam, particularly in major urban centers such as Hanoi, the trend towards utilizing environmentally friendly food options has become increasingly evident in recent years. Numerous enterprises have introduced products including organic vegetables, clean foods, foods produced through a closed-loop process, and biodegradable packaging. Nevertheless, the consumer behavior of purchasing green food remains below what the market potential would suggest. Most consumers, despite their positive awareness of the environment, remain hesitant when making purchase decisions due to higher prices compared to traditional foods, limited distribution channels, lack of transparent information about quality, and skepticism toward corporate green commitments. Specifically, in Hanoi, where the population has high living standards and a high level of education, the demand for safe and eco-friendly food continues to grow. However, actual purchasing behavior varies: some customers are interested but not willing to pay more, while others have the financial means but do not prioritize green products. This fact highlights the need to systematically study the factors that influence individual customers in Hanoi when deciding to buy organic food. This can provide important implications for food producers, distributors, and retailers in planning product strategies, pricing, distribution channels, and marketing communications. Such insights can help promote the spread of green consumption in the community, encourage consumers to adopt a sustainable lifestyle, and contribute to environmental protection and improved quality of life in urban areas.

2. LITERATURE REVIEW

2.1. Underlying theory

To thoroughly analyze customers' purchasing decisions regarding environmentally friendly food products, it is crucial to identify and incorporate the theoretical foundations that explain consumer behavior. Previous research has highlighted that decisions to buy organic or eco-friendly food are not simply transactional but are shaped by a complex mix of psychological, social, and contextual influences. Smith and Paladino (2010) formulated a comprehensive decision-making framework for organic food acquisitions, emphasizing the interaction of inputs (consumer values, knowledge, and attitudes), intermediaries (information processing, trust, and perceived

behavioral control), and outcomes (purchase intentions and actual decisions). This model offers an initial conceptual structure for comprehending how consumers make purchase decisions within the context of environmentally sustainable products.

Furthermore, this research incorporates pertinent behavioral theories that have been extensively utilized to elucidate consumer decision-making processes. The Theory of Reasoned Action (TRA), introduced by Ajzen and Fishbein (1980), asserts that an individual's behavior is directly influenced by behavioral intentions, which are, in turn, shaped by attitudes towards the behavior and subjective norms. TRA posits that consumer choices are the result of deliberate assessments of potential outcomes, influenced by perceived social pressures. Building upon TRA, Ajzen (1991) introduced the Theory of Planned Behavior (TPB), incorporating the concept of perceived behavioral control (PBC) to account for situations where individuals may lack full volitional control over their decisions. In the context of organic food procurement, factors such as product availability, accessibility, or price constraints may restrict actual behavior despite manifest positive intentions. Consequently, the Theory of Planned Behavior (TPB) extends the Theory of Reasoned Action (TRA) by incorporating Perceived Behavioral Control (PBC) as a determinant influencing both intention and actual behavior. The TPB has been extensively employed in research on organic and environmentally friendly food consumption (Magnusson et al., 2001; Tarkiainen & Sundqvist, 2005), demonstrating its efficacy as a robust theoretical framework for predicting purchasing intentions. Within this framework, attitudes denote the extent to which consumers consider environmentally friendly food to be advantageous for health and the environment. Subjective norms embody social influences, including family, peers, and cultural expectations, that influence consumers' predisposition to engage in environmentally conscious purchasing behaviors. Perceived behavioral control refers to consumers' perception of their capacity to execute the purchase, affected by factors such as financial resources, product availability, and confidence in the authenticity of the product. Furthermore, both the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB) underscore the pivotal role of purchase intentions as the most dependable predictors of actual behavior (Ajzen, 1991). Regarding environmentally friendly food, intentions are influenced not solely by personal motivations but also by external market and societal conditions. By integrating the decision-making model of Smith and Paladino (2010) with the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB), this study develops a comprehensive theoretical framework to examine the primary factors that influence individual consumers' decisions to purchase environmentally friendly food in Hanoi. This combined approach facilitates a more nuanced understanding of the psychological mechanisms, social pressures, and contextual barriers that influence green consumption behavior.

2.2. Hypothesis development

Within the context of the Theory of Planned Behavior (TPB), this study formulates a conceptual framework (Figure 1) to investigate the determinants affecting consumers' decisions to purchase environmentally sustainable food products in Hanoi. Based on TPB and existing empirical research, the proposed framework extends the conventional model by integrating additional variables, particularly pertinent to green consumption.

Price has historically been acknowledged as a critical determinant in consumer purchasing behavior, especially regarding organic and environmentally sustainable food products. Empirical research reliably indicates that consumers regard organic food as more costly than conventional options (Magnusson et al., 2001). This price premium frequently acts as an obstacle, particularly for consumers with limited income, who may perceive organic products as financially unattainable (Tarkiainen & Sundqvist, 2005). Concurrently, research emphasizes that consumers anticipate receiving value for their expenditure and seek justifiable reasons, such as enhanced quality, health advantages, or superior flavor, to justify paying premium prices for organic produce (Hill & Lynchehaun, 2002; Padel & Foster, 2005). When such justifications are absent or ambiguous, consumers are inclined to revert to traditional selections. Conversely, research has demonstrated that numerous consumers are prepared to pay an extra 10-20% for organic products if they are regarded as superior in quality, safer, and more authentic (Lockie et al., 2004). Therefore, perceptions of price extend beyond mere affordability to encompass the perceived balance between cost and value. Elevated prices might inhibit environmentally responsible consumption; however, when associated with robust perceptions of quality, safety, and environmental advantages, they can effectively enhance purchase intentions. In essence, price functions both as an obstacle and an incentive, contingent upon consumers' knowledge, perceptions, and financial capabilities. Based on the above arguments, the research hypothesis is proposed as follows:

H1: Price has a positive influence on customers' decisions to purchase organic food.

Within the scope of environmentally sustainable food consumption, convenience pertains to the accessibility of products and the extent of effort necessary for their procurement and preparation (Lockie, 2002). Previous research has recognized convenience and availability as considerable obstacles to the adoption of organic foods. For example, Lockie et al. (2004) identified that consumer concerns regarding the limited accessibility of organic products pose a significant barrier to increased consumption. The challenge of locating organic products or the perception that they are less accessible than conventional goods may deter prospective buyers (Jolly, 1991). Furthermore, the acquisition of eco-labeled food frequently necessitates consumers to modify their established shopping routines (Grankvist & Biel, 2001), which may be regarded as demanding. Padel and Foster (2005) additionally observe that consumers generally demonstrate a reluctance to commit significant effort to locating or preparing organic food, particularly when conventional options are easily accessible. In the context of Hanoi, where busy lifestyles and convenience-oriented consumption patterns are increasingly prevalent, availability

through reliable distribution channels and ease of access play an essential role in encouraging environmentally friendly purchases. Based on the above arguments, the research hypothesis is proposed as follows:

H2: Convenience and availability have a positive influence on customers' decisions to purchase organic food. Knowledge has long been acknowledged as a vital factor impacting consumer decision-making (Laroche et al., 2001). In the context of environmentally sustainable food consumption, the extent of consumers' knowledge substantially influences their awareness, perceptions, and ultimately their purchasing behaviors. Hill and Lynchehaun (2002) emphasize that knowledge functions as a primary catalyst for organic food acquisitions, whereas Moorman et al. (2004) illustrate that subjective knowledge impacts consumer decisions due to individuals' tendencies to behave in accordance with their perceived knowledge. Previous research indicates that, although consumers are generally acquainted with the term "organic" and frequently associate it with being free of chemicals (Hutchins & Greenhalgh, 1997), their understanding remains superficial. For instance, Lyon et al. (2001) indicate that a significant number of consumers perceive organic or environmentally friendly food as natural, unprocessed, and less processed relative to conventional food. Conversely, Hill and Lynchehaun (2002) discovered that although consumers comprehend the fundamental characteristics of organic products, they often lack comprehensive knowledge of organic farming techniques and their distinctions from conventional methods. The research conducted by Lockie et al. (2002) and Padel and Foster (2005) indicates that a majority of consumers lack familiarity with certification standards, inspection procedures, and the comprehensive production processes of organic and environmentally sustainable products. This disparity between superficial awareness and comprehensive understanding underscores the significance of knowledge in fostering consumer confidence and trust. In the case of Hanoi, where public awareness of environmental sustainability is gradually increasing yet remains inconsistent, the enhancement of consumer knowledge through educational initiatives, labeling, and marketing communications may serve as a pivotal factor in promoting the purchase of environmentally friendly food. Based on the above arguments, the research hypothesis is proposed as follows:

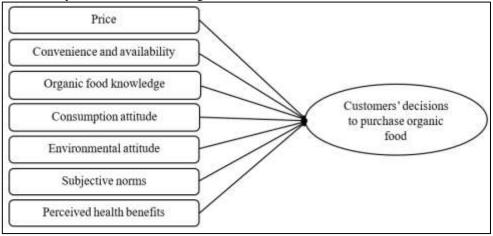
H3: Organic food knowledge has a positive influence on customers' decisions to purchase organic food.

Attitudes are characterized as individuals' positive or negative evaluations of a particular action or object (Fishbein & Ajzen, 1975; Hoyer et al., 2012). Previous research emphasizes that attitudes comprise both cognitive and affective dimensions: the cognitive component pertains to evaluative judgments, whereas the affective component pertains to emotions or enjoyment linked to the behavior. Ajzen and Cote (2008) further distinguish between instrumental evaluations, which assess whether the behavior is valuable or beneficial, and experiential evaluations, which consider whether the behavior is enjoyable or interesting. In the context of environmentally friendly food, consumption attitudes encompass consumers' assessments of purchasing organic or eco-labeled products, focusing on perceived benefits, enjoyment, and personal fulfillment. Previous research has consistently shown that positive attitudes toward consumption, such as perceiving organic food as healthier, safer, or more enjoyable, significantly drive purchase intentions (Rana & Paul, 2017). Conversely, negative attitudes, such as skepticism regarding quality or limited personal interest, may act as barriers to purchase decisions. For consumers in Hanoi, who are increasingly concerned about food safety, health, and sustainability, favourable attitudes towards environmentally friendly food are expected to increase purchase intentions substantially. Based on the above arguments, the research hypothesis is proposed as follows:

H4: Consumption attitude has a positive influence on customers' decisions to purchase organic food.

Individual attitudes are defined as positive or negative judgments formed during the decision-making process (Schiffman, 1987). Attitudes are widely seen as a key psychological factor that shapes preferences and buying behavior, making them one of the strongest predictors of consumer decisions. Extensive research consistently indicates that attitudes significantly influence purchasing decisions, often being considered the primary factor in shaping behavioral intentions (Rana & Paul, 2017). Specifically, environmental attitudes, characterized as individuals' overall assessments of the importance of environmental conservation and the support of sustainable practices, have been demonstrated to play a pivotal role in fostering eco-friendly consumption. Previous empirical research verifies that consumers with more pronounced pro-environmental attitudes are more inclined to adopt environmentally responsible purchasing behaviors (Chan & Lau, 2001). Building upon this theoretical and empirical foundation, the present study hypothesizes that customers with more positive attitudes towards the environment are more likely to engage in eco-friendly consumption practices, including the acquisition of environmentally friendly food products. Based on the above arguments, the research hypothesis is proposed as follows:

H5: Environmental attitude has a positive influence on customers' decisions to purchase organic food. Subjective norms denote the perceived social pressure exerted on individuals to engage in or abstain from specific behaviors (Ajzen, 1991). In essence, they embody the degree to which individuals perceive that significant reference groups, including family, friends, colleagues, or even societal expectations at large, endorse or oppose their choice to purchase environmentally conscious food products (Oliver & Bearden, 1985). Previous studies have established that subjective norms can considerably influence consumer decision-making, particularly in contexts where social identity and community values hold substantial importance (Ajzen, 1991). Kalafatis et al. (1999) propose that adherence to socially laudable behaviors may augment an individual's self-esteem and sense of pride, whereas non-compliance may induce feelings of guilt or shame. In the context of environmentally friendly food consumption, social norms assume a subtle yet significant role. While the comparatively low visibility of ecofriendly food purchases might diminish direct social influence; conversely, the rising awareness of sustainability



issues within urban communities such as Hanoi could amplify normative pressures to "consume responsibly." Furthermore, consumers may also be influenced by public campaigns, government initiatives, or endorsements from authoritative experts, thereby reinforcing the perception that selecting eco-friendly food aligns with socially accepted and esteemed behaviors. Based on the above arguments, the research hypothesis is proposed as follows: H6: Subjective norms has a positive influence on customers' decisions to purchase organic food.

Health concerns are often identified as a principal motivator for consumers selecting organic and environmentally friendly food products. Customers are driven not only by environmental considerations but also by the perception that such products promote better personal health and well-being. Magnusson et al. (2001) and Padel and Foster (2005) emphasize that perceived health advantages are among the most influential factors affecting organic food consumption, often outweighing environmental concerns. Consumers generally associate organic products with the absence of noxious chemicals, pesticides, and additives, thereby perceiving them as safer and healthier compared to conventional alternatives. In urban environments such as Hanoi, where concerns regarding food safety and the excessive utilization of chemical fertilizers and pesticides are widespread, health considerations assume a pivotal role in influencing purchasing decisions. Consumers generally prioritize products they perceive as capable of mitigating health risks and offering enhanced nutritional value. This underscores the significance of perceived health benefits in shaping consumer intentions and actual behaviors toward environmentally sustainable food choices. Based on the above arguments, the research hypothesis is proposed as follows:

H7: Perceived health benefits have a positive influence on customers' decisions to purchase organic food. The research model is presented as shown in Figure 1 below:

Figure 1. Research model Source: Proposed by the author

3. RESEARCH METHODS

The study employs a 5-level Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The preliminary scale was developed based on previous research by Hill and Lynchehaun (2002), Hoyer et al. (2012), Rana and Paul (2017), and Nguyen et al. (2023). Furthermore, to ensure that the preliminary scale meets the research requirements and is suitable for the current social context, the authors conducted a group discussion with a selected group of customers who regularly purchase and use organic foods, along with consultations with five experts. This process aimed to evaluate the content of the influencing factors, the relationships among them, and to refine the observed variables in the preliminary scale. The discussion was documented, then analyzed and synthesized to serve as a basis for further analysis, screening, and the development of a comprehensive scale consisting of 31 observed variables.

The sample size was determined based on the optimal ratio suggested in the Exploratory Factor Analysis (EFA) by Hair et al. (2010), which is 10:1. Given a total of 31 observed variables, this entails a requirement of 310 samples for the study. To mitigate the risk of invalid responses, the authors increased the sample size to 350. Data collection was conducted through distribution of direct slips and via email to customers who purchase organic food at organic booths in Hanoi City, employing a convenient non-probabilistic sampling method. The survey was conducted from February 2025 to May 2025. As a result, 328 valid responses were obtained after cleaning and removing inappropriate questionnaires. The data were analyzed using SPSS 26 software, employing descriptive statistics, Cronbach's Alpha, exploratory factor analysis (EFA), correlation analysis, and linear regression. The linear regression model equation is written as follows:

$$CD = \beta_0 + \beta_1 *PR + \beta_2 *CA + \beta_3 *OFK + \beta_4 *CA + \beta_5 *EA + \beta_6 *SN + \beta_7 *PHB + \epsilon$$

In which:

CD (dependent variable): Customers' decisions to purchase organic food.

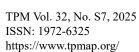
Independent variables (X_i): Price (PR), Convenience and availability (CAV), Organic food knowledge (OFK), Consumption attitude (CA), Environmental attitude (EA), Subjective norms (SN), Perceived health benefits (PHB).

 β_k : Regression coefficient (k = 0. 1, 2,...,7).

ε: Random error.

4. RESULTS AND DISCUSSION

Table 1: Descriptive statistics


Characteristics	Items	Frequency	Ratio (%)
Gender	Male	118	36.0
	Female	210	64.0
	Under 25 years old	82	25.0
Age	25 – 35 years old	112	34.1
_	36 – 45 years old	76	23.2
	Over 45 years old	58	17.7
	High school or lower	34	10.4
Education	College/University	214	65.2
	Postgraduate	80	24.4
	Office worker	132	40.2
Occumation	Business employed	64	19.5
Occupation	Student	58	17.7
	Public servant	46	14.0
	Others	28	8.6
	Below 10 million	72	22.0
Income	10 – 20 million	156	47.6
ilicome	20-30 million	64	19.5
	Above 30 million	36	11.0
	Occasionally	94	28.7
Eroguanav	1–2 times/month	118	36.0
Frequency	Weekly	82	25.0
	Daily	34	10.3

Source: Analysis results from SPSS 26

Overall, the diversity of the sample enhances the generalizability of the research findings, thereby enabling the study to derive meaningful conclusions regarding the factors that influence purchasing decisions for environmentally friendly food among individual consumers in Hanoi.

Table 2: Cronbach's Alpha and EFA of independent factors

Items	Factor							
	1	2	3	4	5	6	7	
CA1	0.794							
CA3	0.783							
CA2	0.775							
PR1		0.821						
PR4		0.805						
PR2		0.798						
PR3		0.784						
SN2			0.836					
SN3			0.815					
SN1			0.793					
SN5			0.786					
SN4			0.771					
CAV3				0.809				
CAV1				0.789				
CAV2				0.768				
PHB1					0.818			
PHB3					0.793			
PHB2					0.785			

Items	Factor						
	1	2	3	4	5	6	7
PHB4					0.773		
OFK1						0.825	
OFK2						0.806	
OFK3						0.781	
EA3							0.815
EA1							0.797
EA2							0.785
EA4							0.778
% of Variance	31.096	45.264	49.138	57.916	66.308	68.821	79.563
Eigenvalue	4.104	3.693	3.023	2.539	1.927	1.679	1.084
Cronbach's Alpha	0.826	0.875	0.839	0.811	0.842	0.817	0.835
		K	MO = 0.81	7			
	Approx. Chi-Square		10534.817				
Bartlett's Test			df			329	
			Sig.			0.000	

Source: Analysis results from SPSS 26

The results presented in Table 2 indicate that the Cronbach's Alpha for the scales exceeds 0.7, and the Corrected item-total correlations of the observed variables are greater than 0.3. Furthermore, the Cronbach's Alpha if an item is deleted remains below the overall Cronbach's Alpha, indicating that no variables need to be removed. Consequently, the scale exhibits acceptable reliability and discriminant validity, rendering it appropriate for inclusion in Exploratory Factor Analysis (EFA) as per the guidelines of Hair et al. (2010).

The results of the Exploratory Factor Analysis (EFA) for the independent variables indicated that the Kaiser-Meyer-Olkin (KMO) measure was 0.817, satisfying the standard criteria of being less than 1 and greater than 0.5. Additionally, the Bartlett's Test yielded a Chi-square value of 10534.817 with a significance level of 0.000 (p < 0.05), suggesting that the observed variables are broadly correlated with one another. Using Varimax rotation in conjunction with the Principal Components extraction method at an Eigenvalue threshold exceeding 1, a total of seven factors were extracted. These factors account for a cumulative variance of 79.563%, surpassing the 50% benchmark, indicating that these seven factors comprehensively explain 79.563% of the variation within the data set. Furthermore, the factor loadings of the observed variables exceed 0.5 and aggregate into groups of observed variables sharing similar properties, as initially hypothesized. Consequently, the data fulfill the prerequisites outlined in the EFA (Hair et al., 2010).

Table 3: Cronbach's Alpha and EFA of the dependent variable

Tube of Grondach Stapina and Elitor the dependent variable							
Scales	No.	Loadings	Cronbach's Alpha				
	CD2	0.838					
C	CD1	0.813					
Customers' decisions to purchase organic food	CD3	0.796	0.829				
organic rood	CD5	0.773					
	CD4	0.759					
	KMO = 0.836						
	Approx. Chi-Square		289.502				
Bartlett's Test	df	5					
	Sig.	0.000					
% of Variance		81.704					
Eigenvalue	1.138						

Source: Analysis results from SPSS 26

The results presented in Table 3 indicated that Cronbach's Alpha exceeded 0.7. An exploratory factor analysis was conducted using Varimax rotation and the Principal Components extraction method. The findings revealed that the Kaiser-Meyer-Olkin (KMO) coefficient was 0.836, satisfying the condition of being greater than 0.5 and less than 1. Additionally, Bartlett's test of sphericity yielded a Chi-square statistic of 289.502 with a significance level (p-value) of 0.000, which is less than 0.05. This indicates a significant correlation among the observed variables as a whole. Furthermore, at the eigenvalue of 1.138, a single factor is extracted, accounting for a total variance of 81.704% (exceeding the 50% threshold), and the load coefficients of the observed variables are greater than 0.5. Therefore, the data obtained for the scale meets the specified requirements (Hair et al., 2010).

Table 4: Correlation analysis

	CD	PR	CAV	OFK	CA	EA	SN	PHB
CD	1							
PR	0.615**	1						
CAV	0.708*	0.382*	1					
OFK	0.667**	0.216*	0.333*	1				
CA	0.533**	0.454**	0.247**	0.262*	1			
EA	0.492**	0.317*	0.258*	0.348**	0.219*	1		
SN	0.787**	0.276**	0.386**	0.494*	0.371**	0.214*	1	
PHB	0.685**	0.369*	0.209**	0.213**	0.355**	0.376**	0.545*	1

*significant at p < 0.05, **significant at p < 0.01

Notes: CD = Customers' decisions to purchase organic food, PR = Price, CAV = Convenience and availability, OFK = Organic food knowledge, CA = Consumption attitude, EA = Environmental attitude, SN = Subjective norms, PHB = Perceived health benefits

• Source: Analysis results from SPSS 26

The results shown in Table 4 indicate that all independent factors in the model have positive correlations and are statistically significant with the dependent variable. This is supported by the Pearson correlation coefficient being above 0.4 and the Sig value being less than 0.05. These results confirm that the independent factors in the research model have a meaningful relationship with the dependent variable. Additionally, the analysis shows there is no multicollinearity among the independent variables, meeting the necessary conditions for their inclusion in the multivariate linear regression model (Hair et al., 2010).

Table 5: Model summary

Model	R	\mathbb{R}^2	Adjusted R ²	Std. Error of the Estimate	Durbin-Watson	
1	0.833	0.807	0.793	0.334	1.870	

Source: Analysis results from SPSS 26

The results presented in Table 5 indicate that the R^2 value of 0.807 and the adjusted R^2 of 0.793 demonstrate that 79.3% of the variance is accounted for by six independent variables. The Durbin–Watson statistic reached 1.870, which does not violate the assumption of first-order serial autocorrelation. Furthermore, the ANOVA analysis and the F-test results show that the calculated R^2 value has a significance level (Sig) of 0.000, and the total regression sum of squares of 72,156 exceeds the sum of squared residuals. This suggests that the model explains a substantial portion of the variance in the dependent variable. Consequently, the linear regression model is generally consistent with the data and is deemed appropriate for use.

Table 6: Linear regression model

	Table 0: Ellieur regression moder									
Model		Unstandardized coefficients		Standardized coefficients	t	Sig.	Collinearity statistics			
		В	SD	Beta		_	Tolerance	VIF		
	Constant	0.154	0.015		2.146	0.000				
	PR	0.241	0.021	0.268	2.090	0.000	0.473	1.781		
	CAV	0.307	0.013	0.332	2.949	0.001	0.372	1.835		
1	OFK	0.263	0.015	0.283	2.134	0.000	0.429	1.758		
1	CA	0.284	0.017	0.309	2.887	0.000	0.376	1.683		
	EA	0.339	0.026	0.361	2.213	0.002	0.328	1.749		
	SN	0.358	0.019	0.385	2.651	0.001	0.506	1.817		
	PHB	0.226	0.024	0.247	2.837	0.000	0.495	1.668		

 $R^2 = 0.804$, Adjusted $R^2 = 0.793$, Sig. (F-test) = 0.000, Durbin – Waston = 1.894

Notes: PR = Price, CAV = Convenience and availability, OFK = Organic food knowledge, CA = Consumption attitude, EA = Environmental attitude, SN = Subjective norms, PHB = Perceived health benefits

Source: Analysis results from SPSS 26

The results presented in Table 6 indicate that the factors had significance levels below 0.05, and the Variance Inflation Factor (VIF) for the independent variables was below 2, thereby indicating that there was no occurrence of multicollinearity. Furthermore, an evaluation of the residuals' distribution assumptions reveals that the standard deviation is 0.986 (approximately equal to 1), and the mean is approximately zero. Consequently, the hypothesis of normally distributed residuals remains unviolated when constructing the regression model. Additionally, the P-P Plot demonstrates that the observed data points are not widely dispersed from the expected line, suggesting that the assumption of normality is not violated.

Thus, the analysis indicates that seven independent factors influence customers' decisions to purchase organic food, listed in descending order: subjective norms, environmental attitude, convenience and availability,

consumption attitude, organic food knowledge, price, and perceived health benefits. The regression equation based on the standardized Beta is as follows:

CD = 0.385*SN + 0.361*EA + 0.332*CAV + 0.309*CA + 0.283*OFK + 0.268*PR + 0.247*PHBThis finding demonstrates parallels with the research conducted by Hill and Lynchehaun (2002), Hoyer et al. (2012), Rana and Paul (2017), and Nguyen et al. (2023). However, the study varies in the degree of impact and the hierarchy of influence among the seven independent factors, which is attributable to differences in the research context and subjects. The limitations of this study include the employment of a basic regression model, a small sample size, and the utilization of a convenient survey method confined to Hanoi City, which limits the ability to generalize the findings. The study employed mean t-test and ANOVA variance analysis to examine differences in customers' decisions to purchase organic food across various demographic groups. The findings indicated statistically significant differences in purchasing decisions across groups defined by gender, age, education level, and income level (p < 0.05). For female consumers, individuals with higher education, and those with a stable income ranging from 10 to 20 million VND per month or higher, demonstrated a greater propensity to purchase and exhibited a higher frequency of purchasing environmentally friendly food in comparison to other groups. This demonstrates that awareness of health, food safety, and environmental protection tends to escalate with higher levels of education and income. Furthermore, it reinforces the perception that consumers possessing greater knowledge and economic resources constitute the primary potential target market for eco-friendly food products in Hanoi City.

5. IMPLICATIONS

Initially, organic food enterprises must enhance their influence by focusing on social media platforms, influencer marketing campaigns, and spreading positive word-of-mouth. They should collaborate with key opinion leaders (KOLs), nutritionists, and celebrities who advocate for environmentally friendly lifestyles to foster a positive social impact on consumer behavior. Establishing an online community of ecologically conscious food consumers on platforms such as Facebook, Zalo, and TikTok not only elevates awareness but also promotes a social contagion effect, where customers themselves become "green brand ambassadors."

Secondly, enterprises should advocate for communication regarding the environmental advantages of organic food. It is essential to execute comprehensive marketing initiatives focused on educating the public and enhancing environmental consciousness, such as the programs "Every Meal – One Green Action" or "Choose Organic, Choose a Sustainable Future". Collaboration among businesses, media outlets, and non-governmental organizations (NGOs) in disseminating information to consumers will contribute to fostering a sense of responsible consumption, thereby promoting more favorable attitudes towards organic products.

Thirdly, in order to enhance the convenience and accessibility of products, enterprises must diversify their distribution channels by integrating traditional retail outlets with e-commerce platforms. The development of a comprehensive system comprising green convenience stores, door-to-door delivery services, and mobile sales points within residential areas will facilitate easier access for customers. Furthermore, the establishment of a closed organic supply chain among producers, distributors, and consumers is essential to ensure a stable, transparent, and consistently high-quality supply of goods.

Fourth, enterprises should leverage emotional factors in consumer behavior to cultivate an authentic brand image associated with a healthy lifestyle, responsibility, and sophistication. Marketing initiatives ought to foster pride in organic consumption and incorporate humanistic messages such as "Choose organic - Choose to live kindly" to evoke positive emotions, thereby establishing a sustainable consumption attitude and fostering long-term brand loyalty.

Fifth, it is imperative for businesses to enhance consumers' understanding of organic food through educational initiatives and practical experiences, such as organic farm tours, the "From Farm to Table" series of events, or the "Know the Origin of Products" campaign. Moreover, it is essential to provide transparent labeling, disclose traceability information, and obtain certification of organic standards (VietGAP, USDA Organic, EU Organic) to bolster consumer confidence.

Sixth, given that price remains a significant obstacle, enterprises ought to adopt a flexible pricing strategy tailored to different customer segments. Strategies such as promotional bundles, loyalty programs, or "green prices for households" policies can incentivize product testing. Concurrently, it is essential for businesses to effectively communicate the long-term health and environmental benefits of organic food, thereby positioning the product as a worthwhile investment for the future rather than merely a short-term expenditure.

Finally, it is imperative for businesses to enhance communication regarding perceived health benefits. Combining scientific evidence with authentic testimonials from medical professionals, nutritionists, or actual consumers can effectively bolster confidence in the nutritional value, safety, and naturalness of organic foods. Additionally, the utilization of virtual reality (AR/VR) technology to demonstrate a pristine, chemical-free production process serves as an innovative approach to improve consumer experience and foster trust.

REFERENCES

- 1. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
- 2. Ajzen, I., & Cote, N. G. (2008). Attitudes and the prediction of behavior. In W. D. Crano & R. Prislin (Eds.), Attitudes and attitude change (pp. 289-311). New York, NY: Psychology Press.
- Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
- Chan, R. Y. K., & Lau, L. B. Y. (2001). Explaining green purchasing behavior: A cross-cultural study on American and Chinese consumers. Journal of International Consumer Marketing, 14(2-3), 9-40. https://doi.org/10.1300/J046v14n02_02
- Grankvist, G., & Biel, A. (2001). The importance of beliefs and purchase criteria in the choice of eco-labeled food products. Journal of Environmental Psychology, 21(4), 405-410. https://doi.org/10.1006/jevp.2001.0234
- 6. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th Edition). New York: Pearson.
- 7. Hill, H., & Lynchehaun, F. (2002). Organic milk: Attitudes and consumption patterns. British Food Journal, 104(7), 526-542. https://doi.org/10.1108/00070700210434570
- 8. Hoyer, W. D., McInnis, D. J., & Pieters, R. (2012). Consumer behavior (6th ed.). South-Western Cengage Learning.
- 9. Hutchins, R. K., & Greenhalgh, L. A. (1997). Organic confusion: Sustaining competitive advantage. British Food Journal, 99(9), 336-338. https://doi.org/10.1108/00346659510103584
- 10. Jolly, D. A. (1991). Differences between buyers and nonbuyers of organic produce and willingness to pay organic price premiums. Journal of Agribusiness, 9(1), 97-111.
- 11. Kalafatis, S. P., Pollard, M., East, R., & Tsogas, M. H. (1999). Green marketing and Ajzen's theory of planned behavior: A cross-market examination. Journal of Consumer Marketing, 16(5), 441-460. https://doi.org/10.1108/07363769910289550
- 12. Laroche, M., Bergeron, J., & Barbaro-Forleo, G. (2001). Targeting consumers who are willing to pay more for environmentally friendly products. Journal of Consumer Marketing, 18(6), 503-520. https://doi.org/10.1108/EUM0000000006155
- 13. Lockie, S. (2002). 'The invisible mouth': Mobilizing 'the consumer' in food production—consumption networks. Sociologia Ruralis, 42(4), 278-294. https://doi.org/10.1111/1467-9523.00217
- 14. Lockie, S., Lyons, K., Lawrence, G., & Grice, J. (2004). Choosing organics: A path analysis of factors underlying the selection of organic food among Australian consumers. Appetite, 43(2), 135-146. https://doi.org/10.1016/j.appet.2004.02.004
- 15. Lyon, G. R., Fletcher, J. M., Shaywitz, S. E., Shaywitz, B. A., Torgesen, J. K., Wood, F. B., et al. (2001). Rethinking learning disabilities. In C. E. Finn, Jr., R. A. J. Rotherham, & C. R. Hokanson, Jr. (Eds.), Rethinking special education for a new century (pp. 259-287). Washington, DC: Thomas B. Fordham Foundation and Progressive Policy Institute.
- Magnusson, M. K., Arvola, A., Hursti, U. K. K., Åberg, L., & Sjödén, P. O. (2001). Attitudes towards organic foods among Swedish consumers. British Food Journal, 103(3), 209-227. https://doi.org/10.1108/00070700110386755
- 17. Oliver, R. L., & Bearden, W. O. (1985). Disconfirmation processes and consumer evaluations in product usage. Journal of Business Research, 13(3), 235-246. https://doi.org/10.1016/0148-2963(85)90029-3
- 18. Padel, S., & Foster, C. (2005). Exploring the gap between attitudes and behaviour: Understanding why consumers buy or do not buy organic food. British Food Journal, 107(8), 606-625. https://doi.org/10.1108/00070700510611002
- 19. Rana, J., & Paul, J. (2017). Consumer behavior and purchase intention for organic food: A review and research agenda. Journal of Retailing and Consumer Services, 38, 157-165. https://doi.org/10.1016/j.jretconser.2017.06.004
- 20. Schiffman, L. G. (1987). Consumer behavior. Englewood Cliffs, NJ: Prentice Hall.
- 21. Smith, S., & Paladino, A. (2010). Eating clean and green? Investigating consumer motivations towards the purchase of organic food. Australasian Marketing Journal, 18(2), 93-104. https://doi.org/10.1016/j.ausmj.2010.01.001
- 22. Tarkiainen, A., & Sundqvist, S. (2005). Subjective norms, attitudes and intentions of Finnish consumers in buying organic food. British Food Journal, 107(11), 808-822. https://doi.org/10.1108/00070700510629760