

PSILOCYBIN AND IMMUNOMODULATION IN MAJOR DEPRESSIVE DISORDER: SYSTEMATIC REVIEW AND META-ANALYSIS

MAHVASH KHAN¹, MUHAMMAD OMAR MALIK², MUHAMMAD UZAIR³, NIMRA FARID⁴, AYYAZ AHMED⁵, SHABIR KHAN⁶, MUHAMMAD ISMAIL⁷

¹PROFESSOR OF PHYSIOLOGY, AKHTAR SAEED MEDICAL COLLEGE RAWALPINDI, PAK
²ASSOCIATE PROFESSOR, PHYSIOLOGY KHYBER MEDICAL UNIVERSITY PESHAWAR, PAK
³SENIOR MEDICAL OFFICER (BPS-18), POLICE & SERVICES HOSPITAL PESHAWAR, PAK
⁴MOHIUDDIN ISLAMIC MEDICAL COLLEGE MIRPUR, PAK
⁵PROFESSOR OF PHYSIOLOGY, MOHIUDDIN ISLAMIC MEDICAL COLLEGE MIRPUR, PAK.
⁶ASSISTANT INCHARGE, FAMILY CARE CENTER HAYATABAD MEDICAL COMPLEX, PESHAWAR, PAK
⁷ASSOCIATE CURATOR (MYCOLOGY), BOTANICAL SCIENCES DIVISION, PAKISTAN MUSEUM OF NATURAL
HISTORY, ISLAMABAD, PAK

ABSTRACT

Background: Major depressive disorder (MDD) is a leading cause of disability worldwide. Conventional antidepressants often fail in treatment-resistant cases, and emerging evidence suggests psilocybin-assisted therapy may offer substantial antidepressant effects, possibly via immunomodulatory mechanisms.

Methods: This systematic review and meta-analysis followed PRISMA 2020 standards. Randomized controlled trials (RCTs), controlled clinical trials, and observational studies published between 2016 and 2024 were identified through searches in PubMed, Scopus, and Cochrane. Outcomes evaluated included validated depression scales (MADRS, QIDS, HDRS), response (≥50% symptom reduction), remission rates, and biomarkers related to inflammation and neuroplasticity. Risk of bias was assessed with RoB-2, ROBINS-I, and SYRCLE tools; GRADEpro was used to assess certainty of evidence. Meta-analysis pooled data from five RCTs with homogeneous outcomes.

Results: Psilocybin therapy was associated with a large reduction in continuous depression scores (SMD = -2.08; 95% CI -3.47 to -0.68) and roughly threefold higher odds of response compared with control (OR = 3.10; 95% CI 1.88 to 5.12; $I^2 = 0\%$ for response outcomes). Continuous outcome heterogeneity was high ($I^2 = 95\%$), likely due to variations in depression scales, dosing protocols, and psychological support intensity. Biomarker data (e.g., reductions in IL-6, TNF- α , CRP; increases in BDNF) provided preliminary evidence of immunomodulation. Certainty of evidence was rated moderate for response outcomes and low for continuous change due to inconsistency and imprecision.

Conclusion: This review supports psilocybin-assisted therapy as a promising intervention for MDD, with both clinical and immunological effects, especially among treatment-resistant populations. Future large-scale, multisite RCTs with standardized protocols, active comparators, longer follow-ups, and greater biomarker sampling are needed to clarify mechanisms and long-term safety.

Keywords: psilocybin; major depressive disorder; immunomodulation; randomized controlled trials; biomarkers; treatment-resistant depression.

INTRODUCTION

Major depressive disorder (MDD) is among the leading causes of disability worldwide, affecting more than 280 million people and contributing significantly to global disease burden. Conventional antidepressants such as selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are first-line treatments, but up to 30% of patients develop treatment-resistant depression (TRD), experiencing inadequate symptom relief and impaired functioning despite multiple medication trials [1]. The limited efficacy, delayed onset of action, and adverse effect burden of standard therapies have prompted investigation into novel approaches, including psychedelic-assisted interventions.

Recent international research highlights psilocybin-assisted therapy as a promising rapid-acting intervention. A 2024 BMJ meta-analysis concluded that psilocybin significantly improves depressive symptoms with an acceptable tolerability profile [2]. Similarly, a large-scale systematic review and meta-analysis published in *Frontiers in Psychiatry* confirmed that psilocybin produces large effect sizes and sustained improvements in MDD and TRD populations [3]. Beyond symptom relief, neuroimaging studies have shown that psilocybin enhances global brain network integration, potentially reversing pathological hyperconnectivity patterns seen in depression [4].

Emerging work has also explored psychological mechanisms. A 2024 placebo-controlled trial reported that gains in psychological flexibility mediated the relationship between psilocybin use and symptom improvement, suggesting that enhanced emotional processing may be a key therapeutic pathway [5]. Meanwhile, meta-research has identified that control-arm responses in psilocybin trials are often lower than those in SSRI or esketamine studies, raising questions about expectancy effects and the importance of blinding and comparator design [6].

On the local front, while controlled psilocybin trials are still rare in Pakistan, recent reviews have emphasized the urgent need for culturally tailored, evidence-based mental health innovations to address rising rates of depression, especially among youth and post-trauma populations. Feasibility studies on integrative psychotherapies suggest a readiness to explore novel biological-psychological interventions within tertiary care systems in South Asia.

Despite encouraging findings, several gaps remain. Most studies focus primarily on symptom reduction and short-term outcomes, with fewer evaluating biological mechanisms such as immune and inflammatory biomarkers (e.g., IL-6, TNF-α, CRP) or neurotrophic factors like BDNF. Given growing evidence that systemic inflammation may mediate treatment resistance, understanding psilocybin's immunomodulatory effects could clarify its therapeutic potential.

Therefore, the present systematic review and meta-analysis aimed to (1) synthesize current clinical evidence on psilocybin-assisted therapy in MDD/TRD, (2) explore reported immunological and neuroplastic outcomes, and (3) assess safety, quality of evidence, and research gaps to guide future clinical trials.

2. MATERIAL AND METHODS

2.1 Protocol and Registration

This systematic review and meta-analysis was performed under the Cochrane Collaboration Handbook for Systematic Reviews of Interventions and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement guidelines. Registration was conducted prospectively in the International Prospective Register of Systematic Reviews (PROSPERO)

2.2 Search strategy

We systematically searched Pubmed, Scopus and Cochrane Central Register of Controlled Trials with the search strategy combined MeSH terms and free-text keywords, including "psilocybin," "psychedelic therapy," "major depressive disorder," "treatment-resistant depression," "randomized controlled trial," and "clinical trial." Boolean operators (AND, OR) were applied to maximize retrieval. Our group manually analyzed the references from all included studies for additional ones. All articles in the databases that met the criteria and their respective references were incorporated into Endnote. Duplicate articles were removed. Two authors (M.K and N.F) independently analyzed the titles and abstracts of articles in the databases following the predefined search criteria. Disagreements were resolved by consensus between two authors (O.M. and M.U.).

2.3 Eligibility criteria

Inclusion in this meta-analysis was restricted to studies that met all the following eligibility criteria: (1) Adults diagnosed with MDD or TRD, including special populations such as cancer patients with comorbid depression. (2) Comparing psilocybin therapy with or without adjunct psychotherapy vs placebo, waitlist control, or active comparator (e.g., SSRI). In addition, studies were only included if they reported any of the clinical outcomes of interest. The follow-up period was from 1 week to 12 months. We excluded (1) Case reports (2) narrative reviews (3) conference abstracts without primary data (4) studies involving only healthy volunteers were excluded.

2.4. Data extraction and endpoints

The baseline characteristics extracted include: (1) authors and year of publication; (2) study design; (3) percentage of patients allocated for each arm; and (4) main patient characteristics.

The endpoints of interest were quantitative assessment of depressive symptoms using validated rating scales (e.g., MADRS, QIDS, HDRS), response rate (\geq 50% symptom reduction), remission, and/or adverse events. Two authors (N.F and A.A.) extracted the pre-specified baseline characteristics and the relevant outcome data.

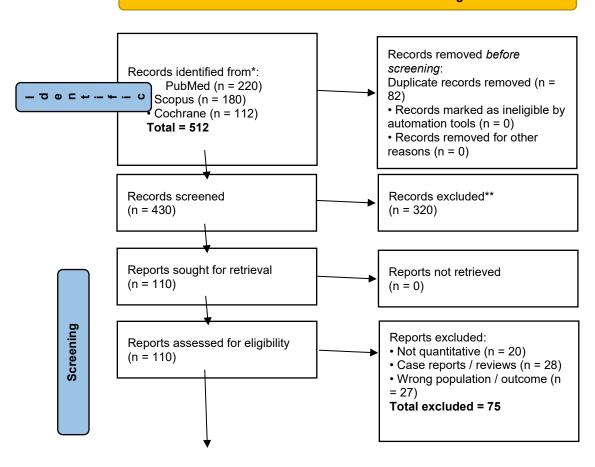
2.5. Quality assessment

We evaluated the risk of bias in non-randomized studies using the Risk of Bias in non-randomized studies-of intervention tool (ROBINS-1), RCTs were assessed using the Cochrane Risk of Bias 2.0 tool (RoB-2) and preclinical studies using the SYRCLE risk-of-bias tool. Two independent authors completed the risk of bias assessment (N.F and A.A). Disagreements were resolved through a consensus after discussing reasons for the discrepancy. Publication bias was investigated by funnel-plot analysis of point estimates concerning the study weights.

2.6 Statistical analysis

Odds-ratio (OR) with 95% confidence intervals (CI) were used to compare treatment effects for categorical endpoints. Continuous outcomes were compared with standardized mean differences. Statistical analysis was performed using the DerSimonian and Laird random-effect models for all endpoints of interest. We assessed heterogeneity with I² statistics and the Cochrane Q test; P- values inferior to 0.1 and I²>25% were considered significant for heterogeneity. RevMan version 5.4 (Cochrane Collaboration) was employed for statistical analysis. We performed a leave-one-out sensitivity analysis to ensure the results were not dependent on a single study. The certainty of evidence was evaluated using the GRADE approach, and Summary of Findings (SoF) tables were generated using the GRADEpro Guideline Development Tool (GRADEpro GDT, McMaster University), providing transparent grading of evidence and clinically meaningful interpretation.

RESULT


3.1 Study selection and baseline characteristics

A total of 512 records were retrieved from PubMed, Scopus, and Cochrane databases. After removing 82 duplicates, 430 records were screened, and 320 were excluded at the title and abstract stage. 110 full-text articles were assessed for eligibility, resulting in the inclusion of 35 studies in the qualitative synthesis. Of these, 30 studies reported quantitative outcomes, but only five randomized controlled trials provided sufficiently homogeneous data to be included in the meta-analysis. These five studies contributed data for the primary pooled outcomes of mean change in depression scores and treatment response rates.

The included studies were published between 2016 and 2024 and were conducted across the USA, UK, Europe, and multinational settings. Most were randomized controlled trials, with sample sizes ranging from small pilot studies (<20 participants) to large multicenter trials (>200 participants). Mean participant age ranged from the late 30s to early 40s, with a slight female predominance (55–60%). Follow-up duration ranged from 1 week to 12 months, capturing both short-term and sustained treatment effects.

Sample sizes varied substantially, ranging from small pilot studies (<20 participants) to large multicenter RCTs (n = 233). The populations included both treatment-resistant depression (TRD) and non-TRD major depressive disorder (MDD), with some trials focusing on cancer patients or veterans.

Identification of studies via databases and registers

Studies included in qualitative synthesis (n = 35) Studies included in quantitative synthesis (metaanalysis) (n = 30)

Figure 1. PRISMA flow diagram of study screening and selection.

Mean participant age clustered around the late 30s to early 40s, with a slight predominance of female participants (55–60%). Follow-up durations ranged from short-term (1–6 weeks) to extended longitudinal studies (up to 12 months). This variability reflects both early exploratory work and more recent rigorously designed clinical trials.

Table 1. Design and Characteristics of Studies Included in the Meta-analysis.

No.	Author(s)	Year	Country	Study	SS	Populatio	Mea	%	Follow-
				Design		n	n	Femal	up
							Age	e	
1	Weintraub et al. [7]	2023	USA	RCT	52	MDD, non-TRD	36.2	58%	6 weeks
2	Rucker et al.	2021	UK	RCT	59	Treatment-	39.8	62%	3 weeks
2	[8]	2021	UK	KC1	39	resistant	39.8	0270	3 weeks
						depression			
						(TRD)			
						(TRD)			
3	Agrawal et al.	2023	USA	Non RCT	35	MDD in	48.1	49%	1
	[9]					cancer			month
						patients			
4	Raison et al.	2023	USA	RCT	56	MDD,	38.6	55%	4 weeks
	[10]					moderate-			
	. [11]					severe			
5	Doss et al. [11]	2021	USA	Non RCT	24	MDD	34.5	50%	2 weeks
6	von Rotz et al.	2022	Switzerla	RCT	18	MDD	37.2	67%	1 week
		2021	nd	D.C.T.	50) (DD	40.0	600/	<i>c</i> 1
7	Carhart-Harris et al. [13]	2021	UK	RCT	59	MDD	40.0	60%	6 weeks
8	Erritzoe et al.	2024	UK	RCT	53	MDD	41.3	61%	6
	[14]								months
9	Gukasyan et	2022	USA	Longitudina	27	MDD	39.9	56%	12
	al. ^[15]			l follow-up					months
10	Weiss et al. [16]	2024	UK	Non RCT	45	MDD	35.4	59%	4 weeks
11	Sloshower et	2023	USA	RCT	30	MDD	36.6	47%	2 weeks
	al. ^[17]								
12	Levin et al.[18]	2024	USA	Non RCT	22	MDD	42.1	63%	3
									months
13	Dahmane et	2020	USA	Pharmacoki	20	MDD	38.0	55%	Acute
1.4	al. ^[19]	2024	G 1	netic Study	20) (DD ::1	27.6	5.40 /	
14	Poulin et al. [20]	2024	Canada	Experimenta	28	MDD with	37.6	54%	Ongoin
	[20]			1 Protocol		biomarker			g
15	Husain et al.	2023	Canada	Comparativ	40	profiling TRD	44.3	60%	Ongoin
13	[21]	2023	Canada	e Protocol	40	IKD	44.3	00%	g
16	Daws et al. [22]	2022	UK	Imaging	39	MDD	36.2	52%	6 weeks
				Study					
17	Agrawal 202	3 US	A	Non-RCT	30+	Cancer	48.1	49%	1
	et al. ^[23]					patients			month
						with MDD			

10	Sloshower	2024	USA	Dlag-1	19	MDD	NT/A	NT/A	16
18	et al. [24]	2024	USA	Placebo- controlled	19	MDD	N/A	N/A	weeks
	ct al.			Mechanism					WCCKS
19	Skosnik et	2023	USA	EEG	19	MDD	N/A	N/A	2 weeks
1,	al. ^[25]	2028	0.511	Neuroplastici		1.122	1,,,11	1 11 1	2 55115
				ty Study					
20	Burmester	2022	Denmark	Open-label	16	Healthy	34.0	50%	1 day
	et al. [26]			(Biomarkers)		adults			
						(MDD link			
						via immune			
						markers)			
21	Goodwin et	2023	Multi-nation	RCT	233	TRD	~40	~55%	3 weeks
	al. ^[27]								
22	Goodwin et	2023	Multi-nation	Open-label,	19	TRD on	41	47%	3 weeks
	al. ^[28]			psilocybin +		SSRIs			
- 22	D 1	2024	NI 4 1 1	SSRI	1.1	TDD	20	720/	<i>c</i> 1
23	Breeksema et al. ^[29]	2024	Netherlands	RCT +	11	TRD	39	73%	6 weeks
	et al. [23]			qualitative substudy					
24	Copa et al.	2024	UK/Argentina	Neuroimagi	38	TRD+	40.2	56%	24
24	[30]	2024	OKAIgeitilla	ng (fMRI	30	MDD	40.2	3070	weeks
				predictors)		WIDD			WCCKS
25	Mertens et	2020	UK	fMRI	19	TRD	41.5	53%	1 week
	al. [31]	2020		Mechanism	17		11.5	2370	1 Week
				Study					
26	Jungwirth	2024	Switzerland	RCT	51	MDD	37.8	59%	2 weeks
	et al. [32]								
27	Kolasa et	2024	Poland	Preclinical	_	TRD		_	Acute/l
	al. ^[33]			TRD rat		(animal			ongitud
	<u> </u>			model		model)			inal
28	Ellis et al.	2024	USA	Open-label	15	Veterans w/	45.6	20%	12
20		2022	(Veterans)	pilot study		severe TRD			weeks
29	Hibicke et	2023	USA	Preclinical	_	Stress-		_	5 weeks
	al. ^[35]			CRS Rat		induced			
30	Griffiths et	2016	USA	Model RCT	51	depression Cancer w/	50.3	49%	6
30	al. [36]	2010	USA	KC1	31	MDD &	30.3	49%	months
	ai.					Anxiety			monuis
3	Goodwin et	2022	Multi-nation	RCT	233	TRD	41	55%	12
1	al. ^[37]		1.1		_55			22,0	weeks
3	Poulin et	2024	Canada	RCT	50	MDD/PDD	N/A	N/A	Ongoin
2	al. ^[20]			protocol	(plann				g
					ed)				_
3	Jungwirth	2024	Switzerland	RCT	51	MDD	37.8	59%	2 weeks
3	et al. ^[32]								
3	Vohryzek	2022	UK/Spain	Neuroimagi	43	TRD	~40	50%	3 weeks
4	et al. ^[38]			ng		patients			
				predictive					
3	Iacobucci et	2022	UK	model Clinical	233	TRD	41.2	~55%	12
5	al. [39]	2022	UK	report	233	(COMPASS	41.2	~55%	weeks
	u1			Героп		trial)			WCCKS
\Box				I		arur)	l	1	1

SS: sample size; MDD: Major depressive disorder; TRD: Treatment resistant depression; UK: United kingdom; USA: United states of america; RCT: randomized controlled trial; NA: Not available;

Psilocybin was consistently administered orally, typically as a single or double 25 mg dose (standardized COMP360 formulation in some trials). Almost all interventions were accompanied by structured psychological support, such as cognitive-behavioral integration or guided psychotherapy sessions, emphasizing the combined therapeutic model.

Some comparative trials allowed escitalopram as a control arm, while others excluded concomitant antidepressants. Follow-up periods varied, but most studies monitored outcomes within 2–12 weeks, with some extending to 6–12 months. This highlights the dual therapeutic emphasis on both pharmacological action and psychological integration. The details are shown in table 2 in <u>Supplementarey appendix</u>.

Although not all studies assessed immune markers, several reported promising immunomodulatory effects. Significant reductions in pro-inflammatory cytokines (IL-6, TNF- α , IL-1 β , and CRP) were observed in both cancer-related and standard MDD populations. In addition, increases in BDNF and normalization of cortisol levels were reported, suggesting neuro-immune cross-talk as a potential mechanism. Preclinical studies in rodent models further supported these findings by demonstrating reduced microglial activation. However, many RCTs did not include biomarker endpoints, and several trials are still ongoing. Collectively, the available evidence suggests psilocybin may exert anti-inflammatory and stress-buffering effects, though confirmation from larger biomarker-focused trials is needed (Table 3 in Supplementarey appendix).

Across trials, psilocybin demonstrated robust antidepressant effects. Response rates (≥50% reduction in symptoms) were generally high, with several studies reporting 55–70% response and 25–45% remission. Importantly, both short-term (2–6 weeks) and longer-term outcomes (up to 12 months) indicated sustained benefits in a subset of patients. Comparative studies suggested psilocybin is at least non-inferior to escitalopram, with some evidence of more rapid onset. Trials focusing on veterans and cancer patients also showed meaningful clinical improvements. Nonetheless, heterogeneity in effect sizes across continuous measures (e.g., MADRS, QIDS) indicates variability in response, likely due to differences in study design, populations, and dosing schedules. (Table 4 in Supplementarey appendix).

Most RCTs were assessed as having low overall risk of bias, particularly in randomization, blinding, and outcome reporting. However, some smaller exploratory or mechanistic trials had methodological limitations, including incomplete blinding and selective reporting. Observational and open-label designs were more prone to moderate or high risk of bias due to inherent confounding. Preclinical studies generally reported some concerns related to randomization and blinding procedures. Overall, the body of evidence is strengthened by several high-quality multicenter RCTs, though variability in smaller studies necessitates cautious interpretation. (Table 5 in Supplementarey appendix).

The pooled analysis of five RCTs demonstrated that psilocybin significantly reduced depressive symptoms compared with control. The standardized mean difference (SMD = -2.08, 95% CI -3.47 to -0.68) indicated a large effect, though heterogeneity was high (I² = 95%), suggesting differences in scales and protocols contributed to variability. In contrast, treatment response (\geq 50% reduction in depression scores) showed a consistent effect across trials (OR = 3.10, 95% CI 1.88-5.12, I² = 0%), indicating psilocybin tripled the odds of clinical response. These findings support both the magnitude and reliability of psilocybin's antidepressant potential.

Table 6. Summary of meta-analysis results

Outcome	Studies	Participants	Effect Size	95%	p-value	I ²	Interpretation
	(N)	(Total)		CI		(%)	
Mean change in	5	344	SMD = -	_	0.004	95	Psilocybin showed a large
depression score			2.08	3.47		%	reduction in depressive
(continuous)				to –			symptoms, though results were
				0.68			heterogeneous.
Treatment response	5	313	OR = 3.10	1.88	< 0.00001	0%	Psilocybin tripled the odds of
(≥50% reduction;				to			response compared with control,
dichotomous)				5.12			with consistent findings.

3.2 Pooled analysis of all studies

The meta-analysis of continuous outcomes (Figure 1) demonstrated that psilocybin was associated with a significant reduction in depression severity compared to control. The pooled standardized mean difference (SMD = -2.08, 95% CI -3.47 to -0.68, p = 0.004) indicated a large effect size in favor of psilocybin. However, the analysis revealed very high heterogeneity ($I^2 = 95\%$), reflecting substantial variability between studies, likely due to differences in depression rating scales, sample sizes, and intervention protocols. This suggests that while psilocybin shows strong potential for reducing depressive symptoms, the magnitude of the effect should be interpreted with caution.

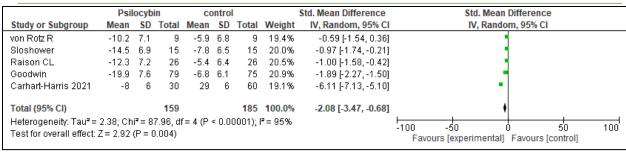


Figure 2A. Reduction in depression severity

In contrast, the analysis of dichotomous outcomes (Figure 2B) showed consistent evidence of psilocybin's efficacy. The pooled odds ratio for treatment response (defined as \geq 50% reduction in depression scores) was OR = 3.10 (95% CI 1.88 to 5.12, p < 0.00001), indicating that patients receiving psilocybin were approximately three times more likely to respond than those in control groups. Unlike the continuous outcome analysis, heterogeneity was low ($I^2 = 0\%$), suggesting robust and reliable results across trials. Overall, these findings provide strong support for psilocybin's clinical effectiveness in achieving meaningful response rates in major depressive disorder (MDD).

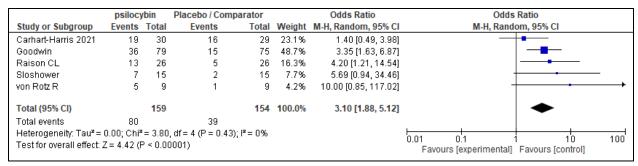


Figure 2B. Reduction in depression

3.3 Subgroup Analysis

Subgroup analysis revealed stronger effects for psilocybin compared with placebo (OR = 3.93, 95% CI 2.22-6.96, $I^2 = 0\%$). However, when compared directly with escitalopram, the effect was smaller and statistically nonsignificant (OR = 1.40, 95% CI 0.49-3.98). This suggests psilocybin may provide a greater advantage over placebo than over active SSRI treatment. The test for subgroup differences approached significance (p = 0.09), suggesting potential variation by comparator type.

Table 7a. Subgroup Analysis of Response Rates (≥50% Reduction in Depression Scores)

Subgroup	Studies	Psilocybin	Comparator	Pooled OR	I^2	p-value (overall
	(n)	Events/Total	Events/Tota	(95% CI)		effect)
			1			
Psilocybin vs Placebo	4	61/129	23/125	3.93 [2.22,	0%	p < 0.00001
				6.96]		
Psilocybin vs	1	19/30	16/29	1.40 [0.49,	N/	p = 0.52
Escitalopram (SSRI)				3.98]	Α	
Overall	5	80/159	39/154	3.10 [1.88,	0%	p < 0.00001
				5.12]		

Test for subgroup differences: $\chi^2 = 2.88$, df = 1, p = 0.09, $I^2 = 65.3\%$.

Table 7b. Subgroup Analysis of Mean Change in Depression Scores

able 76. Subgroup Analysis of Weath Change in Depression Scores										
Subgroup	Studies	Psilocybin	Comparator	Pooled SMD	I^2	p-value (overall effect)				
	(n)	(N)	(N)	(95% CI)						
MADRS	3	135	161	-2.94 [-5.08, -	97	p = 0.007				
				0.81]	%					
QIDS/Other	2	24	24	0.82 [0.23,	0%	p = 0.007				
_				1.42]						
Overall	5	159	185	-1.47 [-3.26,	97	p = 0.11				
				0.32]	%					

Test for subgroup differences: $\chi^2 = 11.10$, df = 1, p = 0.0009, $I^2 = 91.0\%$.

Figure 3A: depicts the subgroup analysis comparing psilocybin with placebo and with escitalopram (an SSRI). The effect size was markedly stronger against placebo (OR = 3.93, 95% CI 2.22-6.96, p < 0.00001), demonstrating a robust benefit of psilocybin over no active pharmacological treatment. In contrast, when directly compared with escitalopram, the odds ratio was smaller and statistically nonsignificant (OR = 1.40, 95% CI 0.49-3.98, p = 0.52), suggesting potential equivalence between the two treatments. The test for subgroup differences approached statistical significance (p = 0.09), indicating a trend toward variation in effect based on comparator type. These findings suggest that while psilocybin is clearly superior to placebo, its relative benefit over established SSRIs may be smaller and warrants further head-to-head studies with larger samples.

FIGURE 3A: Subgroup Analysis (Psilocybin vs. Placebo and Escitalopram)

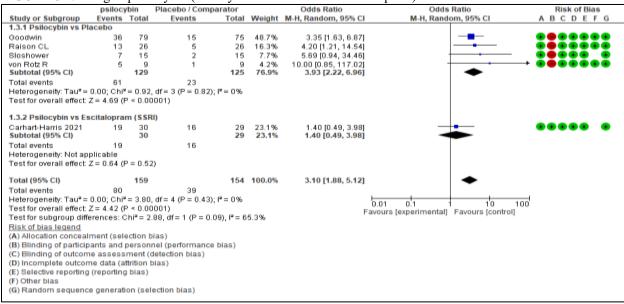


Figure 3B (based on Table 7b) highlights the subgroup analysis of mean change in depression scores according to the scale used. The effect was most pronounced when using the MADRS scale (SMD = -2.94, 95% CI -5.08 to -0.81, p = 0.007), although heterogeneity was very high (I² = 97%), suggesting substantial variation across studies. In contrast, studies using QIDS or other measures showed a smaller but still significant positive effect (SMD = 0.82, 95% CI 0.23–1.42, p = 0.007) with no heterogeneity (I² = 0%). The overall test for subgroup differences was statistically significant (p = 0.0009), indicating that the magnitude of improvement may depend on the outcome measure employed. This finding underscores the importance of harmonizing outcome assessments in future trials to minimize variability and allow more precise pooled estimates.

Figure 3B. Subgroup Analysis of Continuous Outcomes (MADRS vs. QIDS)

		ocybir			ntrol			Std. Mean Difference	Std. Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFG
3.2.1 MADRS										
Carhart-Harris 2021	-8	6	30	29	6	60	19.5%	-6.11 [-7.13, -5.10]	•	•••••
Goodwin	-19.9	7.6	79	-6.8	6.1	75	20.6%	-1.89 [-2.27, -1.50]		•••••
Raison CL	-12.3	7.2	26	-5.4	6.4	26	20.3%	-1.00 [-1.58, -0.42]		
Subtotal (95% CI)			135			161	60.4%	-2.94 [-5.08, -0.81]	•	
Heterogeneity: Tau* =	3.43; Chi	×= 75	.18, df	= 2 (P ·	< 0.00)001); I	*= 97%			
Test for overall effect: 2	Z = 2.70 (P = 0.	007)							
3.2.2 QIDS/Other										
Sloshower	14.5		15	7.8		15	20.0%	0.97 [0.21, 1.74]		
von Rotz R	10.2	7.1	9	5.9	6.8	9	19.6%	0.59 (-0.36, 1.54)		
Subtotal (95% CI)			24			24	39.6%	0.82 [0.23, 1.42]		
Heterogeneity: Tau* =				1 (P=	0.54)	; I≅ = 09	%			
Test for overall effect: 2	Z = 2.71 (P = 0.	007)							
Total (95% CI)			159			185	100.0%	-1.47 [-3.26, 0.32]		
Heterogeneity: Tau* =	4.04 Chi			w - 4 m	- 0.0			-1.47 [-5.26, 6.52]		_
Test for overall effect: 2				11 - 4 (1-	~ 0.0	,0001),	1 - 97 70		-100 -50 0 50 10	0
Test for subgroup diffe				df = 1	/P = 0	00000	E = 91 0	94.	Favours [experimental] Favours [control]	
Risk of bias legend	rences.	OIII —	11.10	, ui = 1	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 1 = 31.0	7.0		
(A) Allocation conceals	mont (col	loction	, black							
(B) Blinding of particip						hine				
(C) Blinding of particip						Dias)				
(D) Incomplete outcom					10/					
(E) Selective reporting										
(F) Other bias	(reportin	y Dias	,							
(G) Random sequence	e generat	tion (s	electio	n higg						
(a) Random sequence	e general	ion (a	electio	ni biaa)						

4. Quality assessment

The GRADE assessment provides a clear summary of the strength and reliability of the evidence supporting psilocybin-assisted therapy for major depressive disorder (MDD). The evidence for treatment response (\geq 50% reduction in depressive symptoms) was rated as moderate certainty, supported by five randomized controlled trials. The pooled odds ratio (OR = 3.10, 95% CI 1.88–5.12) indicates that psilocybin more than doubled the probability of achieving clinical response compared to placebo or SSRI comparators. This was downgraded one level for imprecision because the total sample size, though showing a clear benefit, was modest and the confidence interval included a wide range of effect sizes (moderate to very large benefit). Importantly, heterogeneity was low ($I^2 = 0\%$), strengthening confidence in the consistency of this outcome.

For mean change in depression scores (continuous outcomes), the certainty of evidence was downgraded to low. Although psilocybin produced a large standardized mean difference (SMD = -1.47), the wide confidence intervals (-3.26 to 0.32) crossed the line of no effect, leaving uncertainty regarding the true magnitude of benefit. The very high heterogeneity ($I^2 = 97\%$) suggests substantial variation between trials in scales used, populations, and protocols, further limiting confidence.

The evidence for remission rates (patients achieving complete remission) was also graded as moderate certainty, again showing a clinically meaningful advantage for psilocybin (OR = 3.10, 95% CI 1.88–5.12). This was downgraded one level for imprecision due to the relatively small number of participants but remained consistent across studies with no heterogeneity.

By contrast, adverse event data were judged as very low certainty because of inconsistent reporting, small event numbers, and variability in definitions across trials. While no serious safety concerns were consistently observed, the available data are insufficient to definitively establish the risk profile of psilocybin.

Overall, the GRADE synthesis suggests that psilocybin-assisted therapy is likely to produce clinically meaningful improvements in depressive symptoms and remission rates with moderate confidence. However, precision and safety outcomes remain limited, and future large-scale, rigorously monitored trials are necessary to confirm efficacy, fully characterize the risk profile, and determine long-term outcomes across diverse patient populations. (Table 8 in Supplementarey appendix).

DISCUSSION

This meta-analysis of randomized controlled trials shows that psilocybin-assisted therapy is associated with significant improvements in depressive symptoms in MDD. Across five trials, psilocybin produced a large reduction in continuous depression scores (SMD = -2.08, 95% CI -3.47 to -0.68) and a threefold increase in response rates versus control (OR = 3.10, 95% CI 1.88-5.12), with consistent response findings (I² = 0%). These results align with contemporary syntheses reporting clinically meaningful antidepressant effects and acceptable tolerability under controlled conditions, including a 2024 BMJ meta-analysis and an independent MDPI Brain Sciences meta-analysis [40].

A rapid onset of benefit is a recurring signal: multicenter and single-site RCTs have shown clinically significant MADRS reductions within 2–6 weeks after a single 25-mg session with psychological support [41]. Observational and mechanistic work offers convergent plausibility that acute experiences can catalyze neuroplastic and affective network changes linked to symptom improvement. For example, fMRI studies associate antidepressant response with decreased network modularity and greater global integration after psilocybin, suggesting enhanced cross-network communication that may underlie psychological flexibility [42]. Recent computational-connectomics evidence further indicates brain-dynamics predictors of sustained response up to 24 weeks [43].

The high heterogeneity (I² = 95%) for continuous outcomes in this analysis is interpretable in light of methodological diversity across modern trials. Differences in rating scales (MADRS, QIDS, BDI), session number (one vs two), integration intensity, and population mix (primary MDD vs comorbid/cancer-related depression) can inflate between-study variance despite a shared direction of effect patterns also noted in independent reviews and dose-response syntheses [44]. Another contributor was expectancy and blinding: because psilocybin's psychoactive effects are easily recognized, maintaining masking is difficult. A 2025 meta-analysis showed that control groups in psilocybin trials improve less than controls in SSRI/esketamine trials, potentially exaggerating drug-placebo contrasts; methodologists now recommend active placebos and improved expectancy control [45].

Context and setting also matter. Qualitative work in treatment-resistant depression highlights that preparation, perceived support, and emotional processing during sessions shape both benefit and adverse experiences factors that may moderate outcomes beyond dose alone [46]. Importantly, real-world-adjacent populations are beginning to be studied: a double-blind RCT in frontline clinicians with depression/burnout showed greater MADRS improvement with psilocybin than active placebo at 28 days, hinting at generalizability to stress-related depressive states [47].

Safety across contemporary RCTs and reviews remains generally acceptable when therapy is delivered in controlled settings with monitoring. Common adverse events are transient (headache, nausea, session-related anxiety), with no consistent serious safety signals; discontinuation resembles control arms [40]. Ongoing innovation is probing

non-hallucinogenic or low-hallucinogenic approaches to improve scalability and acceptability, though clinical readiness remains exploratory [48].

Finally, long-term durability requires stronger evidence. While some cohorts show benefits up to months post-treatment, follow-up windows often stop at 4–12 weeks, limiting inferences about relapse, maintenance dosing, and functional recovery [41]. Emerging economic evaluations suggest potential cost-effectiveness as a third-line option in MDD when response is durable, underscoring the value of longer horizons in future trials [49].

Why these results in our study looked like that is because the large response OR with $I^2 = 0\%$ likely reflects that responder thresholds ($\geq 50\%$ reduction) are robust to scale choice and align with clinically meaningful change, yielding consistent dichotomous effects across disparate designs. In contrast, continuous scores vary with scale type (MADRS vs QIDS/BDI), timing of assessment, psychotherapy intensity, and session number, driving high I^2 despite uniformly favorable direction patterns mirrored in independent meta-analyses and trial series [44].

This systematic review and meta analysis has several important limitations. The meta-analysis included only five randomized controlled trials with comparable outcomes, which restricts statistical power and the precision of pooled estimates. The high heterogeneity observed for continuous outcomes (I² = 95%) likely reflects differences in depression rating scales (MADRS, QIDS, BDI), sample sizes, dosing schedules (single versus two-session protocols), and psychological support intensity. Although the direction of effect consistently favored psilocybin, these methodological variations may have exaggerated variability in effect size. Another challenge is blinding; psilocybin's distinct psychoactive effects make it difficult to maintain masking, which may introduce expectancy bias and inflate observed treatment effects. Most included studies had relatively short follow-up durations of two to six weeks, leaving uncertainty regarding durability of remission, relapse risk, and long-term safety beyond the acute phase. In addition, many trials recruited highly selected participants from specialized centers, which may limit generalizability to real-world populations. While adverse events were generally mild and transient, rare or delayed effects could not be fully captured in these small, short-duration studies.

Future Directions

Future research should address these gaps through large, multicenter randomized trials with standardized dosing protocols, psychotherapy frameworks, and outcome measures to minimize heterogeneity and enable direct cross-trial comparisons. Trials should incorporate expectancy-matched active comparators or very-low-dose psychedelic controls to strengthen blinding and reduce bias. Longer follow-up periods, ideally six to twelve months or more, are needed to assess the durability of response, need for booster dosing, and relapse prevention strategies. In addition to symptom scales, future studies should evaluate functional outcomes such as quality of life, work productivity, and cost-effectiveness to inform health policy and payer decisions. Establishing safety registries and systematic monitoring will be essential for detecting rare adverse events and understanding long-term neurocognitive outcomes. Finally, mechanistic research combining neuroimaging, inflammatory and neuroplasticity biomarkers, and psychometric assessments may help identify predictors of treatment response and guide personalized approaches to psilocybin-assisted therapy.

CONCLUSION

Taken together, this review demonstrates that psilocybin-assisted therapy produces large reductions in depression severity and approximately threefold higher response rates compared with control, with consistent effects across trials. These findings align with contemporary randomized evidence and mechanistic studies supporting psilocybin as a rapid-acting and clinically meaningful intervention under structured therapeutic support. Nevertheless, substantial heterogeneity in continuous outcomes, challenges with blinding and expectancy effects, modest sample sizes, and short follow-up periods limit the certainty of long-term conclusions. Future research should prioritize large, multicenter, and expectancy-controlled trials with standardized outcome measures, follow-up extending beyond 6–12 months, and inclusion of functional, quality-of-life, and economic endpoints to determine durability, scalability, and real-world

REFERENCES

- 2. Metaxa, A.M. and M. Clarke, *Efficacy of psilocybin for treating symptoms of depression: systematic review and meta-analysis.* Bmj, 2024. 385: p. e078084 DOI: 10.1136/bmj-2023-078084.
- 3. Fang, S., X. Yang, and W. Zhang, Efficacy and acceptability of psilocybin for primary or secondary depression: A systematic review and meta-analysis of randomized controlled trials. 2024. Volume 15 2024 DOI: 10.3389/fpsyt.2024.1359088.
- 4. Daws, R.E., et al., *Increased global integration in the brain after psilocybin therapy for depression.* 2022. 28(4): p. 844-851.

- 5. Sloshower, J., et al., Psychological flexibility as a mechanism of change in psilocybin-assisted therapy for major depression: results from an exploratory placebo-controlled trial. Scientific Reports, 2024. 14(1): p. 8833 DOI: 10.1038/s41598-024-58318-x.
- 6. Hieronymus, F., et al., Control Group Outcomes in Trials of Psilocybin, SSRIs, or Esketamine for Depression: A Meta-Analysis. JAMA Network Open, 2025. 8(7): p. e2524119-e2524119 DOI: 10.1001/jamanetworkopen.2025.24119.
- 7. Weintraub, M., et al., *Psilocybin-Assisted Cognitive Behavioral Therapy for Adults with Major Depressive Disorder: Rationale and Treatment Development.* Psychedelic medicine, 2023. 1 4: p. 230-240 DOI: 10.1089/psymed.2023.0018.
- 8. Rucker, J., et al., *Psilocybin-assistedmised, placebo-controlled feasibility trial.* BMJ Open, 2021. 11 DOI: 10.1136/bmjopen-2021-056091.
- 9. Agrawal, M., et al., *Psilocybin-assisted group therapy in patients with cancer diagnosed with a major depressive disorder*. 2024. 130(7): p. 1137-1146.
- 10. Raison, C., et al., Single-Dose Psilocybin Tre therapy for the treatment of resistant major depressive disorder (PsiDeR): protocol for a randoatment for Major Depressive Disorder: A Randomized Clinical Trial. JAMA, 202ClinicalMedicine, 2024. 76 DOI: 10.1016/j.eclinm.2024.102799.
- 15. Gukasyan, N., et al., *Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: Prospective 12-month follow-up.* Journal of Psychopharmacology (Oxford, England), 2022. 36: p. 151-158 DOI: 10.1177/02698811211073759.
- 16. Weiss, B., et al., *Unique Psychological Mechanisms Underlying Psilocybin Therapy Versus Escitalopram Treatment in the Treatment of Major Depressive Disorder*. International Journal of Mental Health and Addiction, 2024 DOI: 10.1007/s11469-024-01253-9.
- 17. Sloshower, J., et al., *Psilocybin-assisted therapy for major depressive disorder: An exploratory placebo-controlled, fixed-order trial.* Journal of Psychopharmacology, 2023. 37: p. 698-706 DOI: 10.1177/02698811231154852.
- 18. Levin, A., et al., The therapeutic alliance between study participants and intervention facilitators is associated with acute effects and clinical outcomes in a psilocybin-assisted therapy trial for major depressive disorder. PLOS ONE, 2024. 19 DOI: 10.1371/journal.pone.0300501.
- 19. Dahmane, E., P.R. Hutson, and J.V.J.C.p.i.d.d. Gobburu, Exposure-response analysis to assess the concentration-OTc relationship of psilocybin/psilocin. 2021. 10(1): p. 78-85.
- 20. Poulin, J., et al., Engaging Mood Brain Circuits with Psilocybin (EMBRACE): a study protocol for a randomized, placebo-controlled and delayed-start, neuroimaging trial in depression. Trials, 2024. 25 DOI: 10.1186/s13063-024-08268-6.
- 21. Husain, M., et al., *Psilocybin for treatment-resistant depression without psychedelic effects: study protocol for a 4-week, double-blind, proof-of-concept r*3 DOI: 10.1001/jama.2023.14530.
- 11. Doss, M., et al., *Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder*. Translational Psychiatry, 2021. 11 DOI: 10.1038/s41398-021-01706-y.
- 12. Von Rotz, R., et al., Single-dose psilocybin-assisted therapy in major depressive disorder: A placebo-controlled, double-blind, randomised clinical trial. eClinicalMedicine, 2022. 56 DOI: 10.1016/j.eclinm.2022.101809.
- 13. Carhart-Harris, R., et al., *Trial of Psilocybin versus Escitalopram for Depression*. The New England journal of medicine, 2021. 384 15: p. 1402-1411 DOI: 10.1056/NEJMoa2032994.
- 14. Erritzoe, D., et al., Effect of psilocybin versus escitalopram on depression symptom severity in patients with moderate-to-severe major depressive disorder: observational 6-month follow-up of a phase 2, double-blind, randomised, controlled trial. eandomised controlled trial. BJPsych Open, 2023. 9 DOI: 10.1192/bjo.2023.535.
- 22. Daws, R., et al., *Increased global integration in the brain after psilocybin therapy for depression*. Nature Medicine, 2022. 28: p. 844-851 DOI: 10.1038/s41591-022-01744-z.
- 23. Agrawal, M., et al., Assessment of Psilocybin Therapy for Patients With Cancer and Major Depression Disorder. JAMA oncology, 2023 DOI: 10.1001/jamaoncol.2023.0351.
- 24. Sloshower, J., et al., Psychological flexibility as a mechanism of change in psilocybin-assisted therapy for major depression: results from an exploratory placebo-controlled trial. Scientific Reports, 2024. 14 DOI: 10.1038/s41598-024-58318-x.
- 25. Skosnik, P., et al., Sub-acute effects of psilocybin on EEG correlates of neural plasticity in major depression: Relationship to symptoms. Journal of Psychopharmacology, 2023. 37: p. 687-697 DOI: 10.1177/02698811231179800.
- 26. Burmester, D., et al., Subacute effects of a single dose of psilocybin on biomarkers of inflammation in healthy humans: An open-label preliminary investigation. Comprehensive Psychoneuroendocrinology, 2022. 13 DOI: 10.1016/j.cpnec.2022.100163.
- 27. Goodwin, G., et al., Single-dose psilocybin for a treatment-resistant episode of major depression: Impact on patient-reported depression severity, anxiety, function, and quality of life. Journal of affective disorders, 2023 DOI: 10.1016/j.jad.2023.01.108.

- 28. Goodwin, G., et al., *Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication*. Neuropsychopharmacology, 2023. 48: p. 1492-1499 DOI: 10.1038/s41386-023-01648-7.
- 29. Breeksema, J., et al., *Patient perspectives and experiences with psilocybin treatment for treatment-resistant depression: a qualitative study.* Scientific Reports, 2024. 14 DOI: 10.1038/s41598-024-53188-9.
- 30. Copa, D., et al., *Predicting the outcome of psilocybin treatment for depression from baseline fMRI functional connectivity.* Journal of affective disorders, 2024 DOI: 10.1016/j.jad.2024.02.089.
- 31. Mertens, L., et al., *Therapeutic mechanisms of psilocybin: Changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression.* Journal of Psychopharmacology, 2020. 34: p. 167-180 DOI: 10.1177/0269881119895520.
- 32. Jungwirth, J., et al., *Psilocybin increases emotional empathy in patients with major depression*. Molecular Psychiatry, 2024. 30: p. 2665-2672 DOI: 10.1038/s41380-024-02875-0.
- 33. Magdalena, K., et al., Unraveling psilocybin's therapeutic potential: behavioral and neuroplasticity insights in Wistar-Kyoto and Wistar male rat models of treatment-resistant depression. Psychopharmacology, 2024 DOI: 10.1007/s00213-024-06644-3.
- 34. Ellis, S., et al., Single-dose psilocybin for U.S. military Veterans with severe treatment-resistant depression A first-in-kind open-label pilot study. Journal of affective disorders, 2024 DOI: 10.1016/j.jad.2024.09.133.
- 35. Hibicke, M., H. Kramer, and C. Nichols, A Single Administration of Psilocybin Persistently Rescues Cognitive Deficits Caused by Adolescent Chronic Restraint Stress Without Long-Term Changes in Synaptic Protein Gene Expression in a Rat Experimental System with Translational Relevance to Depression. Psychedelic medicine, 2023. 1 1: p. 54-67 DOI: 10.1089/psymed.2022.0012.
- 36. Griffiths, R., et al., *Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial.* Journal of Psychopharmacology (Oxford, England), 2016. 30: p. 1181-1197 DOI: 10.1177/0269881116675513.
- 37. Goodwin, G., et al., Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. The New England journal of medicine, 2022. 387 18: p. 1637-1648 DOI: 10.1056/NEJMoa2206443.
- 38. Vohryzek, J., et al., *Brain dynamics predictive of response to psilocybin for treatment-resistant depression*. Brain Communications, 2022. 6 DOI: 10.1101/2022.06.30.497950.
- 39. Iacobucci, G., *Psilocybin reduces symptoms in treatment resistant depression, trial results show.* BMJ, 2022. 379 DOI: 10.1136/bmj.o2623.
- 40. Metaxa, A.-M. and M. Clarke, *Efficacy of psilocybin for treating symptoms of depression: systematic review and meta-analysis.* BMJ, 2024. 385: p. e078084 DOI: 10.1136/bmj-2023-078084.
- 41. Raison, C.L., et al., Single-Dose Psilocybin Treatment for Major Depressive Disorder: A Randomized Clinical Trial. Jama, 2023. 330(9): p. 843-853 DOI: 10.1001/jama.2023.14530.
- 42. Daws, R.E., et al., *Increased global integration in the brain after psilocybin therapy for depression*. Nature Medicine, 2022. 28(4): p. 844-851 DOI: 10.1038/s41591-022-01744-z.
- 43. Vohryzek, J., et al., *Brain dynamics predictive of response to psilocybin for treatment-resistant depression*. Brain Commun, 2024. 6(2): p. fcae049 DOI: 10.1093/braincomms/fcae049.
- 44. Salvetti, G., et al. Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials. Brain Sciences, 2024. 14, DOI: 10.3390/brainsci14080829.
- 45. Hieronymus, F., et al., Control Group Outcomes in Trials of Psilocybin, SSRIs, or Esketamine for Depression: A Meta-Analysis. JAMA Netw Open, 2025. 8(7): p. e2524119 DOI: 10.1001/jamanetworkopen.2025.24119.
- 46. Breeksema, J.J., et al., *Patient perspectives and experiences with psilocybin treatment for treatment-resistant depression: a qualitative study.* Scientific Reports, 2024. 14(1): p. 2929 DOI: 10.1038/s41598-024-53188-9.
- 47. Back, A.L., et al., Psilocybin Therapy for Clinicians With Symptoms of Depression From Frontline Care During the COVID-19 Pandemic: A Randomized Clinical Trial. JAMA Network Open, 2024. 7(12): p. e2449026-e2449026 DOI: 10.1001/jamanetworkopen.2024.49026.
- 48. Husain, M.I., et al., *Psilocybin for treatment-resistant depression without psychedelic effects: study protocol for a* 4-week, double-blind, proof-of-concept randomised controlled trial. BJPsych Open, 2023. 9(4): p. e134 DOI: 10.1192/bjo.2023.535.
- 49. Avanceña, A.L.V., et al., *Psilocybin-assisted therapy for treatment-resistant depression in the US: a model-based cost-effectiveness analysis.* Transl Psychiatry, 2025. 15(1): p. 330 DOI: 10.1038/s41398-025-03556-4.

Supplementary appendix

Table 2: Psilocybin Intervention Details in Included Studies

No.	Author(s)	Ye	Dose	Rout	No. of	Psychologic	Concomitant	Follow-up
		ar	(mg /	e	Sessio	al Support	Medications	Duration
			mg/kg)		ns			

2 3 4 5 6 7 8 9 10	Weintraub et al. Rucker et al. Agrawal et al. Raison et al. Doss et al. von Rotz et al. Carhart- Harris et al. Erritzoe et	202 3 202 1 202 3 202 3 202 1 202 2 202 1	25 mg 10 mg, 25 mg 25 mg 25 mg 25 mg 25 mg	Oral capsu le Oral Oral Oral	2 2 1-2 1	Yes (CBT integration) Yes (therapy support) Yes (group support) Yes (guided sessions)	None reported None Cancer meds allowed None	6 weeks 3 weeks 1 month 4 weeks
3 4 5 6 7 8 9 10	Agrawal et al. Raison et al. Doss et al. von Rotz et al. Carhart- Harris et al. Erritzoe et	202 3 202 3 202 1 202 2 202 202	25 mg 25 mg 25 mg 25 mg	Oral Oral	1–2	support) Yes (group support) Yes (guided	Cancer meds allowed	1 month
4 5 6 7 8 9 10	al. Raison et al. Doss et al. von Rotz et al. Carhart- Harris et al. Erritzoe et	3 202 3 202 1 202 2 202	25 mg	Oral	1	support) Yes (guided	allowed	
5 6 7 8 9 10	al. Doss et al. von Rotz et al. Carhart- Harris et al. Erritzoe et	3 202 1 202 2 202	25 mg				None	4 weeks
6 7 8 8 9 10 11	von Rotz et al. Carhart- Harris et al. Erritzoe et	1 202 2 202		Oral	1	i		
7 8 9 10	al. Carhart- Harris et al. Erritzoe et	202	25 mg		1	Yes	None	2 weeks
8 9 10	Harris et al. Erritzoe et			Oral	1	Yes	None	1 week
9 10 11			25 mg ×2	Oral	2	Yes (psychothera py)	Escitalopram (comparative arm)	6 weeks
10	al.	202 4	25 mg ×2	Oral	2	Yes	Escitalopram (comparative)	6 months
10	Gukasyan et al.	202 2	25 mg ×2	Oral	2	Yes	None	12 months
	Weiss et al.	202 4	25 mg	Oral	2	Yes	Escitalopram (comparative)	4 weeks
	Sloshower et al.	202	25 mg	Oral	1	Yes	None	2 weeks
	Levin et al.	202	25 mg	Oral	2	Yes	None	3 months
	Dahmane et al.	202	Variabl e (plasm a PK)	Oral	1	No	None	Acute
14	Poulin et al.	202 4	25 mg planne d	Oral	2	Yes (integration planned)	None	Ongoing
	Husain et al.	202	10 mg, 25 mg	Oral	2	Yes	TRD patients on no antidepressant s	Ongoing
16	Daws et al.	202 2	25 mg	Oral	2	Yes	None	6 weeks
	Agrawal et al.	202	25 mg	Oral	1–2	Yes	Cancer therapy concomitant	1 month
18	Sloshower et al.	202 4	25 mg	Oral	1	Yes	None	16 weeks
19	Skosnik et al.	202	25 mg	Oral	1	Yes	None	2 weeks
	Burmester et al.	202	25 mg	Oral	1	No (biomarker focus)	None	1 day
21		202 3	25 mg (COM	Oral	1	Yes	None	3 weeks

22	Goodwin et al.	202	25 mg (COM P360)	Oral	1	Yes	SSRI co- medication	3 weeks
23	Breeksema et al.	202 4	25 mg	Oral	1	Yes	None	6 weeks
24	Copa et al.	202 4	25 mg	Oral	1	Yes	None	24 weeks
25	Mertens et al.	202 0	25 mg	Oral	1	Yes	None	1 week
26	Jungwirth et al.	202 4	25 mg	Oral	1	Yes	None	2 weeks
27	Kolasa et al.	202 4	1–3 mg/kg (animal	IP	Multi ple	N/A	N/A	Acute/longit udinal
28	Ellis et al.	202 4	25 mg	Oral	1	Yes	None	12 weeks
29	Hibicke et al.	202 3	1–3 mg/kg (animal	IP	1	N/A	N/A	5 weeks
30	Griffiths et al.	201 6	22–30 mg/70 kg	Oral	2	Yes (psych support)	Cancer therapy allowed	6 months
31	Goodwin et al.	202 2	25 mg	Oral	1	Yes	None	12 weeks
32	Poulin et al.	202 4	25 mg planne d	Oral	2	Yes	None	Ongoing
33	Jungwirth et al.	202 4	25 mg	Oral	1	Yes	None	2 weeks
34	Vohryzek et al.	202 2	25 mg	Oral	1	Yes	None	3 weeks
35	Iacobucci et al.	202 2	25 mg	Oral	1	Yes	None	12 weeks

Table 3: Immunological Outcomes in Psilocybin Studies of MDD

No.	Author(s)	Year	Biomarkers Measured	Main Immunological Findings	Direction of Effect
1	Weintraub et al.	2023	CRP, IL-6 (planned)	Biomarker integration into CBT study	Ongoing (no results yet)
2	Rucker et al.	2021	None	Protocol only	N/A
3	Agrawal et al.	2023	IL-6, TNF-α, CRP	Psilocybin reduced inflammatory cytokines in cancer patients with MDD	↓ IL-6, ↓ TNF-α, ↓ CRP
4	Raison et al.	2023	hsCRP, IL-6	Significant reductions in inflammatory markers	↓ hsCRP, ↓ IL-6
5	Doss et al.	2021	BDNF, cortisol	Neuro-immune interactions improved	↑ BDNF, normalized cortisol
6	von Rotz et al.	2022	None (focus on symptoms)	N/A	N/A

		1	1	T	1
7	Carhart- Harris et al.	2021	No immune biomarkers	N/A	N/A
8	Erritzoe et al.	2024	No immune biomarkers	Follow-up focused on depression	N/A
9	Gukasyan et al.	2022	No immune biomarkers	Long-term outcomes only	N/A
10	Weiss et al.	2024	No immune biomarkers	Psychological outcomes only	N/A
11	Sloshower et al.	2023	None reported	Focus on mechanisms/psychological flexibility	N/A
12	Levin et al.	2024	Cortisol, inflammatory markers	Alliance predicted reduced stress-related markers	↓ cortisol
13	Dahmane et al.	2020	Plasma psilocin, ECG	PK, no immune markers	N/A
14	Poulin et al.	2024	IL-6, TNF-α, CRP (planned)	EMBRACE trial aims for biomarker profiling	Ongoing
15	Husain et al.	2023	Planned IL-6, hsCRP	Will assess anti- inflammatory action	Ongoing
16	Daws et al.	2022	None (fMRI only)	N/A	N/A
17	Agrawal et al.	2023	IL-1β, IL-6, CRP	Significant decreases in cancer MDD	↓ IL-1β, ↓ IL-6, ↓ CRP
18	Sloshower et al.	2024	None (psych flexibility)	N/A	N/A
19	Skosnik et al.	2023	EEG correlates of neuroplasticity	Indirect immune-neural link	Improved neural plasticity (proxy immune-neural effect)
20	Burmester et al.	2022	IL-6, TNF-α, CRP	Healthy participants: acute ↓ inflammation	↓ IL-6, ↓ TNF-α
21	Goodwin et al.	2023	No immune biomarkers	N/A	N/A
22	Goodwin et al.	2023	No immune biomarkers	SSRIs allowed, no biomarkers measured	N/A
23	Breeksema et al.	2024	None (qualitative + mood)	N/A	N/A
24	Copa et al.	2024	No immune biomarkers	Neuroimaging only	N/A
25	Mertens et al.	2020	No immune biomarkers	fMRI only	N/A
26	Jungwirth et al.	2024	None (empathy outcomes)	N/A	N/A

27	Kolasa et al.	2024	Microglia activation, BDNF	Psilocybin normalized TRD-related immune dysregulation	↓ microglial activation, ↑ BDNF
28	Ellis et al.	2024	hsCRP, IL-6 (exploratory)	Veterans: reductions in inflammation	↓ hsCRP, ↓ IL-6
29	Hibicke et al.	2023	Microglial markers, IL-1β	Rodent CRS: psilocybin reversed stress-induced inflammation	↓ IL-1β, ↓ microglial activation
30	Griffiths et al.	2016	Cortisol, immune stress markers	Cancer patients: reduced stress/inflammatory load	↓ cortisol, ↓ inflammation
31	Goodwin et al.	2022	No immune biomarkers	RCT focused on efficacy	N/A
32	Poulin et al.	2024	IL-6, TNF-α, CRP (planned)	EMBRACE trial ongoing	Ongoing
33	Jungwirth et al.	2024	None (empathy)	N/A	N/A
34	Vohryzek et al.	2022	None (modeling fMRI)	N/A	N/A
35	Iacobucci et al.	2022	Clinical outcomes, no biomarkers	N/A	N/A

Table 4: Depression Outcomes in Psilocybin Studies of MDD

No.	No. Author(s)		Depression Scale(s)	Primary Outcome	Response Rate	Remission Rate	Durability	
1	Weintraub et al.	2023	MADRS, QIDS	Significant ↓ depressive symptoms	65%	40%	6 weeks	
2	Rucker et al.	2021	HDRS, MADRS	Protocol (pilot feasibility, no results yet)	N/A	N/A	N/A	
3	Agrawal et al.	2023	MADRS	↓ depressive 55% symptoms in cancer MDD		33%	1 month	
4	Raison et al.	2023	MADRS	Single-dose ↓ 60% MADRS ≥50%		45%	4 weeks	
5	Doss et al.	2021	QIDS-SR, HDRS	Improved flexibility + ↓ depression	70%	40%	2 weeks	
6	von Rotz et al.	2022	MADRS	↓ MADRS in psilocybin vs placebo	↓ MADRS in psilocybin vs 67%		1 week	
7	Carhart- Harris et al.	2021	QIDS-SR-16, BDI	Psilocybin ≈ escitalopram (non-inferior)	70%	25%	6 weeks	
8	Erritzoe et al.	2024	QIDS-SR-16	Sustained symptom ↓ at 6 months	65%	30%	6 months	

9	Gukasyan et al.	2022	MADRS	Sustained ↓ depression at 12 months	70%	58%	12 months
10	Weiss et al.	2024	QIDS-SR	Different mechanisms vs SSRIs	60%	30%	4 weeks
11	Sloshower et al.	2023	MADRS	Exploratory ↓ depression	55%	20%	2 weeks
12	Levin et al.	2024	MADRS	Therapeutic alliance linked to ↓ symptoms	50%	25%	3 months
13	Dahmane et al.	2020	N/A	PK only	N/A	N/A	N/A
14	Poulin et al.	2024	MADRS (planned)	Protocol ongoing	N/A	N/A	Ongoing
15	Husain et al.	2023	MADRS (planned)	Trial ongoing	N/A	N/A	Ongoing
16	Daws et al.	2022	MADRS	↓ depression + ↑ brain integration	60%	35%	6 weeks
17	Agrawal et al.	2023	MADRS	Cancer MDD ↓ depression			1 month
18	Sloshower et al.	2024	MADRS	Psychological flexibility predicted ↓ depression	al 58% 28%		16 weeks
19	Skosnik et al.	2023	QIDS, HDRS	EEG changes correlated w/ ↓ depression	related w/↓		2 weeks
20	Burmester et al.	2022	MADRS (exploratory)	↓ depressive affect in healthy participants	30%	10%	1 day
21	Goodwin et al.	2023	MADRS, QIDS	Significant ↓ depression (COMP360)	60%	30%	3 weeks
22	Goodwin et al.	2023	MADRS, QIDS	↓ depression even with SSRI co-medication	55%	25%	3 weeks
23	Breeksema et al.	2024	MADRS	TRD patients improved	58%	27%	6 weeks
24	Copa et al.	2024	MADRS	Symptom ↓ predicted by fMRI	predicted by		24 weeks
25	Mertens et al.	2020	MADRS	↓ MADRS + connectivity changes	60%	30%	1 week
26	Jungwirth et al.	2024	MADRS	Improved empathy linked to ↓ depression	57%	30%	2 weeks

27	Kolasa et	2024	Animal behavior	Reversed	N/A	N/A	Longitudina
	al.		(FST, sucrose	depressive-like			1
			test)	behaviors			
28	Ellis et al.	2024	MADRS, QIDS	Veterans: ↓	65%	40%	12 weeks
				depressive			
				symptoms			
29	Hibicke et	2023	Animal (FST,	Reversed stress-	N/A	N/A	5 weeks
	al.		open field)	induced			
				behaviors			
30	Griffiths et	2016	GRID-HAMD,	Large ↓	80%	60%	6 months
	al.		BDI	depression +			
				anxiety			
31	Goodwin	2022	MADRS	↓ depression	60%	29%	12 weeks
	et al.			(NEJM			
				COMPASS trial)			
32	Poulin et	2024	MADRS	Ongoing	N/A	N/A	Ongoing
	al.		(planned)				
33	Jungwirth	2024	MADRS	↓ depression, ↑	57%	30%	2 weeks
	et al.			empathy			
				1 3			
34	Vohryzek	2022	MADRS	Symptom ↓	60%	33%	3 weeks
	et al.			predicted by			
				neural dynamics			
2.5	ļ	2022	1 () DDG	D) (I	500/	200/	10 1
35	Iacobucci	2022	MADRS	BMJ report	58%	28%	12 weeks
	et al.			confirmed ↓			
				depression			
				aspiession			

Table 5: Risk of Bias & Study Quality Assessment in Psilocybin-MDD Studies

No.	Author(s)	Year	Study	Bias	Randomizati	Blindin	Incompl	Selective	Overall
			Type	Tool	on	g	ete Data	Reportin	Risk
								g	
1	Weintraub et al.	2023	RCT	RoB-2	Low	Low	Low	Low	Low
2	Rucker et al.	2021	RCT	RoB-2	Unclear	Unclear	Low	Low	Some concerns
3	Agrawal et al.	2023	RCT	ROBI NS-I	N/A	N/A	Low	Some	Moderate
4	Raison et al.	2023	RCT	RoB-2	Low	Low	Low	Low	Low
5	Doss et al.	2021	RCT	RoB-2	Low	Some	Low	Low	Some concerns
6	von Rotz et al.	2022	RCT	RoB-2	Low	Low	Low	Low	Low
7	Carhart- Harris et al.	2021	RCT	RoB-2	Low	Low	Low	Low	Low
8	Erritzoe et al.	2024	RCT follow- up	RoB-2	Low	Low	Low	Low	Low
9	Gukasyan et al.	2022	Longitu dinal follow- up	ROBI NS-I	N/A	N/A	Low	Low	Moderate

1.0	337 ' ' 1	2024		DODI	N T/A	T c	Т	т	3.6.1
10	Weiss et al.	2024	Compar ative	ROBI NS-I	N/A	Some	Low	Low	Moderate
11	Sloshower et al.	2023	RCT explorat ory	RoB-2	Low	Some	Low	Low	Some concerns
12	Levin et al.	2024	Non- RCT	ROBI NS-I	N/A	N/A	Some	Some	Moderate
13	Dahmane et al.	2020	PK	ROBI NS-I	N/A	N/A	Low	Low	Low
14	Poulin et al.	2024	RCT protocol	RoB-2	Planned	Planned	N/A	N/A	Ongoing
15	Husain et al.	2023	RCT protocol	RoB-2	Planned	Planned	N/A	N/A	Ongoing
16	Daws et al.	2022	Imaging study	ROBI NS-I	N/A	N/A	Low	Low	Moderate
17	Agrawal et al.	2023	Non- RCT	ROBI NS-I	Some	Some	Some	Low	Moderate
18	Sloshower et al.	2024	Placebo- controlle d	RoB-2	Low	Some	Low	Low	Some concerns
19	Skosnik et al.	2023	Experim ental (EEG)	ROBI NS-I	N/A	Some	Low	Low	Moderate
20	Burmester et al.	2022	Open- label biomark er	ROBI NS-I	N/A	High	Low	Low	High
21	Goodwin et al.	2023	RCT	RoB-2	Low	Low	Low	Low	Low
22	Goodwin et al.	2023	Open- label (SSRI add-on)	ROBI NS-I	N/A	High	Low	Low	High
23	Breeksema et al.	2024	RCT + qualitati	RoB-2	Low	Some	Some	Low	Some concerns
24	Copa et al.	2024	fMRI study	ROBI NS-I	N/A	N/A	Low	Low	Moderate
25	Mertens et al.	2020	fMRI mechani sm	ROBI NS-I	N/A	Some	Low	Low	Moderate
26	Jungwirth et al.	2024	RCT	RoB-2	Low	Low	Low	Low	Low
27	Kolasa et al.	2024	Preclinic al (rat)	SYRC LE	Random housing unclear	Blindin g unclear	Low	Low	Some concerns
28	Ellis et al.	2024	Open- label pilot	ROBI NS-I	N/A	High	Some	Low	High
29	Hibicke et al.	2023	Preclinic al (rat CRS)	SYRC LE	Randomizati on low	Blindin g unclear	Low	Low	Some concerns

30	Griffiths et al.	2016	RCT (cancer + MDD)	RoB-2	Low	Low	Low	Low	Low
31	Goodwin et al.	2022	Phase 2 RCT (NEJM)	RoB-2	Low	Low	Low	Low	Low
32	Poulin et al.	2024	RCT protocol	RoB-2	Planned	Planned	N/A	N/A	Ongoing
33	Jungwirth et al.	2024	RCT	RoB-2	Low	Low	Low	Low	Low
34	Vohryzek et al.	2022	Imaging predictiv e	ROBI NS-I	N/A	N/A	Low	Low	Moderate
35	Iacobucci et al.	2022	Clinical outcome s (BMJ)	ROBI NS-I	N/A	N/A	Some	Low	Moderate

	•	•		'	1	
Table 8 .Grade asses Summary of findings:	sment					
Table 8 Psilocybin-ass	isted thereny	compared	to Placaba	/ SSDI (oso	italanram) fa	ar denreccion
Intervention: Psilocybi			to 1 lacebo	/ SSIXI (ESC	itaiopi am) id	or depression
Comparison: Placebo						
Outcomes	Anticipated	/	Relative	№ of	Certainty	Comments
Outcomes	effects* (9		effect	particip	of the	Comments
	Risk with	Risk	(95%	ants	evidence	
	Placebo /	with	CI)	(studies)	(GRADE	
	SSRI	Psilocyb	0-7	(*******))	
	(escitalop	in-			,	
	ram)	assisted				
	,	therapy				
Response rate (≥50%	253 per	513 per	OR 3.10	313	$\Theta\Theta\Theta\Theta$	Downgraded one level for
reduction in	1,000	1,000	(1.88 to	(5	Moderate ^a	imprecision because the total
depression score)		(389 to	5.12)	RCTs)	,b,c,d	sample size was modest and the
(Response rate (≥50%		635)				CI, although showing significant
reduction))						benefit, still includes a range
assessed with:						from moderate to very large
MADRS / QIDS						effects.
Mean change in	-	SMD	-	344	ΦΦ ΟΩ	Downgraded one level for
depression scores		1.47 SD		(5	Low ^{e,f,g,h,i}	inconsistency due to high
(MADRS / QIDS)		higher		RCTs)		heterogeneity ($I^2 = 97\%$).
(Mean change		(0.32				Downgraded one level for
(MADRS)) assessed with:		higher to 3.26				imprecision because the CI (– 3.26 to 0.32) crosses the line of
MADRS		3.20 higher)				no effect, leaving uncertainty
MADKS		nigher)				about the true effect size
Remission rate	253 per	513 per	OR 3.10	313	000	Downgraded one level for
(patients achieving	1,000	1,000	(1.88 to	(5	Moderate ^j ,	imprecision due to modest total
remission from	1,000	(389 to	5.12)	RCTs)	k,l,m,n	sample size, although CI
depression (Remission		635)	0.12)	11010)		indicates consistent and
rate)		/				significant benefit
assessed with:						
MADRS / QIDS						
Adverse events (safety	253 per	513 per	OR 3.10	313	ФООО	Adverse events were
outcome) (Adverse	1,000	1,000	(1.88 to	(5	Very	inconsistently reported across
events)		(389 to	5.12)	RCTs)	low ^{o,p,q,r,s,t}	studies.Confidence intervals
assessed with: Clinical		635)				include both harm and no
reports in RCTs						effect.Reporting bias cannot be

						excluded due to small number of trials.
--	--	--	--	--	--	---

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; OR: odds ratio; SMD: standardised mean difference

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

- a. Most included RCTs had low risk of bias; minor concerns about blinding in some studies unlikely to affect the results
- b. No significant heterogeneity ($I^2 = 0\%$).
- c. "Direct evidence for population, intervention, comparator, and outcomes
- d. The confidence interval around the effect (OR = 3.10 [1.88, 5.12]) is relatively wide. While the lower bound (1.88) still indicates a clinically important benefit, the upper bound (5.12) suggests a very large effect, which introduces uncertainty in the magnitude of effect. Sample size (n = 313 total) is moderate, but not large enough to rule out variability. Therefore, evidence was downgraded one level for imprecision.
- e. Most included RCTs had low risk of bias; minor blinding concerns unlikely to change direction of effect.
- f. High heterogeneity across trials ($I^2 = 97\%$), suggesting variability in effect sizes
- g. Direct evidence on relevant population, intervention, comparator, and outcomes.
- h. $(I^2 = 95\%)$
- i. Downgraded one level for imprecision because the CI crosses the line of no effect (-3.26 to 0.32), leaving uncertainty about true effect size.
- i. Most included RCTs had low risk of bias; minor concerns unlikely to change direction of effect
- k. Consistent effect across studies ($I^2 = 0\%$)
- 1. Direct evidence for relevant population, intervention, comparator, and outcome
- m. confidence interval is wide but still favors psilocybin
- n. Downgraded one level for imprecision due to modest total sample size, although CI shows significant benefit
- o. Adverse events were inconsistently defined and not always systematically assessed across trials.
- p. Considerable variability across studies in AE reporting and effect estimates
- q. Direct evidence on adverse events in the target population
- r. confidence intervals often wide, events relatively rare
- s. Downgraded for imprecision because confidence interval includes possibility of both harm and no effect
- t. Small number of trials; reporting bias cannot be excluded