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ABSTRACT

Background: Parkinson's disease (PD) is a neurological defect that causes both non-motor
(brain-related) and motor (physical) symptoms. As PD progresses, brain function (cognition)
may diminish in some cases. Over recent times, quantitative electroencephalographic (QEEG)
has emerged as a valuable tool for investigating the growth of cognition, psychological variables
and psychopathological illnesses (mental disorders).

Objective: The principal objective of this study is to convey knowledge about analysis
methodologies, novel approaches and practical information to those with little expertise, with
future directions.

Methods: This paper covers the EEG preprocessing steps with methods, analysis techniques,
transformation methods and classification details from the research conducted between 2006 to
2024. There exists no study categorizing the signal processing techniques based on the different
domains. Therefore, to fill this gap, this paper focuses particularly on the analysis categories that
are time-frequency domain (TFD), frequency domain (FD), time domain (TD), graph theory-
based, network dynamics, functional connectivity and connectivity analysis techniques with
their strengths and limitations. Additionally, an experiment is carried out to investigate the ability
of EEG to categorize cognitive processes and the relevancy of machine learning approaches in
determining the best classifier to handle EEG data.

Conclusion: Analysis of 59 studies revealed that non-neural machine learning techniques are
the most frequently employed. Additionally, the highest accuracy rates from recent studies are
identified and the usage percentages for each model are also calculated. Therefore, the purpose
of this study is to provide researchers with an initial base for future research on cognition in PD.
Keywords: EEG, Machine Learning, QEEG, Cognitive Profiling, DBS, PD, ICA, GNN

[1] INTRODUCTION

PD is the most prevalent source of dementia and mobility (movement) impairment in elderly people. James
Parkinson, who initially defined the condition, has come to represent the disorder [1]. In the latter stages of PD,
mental decline is a prevalent symptom. Problems with attention, memory and visual-spatial skills are some of the
other, brain related symptoms. The dopaminergic deficit is the cause of PD and this deficiency is the consequence
of neuronal death in the brain region known as the Substantia Nigra [2]. Patients who lived beyond 10 years
following their diagnosis are predicted to acquire dementia in 75% of cases. Detecting cognitive difficulties in PD
patients by the use of QEEG has shown encouraging results. Medications that boost dopamine levels, such as
levodopa, are used to treat the disease's symptoms. The benefits of levodopa for treating PD-related motor
symptoms are only transient and patients may still have motor problems during "OFF" time when the drug is no
longer effective. There is presently no approved disease-modifying treatment for PD-related cognitive decline [3].
Potential therapies for Parkinson's disease symptoms and progression include neuro-modulation, physical activity
and cognitive rehabilitation [4]. In cognitive rehabilitation treatment, therapists and psychologists collaborate
with medical professionals to develop a strategy to help patients restore as much cognitive function as feasible.
Cognitive functions include multitasking speed, concentration power, memory, processing speed, etc. A Neuro-
modulator refers to a substance that alters nervous system function in reply to an outside stimulus, such as
electrical pulses [5]. Motor symptoms respond better to neuro-modulators by Deep Brain Stimulation (DBS). DBS
uses a stimulator (a surgically implanted small device) that sends signals to the targeted area of the brain which
helps to improve motor functions. Despite the positive benefits on motor performance, some decline in cognitive
and neuropsychiatric areas, such as cognitive impairment [6], depression [7], speech intelligibility [8], etc., might
be found after surgery. Therefore, it becomes very necessary to know about the cognitive status of the candidates
before they go through the DBS screening [9]. Dementia (PDD), Mild Cognitive Impairment (MCI) and Subjective
Cognitive Decline (SCD) are all possible forms of cognitive disorder in PD patients. Patients with SCD typically
experience only a slight decrease in cognitive ability and their performance on neurocognitive tests falls within
the normal range [10]. In contrast, the cognitive decline shown in PD-MCI is gradual but constant. Visual-spatial
skills, mental processing speed, memory, planning & organization, language skills and social cognition are the
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six distinct subfields of cognition. PD-MCI is classified as either various domain or just one domain depending
on the number of affected cognitive regions [11]. Memory, concentration, executive function and visuospatial
abilities are required for a diagnosis of PD-D. People with PD-D often experience hallucinations, depression and
a lack of motivation [12]. PD and PD-MCI are defined using different criteria in the literature. The MDS-PD
(Movement Disorder Society Task Force) is the most often utilized criterion to diagnose PD-MCI [13]. After
following them for three years, researchers found that many PD patients likely retain some degree of MCI [14].
Even though 60% of those with MCI would develop PD-D within 4-12 years, according to certain research [15].
Numerous methods have been put out in the literature to evaluate cognitive function in PD. PD patients may
be evaluated for their cognitive abilities using a variety of tests, including the MoCA (Montreal Cognitive Test),
UPDRS (Unified PD Rating Scale) and MMSE (Mini Mental State Examination) scores. Multiple criteria are used
in the literature to assess patients with PD and their cognitive abilities [16] [17].
[1.1] Electroencephalogram (EEG)

An EEG can capture the brain's electrical activity. In 1875, an English doctor named Richard Caton found that
electrical currents could be detected from the exposed brains of rabbits using simple radio equipment. Later, a
German neurologist by the name of Hans Berger confirmed this finding. The brain's electrical signal is a miniature
representation of the mind's operations. Clinically, this is of interest in the study of epilepsy, brain injury, strokes,
tumors and behavioral anomalies, etc. Brain waves may be broken down into five distinct categories: gamma,
alpha, theta, beta and delta. [ 18] (displayed in Table 1).

Table 1: Details of EEG frequency bands

Frequency Location Frequency Useful area Nature
Bands Range
Delta (8) Frontal Lobe 0to 4 Hz. Measures deep sleep high waves Amplitude,
slow
Theta (0) Central, 4 to 8 Hz. Measures the stages of high waves Amplitude,
Temporal sleepiness that are most slow

relevant to meditative
states and daily life

Alpha (o). Frontal, 8to 12 Hz. Used to evaluate one's low waves Amplitude,
Occipital mental state, focus or fast
concentration
Beta (B) Central, Frontal 12 Hz. to 30 Helpful for gauging the low waves Amplitude,
extent of brain injury fast

An in-depth study of the brain is made possible by collecting EEG data over a wide range of frequencies.
Quantitative electroencephalographic analysis (QEEG) is often known as "brain mapping." QEEG analysis goes
beyond visual EEG interpretation, which may help us learn more about the brain and how it works [19]. Trained
experts may utilize the EEG and the accompanying QEEG data to assess brain function and monitor the effects of
therapies like neuro- feedback and medication. The first step in the EEG analysis is signal acquisition. It is the
process of capturing and storing electrical activity produced by the brain using an electroencephalogram (EEG).
Several electrodes are applied to the scalp in order to identify and quantify the electrical impulses produced by
brain neurons. These electrodes (sensors) are linked to an EEG machine or device, which amplifies & filters the
electrical impulses before recording them for examination. Pre- & post-processing of EEG data are crucial steps
after acquiring signals. The analysis of signal can be performed using various methods as displayed in Fig. 1.
Preprocessing is essential to get a clean signal for feature extraction. Independent Component (IC) Analysis and
Principle Component (PC) Analysis are often used to eliminate artifacts in ECGs (Electrocardiograms) and EOGs
(Electrooculograms). Instead of this, there are many preprocessing pipeline methods, which consist of the number
of steps that get automatically executed.

There are benefits and limitations to each of these approaches. The researcher can use different preprocessing
pipeline methods according to his/her requirements.
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Fig. 1: Main steps of the processing
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The phases of cognition in PD have been identified in this work by a review of QEEG. This study is structured
as follows: section 2 includes an extensive literature review that covers all EEG analysis approaches and
transformation methods with the findings and conclusions of the previous studies using these analysis techniques.
This section covers difficulties and restrictions in the related existing research. A Machine Learning (ML) model
comparison for anticipating cognitive phases in PD is discussed in Section 3. Section 4 discusses the results, along
with some observations and discussions for the future. Section 5 presents the findings and conclusions.

[2] RELATED WORK

Various EEG analysis techniques are available in the literature to analyze the EEG signals of PD patients. These
include individual alpha frequency-based, spectral, occipital peak frequency analyses, phase lag index, weighted
& directional phase lag index and graph theory-based analysis. This paper also emphasizes the importance of
analysis methods. Furthermore, these analysis methods can help researchers to develop new therapeutic approaches
to improve their results. EEG signals are typically recorded in the time domain. However, in certain applications,
it is necessary to analyze the signals in the FD. To achieve this, signal conversion techniques are used to convert
the EEG signals from TD to FD or TFD. These conversions provide insights into the frequency content and time
dynamics of the signals.

Based on the literature, IAF (Individual Alpha Frequency) has been examined for frequency domain analysis [20]
[21] [22]. It refers to the frequency range of 8 to 12 Hz at which an individual's alpha brainwaves oscillate. It is
observed that healthy people will have higher mean IAF as compared to PD-MClI patients. Similarly, spectral power
distribution among a wide frequency range gives information about various levels of cognition in Parkinson’s
disease [23] [24]. High theta band and low alpha band spectral power have been observed for PDMCI or PDD
patients as compared to non-demented patients of PD. This suggests that people with PDD have more spectral power
in the theta band (4.0-8Hz) than those with PD-NC or healthy controls. In PD, not only spectral power but also
functional interconnectedness (associations between several areas of the brain) has been investigated. The alpha
band correlation is often lower in people with cognitive impairment. In one of the studies, to automate the separate
steps of preprocessing, feature extraction and classification, a pipeline technique has been used [25]. It is analyzed
that the pipeline model's accuracy for the intermediate stage is low (falls in between good or bad cognition)
prediction because it has a very large number of features. With such a large number of features, the problem of
overfitting occurs which leads to high training accuracy and low-test accuracy. A pipeline is a sequential method
that involves breaking down a difficult activity or procedure into several stages or steps, where each stage
performs a particular task and passes the outcome to the next stage as input. Each stage of the pipeline runs
separately and concentrates on one specific aspect of the entire procedure. Various issues observed from the literature
are the low accuracy of models, data variability among subjects and the non-linear & complex nature of EEG signals.
Therefore, analysis methods are a crucial component of EEG in Parkinson's disease to cover all these issues.
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Fig. 2: Spectral, Spectro-temporal and connectivity measures with transformation methods

[2.1] Quantitative analysis methods to classify cognition

To classify cognition, analysis of EEG signals can be done using Quantitative electroencephalography (QEEG).
A QEEG procedure involves several stages. The initial part of the process is acquiring an EEG signal, which may
be done using several different types of EEG equipment and electrode setups. Preprocessing is the second step
and it entails removing artifacts from the EEG such as muscle activity, tiredness, eye blinks, pulse rate and so on.
As part of the preprocessing phase, clean EEG segments are selected for further analysis. Finally, linear or non-
linear mathematical techniques can be used to clean the EEG signal to extract a parameter that is required for
further processing. When EEG signal is assumed as a steady state signal then linear techniques can be used for
the analysis. In reality, the EEG signals exhibit irregularity and erratic nature. Therefore, some non-linear
approaches are also available for analysis. Linear techniques that are used to remove the artifacts are band-pass
filters, notch filters and adaptive filters. Whereas Blind-Source Separation (BSS) methods such as ICA,
Multichannel Convolutional Autoencoder (MCA) and PCA are non-linear techniques (Fig. 1). ICA divides mixed
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EEG signals into statistically independent components and isolates brain-related signals to remove artifacts. The
MCA method is deep learning (DL) based method which discovers the connection between mixed EEG signals
and their underlying sources, enabling efficient artifact removal. PCA decreases the dimensionality of EEG data,
by separating the orthogonal components from EEG data. These all methods are effective in artifact detection and
removal. After pre-processing, the next step is feature extraction, information on EEG signals is given in the time
domain, but those signals do not give the exact frequency information. So, those signals are transformed into the
frequency domain using different transformation methods (Fig. 2) like the Fast Fourier Transform (FFT), Welch
method, Short-Time Fourier Transform (STFT), Multi-taper method, Discrete and Continuous Wavelet
Transform (DWT & CWT) and Complex Morlet Wavelet Transform (CMWT). These methods give detailed
information about the frequency bands with time and spectral power of each band in the whole spectrum. After
domain transformation, EEG characteristics can be analyzed by different types of measures i.e. connectivity
measures, spectro-temporal measures and spectral measures as shown in Fig. 2. Spectral measurements are used to
measure the distribution of power across each band in the EEG signals. They include relative power, absolute power,
median frequency and power ratio, etc.

The spectro-temporal measures are used to give the time-frequency features such as energy distribution, band
power ratio, TF correlations, peak frequency over time and event timing, etc. Connectivity measures, instead,
concentrate on the relationships between various brain regions. whereas, focus on the interactions between
different brain regions. There are two types of connectivity measures: single network estimation and whole
network estimation. Single network estimate is used to investigate the functional connectivity and communication
patterns between specific brain area pairs. Single network estimation measures include coherence, phase
synchrony, cross-correlation, Inter-trial & Inter-channel Phase Synchrony (ITPS & ICPS) and Functional
Connectivity, etc. On the other hand, whole network estimation analyzes the connectivity patterns across the entire
brain network. It provides a comprehensive understanding of how different brain regions connect and interact
with one another. Whole network estimation methods involve techniques such as graph theory analysis, network
connectivity analysis and network dynamics analysis, etc. These methods help to understand the overall
organization, efficiency and integration of the brain network, which further helps in detecting the cognitive
impairment of PD patients.

[2.1.1] Transformation methods: Several methods exist for generating EEG sub-bands, including FFT, digital

filters and STFT & wavelet transform. Table 2 lists many common transformations used in EEG signal analysis.
Converting data between different domains, such as from the TD to FD and back, is a popular use of FFT [26].
The FFT technique works well with stationary linear inputs but is very sensitive to background noise. Unlike other
digital signal processing approaches, FFT operates poorly with non-stationary signals because it cannot pick up
on small changes in the signal [27]. As a result, there is confusion over when certain frequency-domain features
are recorded. Thus, FFT is not preferred in many modern EEG-based applications, such as monitoring driver
sleepiness or identifying sleep disorders, etc. In addition to separating the data into distinct EEG frequency bands,
the FFT may be utilized to extract statistical metrics [28]. To analyze non-stationary data, STFT may be used, a
window-based variation of FFT. STFT operates by performing the FT on each frame of the signal. Instead of
analyzing the complete signal, this permits the frequency content to be studied over time. The resultant STFT
may be visualized as a spectrogram, a two-dimensional depiction of the signal's frequency content against time.
The resolution of the frequency analysis in the STFT is limited by the length of the analysis window, which is a
downside of the STFT. It will be difficult to see the time-varying behavior of particular frequency components if
the analysis window is too small, this results in high frequency resolution but low temporal resolution. However,
if the analysis window is too big, both time and frequency resolution will be inadequate, making it impossible to
distinguish between the various frequency components. Therefore, choosing an appropriate analysis window is
important for achieving a fair balance between time & frequency resolution in STFT analysis. Additionally, STFT
may not be well-suited for analyzing non-stationary signals with rapidly changing frequency content, as it
assumes the signal is stationary over the length of the analysis window [29] [30]. The easiest method to extract
the sub-bands from digital filters is to use an FIR filter. Among the two approaches, the frequency technique and
the windowing methods of FIR filters, the latter is superior for EEG analysis. FIR stands for Finite Impulse
Response, which is a digital filter frequently employed in applications for signal processing. FIR filters are a class
of linear filters, meaning that their output is a linear arrangement of their input signal samples. One of the
advantages of FIR filters is that they have a linear-phase response, this implies they add a uniform delay to the
whole signal at all frequencies. This may be helpful in fields like audio and picture processing where it's crucial
to maintain the signal's phase information.
Non-stationary or time-varying signals in the EEG may be transformed using a time & frequency analysis
approach called as a CWT. It gives a time & frequency representation of the EEG signal by decomposing it into
a sequence of wavelets with varying scales. In contrast to CWT, which utilizes a continuous range of wavelets,
DWT uses a sequence of discrete wavelets. Using a number of coefficients, DWT separates the EEG data into a
range of frequencies. The energy or power of the EEG signal at different frequencies may be analyzed with the
help of these coefficients. CWT and DWT methods are used in feature extraction techniques. However, the
optimal method for analyzing an EEG signal relies on the task at hand and the nature of the signal itself [31].
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Table 2: Different transformation methods for EEG signal analysis
Transformation Methods Strengths |Limitati0ns
'Wavelet CWT (Continuous  ja) Contains continuous parameters |a) parameters change causes
like time & scale inefficiency and duplication.
Transform Wavelet b) best for extracting small b) high delay, limited to continuous data
Transform) features
DWT  (Discrete [a) fast computation power a) to choose decomposition levels
Wavelet b) supports both orthogonal and |b) selection of mother wavelet function
Transform) biorthogonal. is not clear
CMWT (Complex [a) Goodtime-frequency resolution a) Need expertise as parameters should
Morlet Wavelet) b) Robust to noise be selected Carefully
c) Capture both amplitude and ) Complex computations
information of EEG signals
Digital Filters [IR d) More efficient supports recursive |b) limited to linear analysis
operations
FIR Frequency fa) intuitive operation, much like FFT ja) the filter has a long length.
b) It can tolerate loads of any b) the outcomes are less optimal.
size response
Window [a) easy in comparison to other [a) only use if the specified frequency
approaches response is critical design.
b) comfort of usage
c) ability to adapt designs
Fourier FFT (Fast Fourier [a) givesthe bestresults for stationary fa) sensitivity to noise
Transform Transform) EEG signals b) limited to signals that are stationary
b) fast Computations
c) used to extract statistical features
STFT (Short Time fa) gives good performance if EEG ja) fixed size window
Fourier transform)  [signals are non-stationary b) wide window consumes more time
c) narrow window leads poor frequency
resolution

[2.1.2] Analysis techniques: There are several categories for analysis of EEG: TD analysis, FD analysis, TF
analysis, Phase Synchrony, Functional Connectivity, Network Dynamics, Network Connectivity and Graph
Theory analysis. EEG signals are recorded in the TD, therefore, there are different methods available to convert
the TD signal to the FD and TF domain and vice versa (As shown in Fig. 2). These approaches are used to

transform and analyze EEG signals. Each analysis method is addressed in detail in the following subsections.
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Fig. 3: Components of ERP waveform in time domain analysis

[2.1.2.1] TD (Time domain) analysis

TD or Time domain analysis can help to tell how a signal changes over time, there is no any direct information
about frequency. Each data point in the signal represents a particular moment in time. It consists of properties
like signal strength (amplitude), duration, shape and temporal interactions between distinct portions of the signal.
The TD techniques are used to calculate the Event-Related Potential (ERP), measure peak amplitudes, detect
event onset & offset times and analyze the signal shapes. ERPs are the electrical brain responses that occurs in
response to certain events or stimuli. The brain's reaction to specific stimulus or event, related to cognition or
motor is measured by ERP. It's an increase or decrease in voltage that results from brain activity in response to a
stimulus [32]. A stimulus refers to an event or a condition that is presented to the subject during an experiment or
recording session. Neurological and behavioral disorders, such as neurodegenerative illnesses, may be studied
using the ERPs method [33]. Time domain analysis of EEG data reveals four major components of ERP
waveform: The N100, N200, P200 and P300 (shown in Fig. 3). The N100 component is a negative waveform
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deflection commonly seen about 100 ms after a sensory input has been presented. In addition to being
characterized by a negative deflection in the waveform, the N200 component appears roughly 200 ms after the
commencement of the stimulus. Attentional control, working memory and response inhibition are all assumed to
be reflected in the cited study [34]. Around 200 milliseconds after a stimulus is presented, a positive deflection
known as the P200 component appears. A positive deflection known as the P300 component happens 300—-500 ms
after a stimulus is given. Attention, working memory and decision- making are only a few of the cognitive
processes that have been linked to it [35]. Researchers may learn about the underlying brain mechanisms of these
processes by analyzing the temporal evolution and amplitude of these components. Peak detection, zero-crossing
rate, waveform slope and energy calculations are a few examples of the features that are extracted from the time
domain signals. Statistical metrics like median, mean, variance, STD (standard deviation) and skewness are
computed to measure the central tendency, variability and distribution of the signal in the TD.

[2.1.2.2] FD (Frequency domain) analysis

The FD (frequency domain) is employed to examine the frequency component in the EEG signal. As mentioned
earlier, alpha, delta, beta and theta have various ranges of frequencies. The FT of the EEG signal converts the
signal from the TD to the FD to perform the spectral analysis. Spectral analysis is a technique for examining the
frequency components by dividing a signal into its constituent frequency parts that can give vital information
about the underlying mechanisms in the brain. The resultant power spectrum reveals the power distribution (power
spectral density) across each frequency band. Many distinct mental states and cognitive operations have been
linked to certain frequency ranges in the electromagnetic spectrum.

For instance, the alpha (8-12 Hz) band is connected with wakeful relaxation, whereas the beta (12-30 Hz) band is
associated with alertness and focused attention and the delta (0.5-4.0 Hz) & theta (4.0-8 Hz) bands are generally
associated with deep sleep and relaxation. It may also be used to examine how brain activity evolves over time
during the execution of a mental task or in reaction to sensory input. Different research will probably utilize
somewhat different cutoff frequencies. For a more in-depth analysis, the bands can be further divided into sub-
bands like alpha 1 (8-10 Hz) and alpha 2 (20-30 Hz), etc. On the basis of the specific research question and the
type of EEG data, some researchers use bi-spectral analysis when they observe that linear spectral analysis
techniques (FTT, welch method, wavelet transform, stft method, etc.) are insufficient for capturing the nonlinear
interactions in the data. The bi-spectral analysis examines the relationships between multiple frequency
components of a signal, which can be useful in understanding the complicated systems. This analysis is performed
by calculating the bicoherence or related measures [39]. Some previous studies that are based on spectral power
analysis to classify the different cognition categories are tabulated in Table 3 [36-40]. The number of the
participants, criteria used for cognition classification, regions used for analysis and the main findings using
spectral analysis methods are also included in the table. This tabular data is useful for researchers aiming to
identify cognition in PD because it provides insights into the analysis criteria and the findings of the previous
papers.

Table 3: Studies related to spectral power (frequency-based) analysis using EEG data [23] [36-40]

lAbbreviations employed in Table 3: PDD = FD with dementia; HC = Healthy controls; UPDES = Unified PD Fating
Score; DSM-IV = Diagnostic & Statistical Manual for Mental dysfimction; PD-IN = PD normmal control; AD =
lAlzheimer’s disease; MMSE = Mini-Mental Score Examination; FD-MCI = PD with cognitive mild impaimment.
Author Participants Regions Criteria used for Main findings
classification
Bosboom et al. HC=13, PD- fromtal, « EEG  =signals with a « FD-MNC m companson to HC,
(2006) NC=13, FPD-D = | temporal resting state and eyes relative theta power enhanced
- 13 panetal closed whereas beta power dropped.
ar;l;il - FD patients  without « The FPDID patients’ gamma
cen .i =1 dementia had an MMSE strength was lower than that of
ceapia score of greater than 28, the FD-INC sroup when
Patients with dementia evaluated.
A =2
had MMSE == 24 « PDD showed a drop in alpha&
beta power and a nse m delta &
theta power.
Ponsen et al. PD-INC-13, 34 «» FD-NC patients with a s Individuals with FDD had more
(2012) regions MMSE score of =28, delta & theta strength than those
FD-D-13 across ith PD
the bras « PD-MCI with DsM- | ™ :
& bram IV cnteria for dementia » The PDD patients’ fromtal and
and had a MMSE <24 panetal-temporal-occipital areas
hawvelower alpha and beta power
Fonseca et al. A =38, Frontal * closed-eyes resting « PDD has the highest delta and
2013) PDD = 12. terzlﬁgral posture EEG. ietla Pom‘ers while PD-CIN had
PDNC — 31 a1 | " AD followed the DSM- & lowest.
- ) eecpita IV standards. = FDD showed the highest alpha
HC =37 left—right and beta frontal hemisphere
coherence, while AD showed the
lowest.

[2.1.2.3] Time & frequency-based analysis

Time and frequency (TF) analysis is concerned with how the amplitude and power of brain waves changes over
time at specific frequency bands. This method breaks down MEG or EEG signals into their individual bands of
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frequencies (alpha, beta, delta, theta), allowing researchers to identify the neural oscillations that are relevant for
cognitive processing. This analysis can help the researchers to answer the questions like, "When does a particular
frequency band become more active or suppressed during a cognitive task?" It is a helpful instrument for
evaluating the characteristics of brain responses in terms of duration and frequency. The effective method used
in TF is CWT with morlet wavelets, which may improve the clarity of this representation. The resulting
spectrogram may appear more or less blurry, particularly for very low and higher frequencies. If the researchers
do not have the exact prior knowledge of the frequency patterns they are interested in, then the spectrogram may
appear blurry in terms of resolution [41, 42].

[2.1.2.4] Phase Synchrony and Connectivity Analysis

The connectivity analysis methods are used to give information on how the brain's many regions are connected
and coordinate their functions with each other. TF analysis gives the phase information that can be used as a base
to calculate the measures of phase synchrony in EEG data. Phase synchrony (phase coherence or phase locking)
describes the degree of synchronization (coordination) or regularity in the timing of cyclical patterns of neural
activity between different brain regions [41].

¢ Functional connections can be determined by investigating patterns of connectivity between various brain
regions. The researchers can identify PD patients with different cognition on the basis of connectivity alterations
in the brain. The term "functional connections" is coined to describe the relationship among the electrical activity
recorded by several sets of electrodes in the same region or different regions of the brain [43, 44]. Coherence,
phase lag index (PLI), weighted phase lag index (wPLI) & directed phase lag index (dPLI) are all examples of
connectivity metrics that may be used to determine how well different regions of the brain are synchronized with
one another [44-46]. Functional connectivity comes under the category of single connection estimate that
investigates the connectivity or functional relationship between two brain areas or within a single brain region.

e PLI measures the consistency of phase relationships, particularly in the context of brain oscillations. It gives
the output as 0 and 1. A PLI value of 0 implies that the two signals are leading or lagging each other equally and
there is no consistent phase relationship. A value greater than zero implies that there is an imbalance in the
likelihood of one signal leading or trailing the other. A value of 1 indicates that one signal consistently leads or
lags the other signal. A greater PLI value indicates better phase synchronization, which can indicate a strong
functional connection between brain areas.

PLI = |E[sgn(I(Xij))]

In this equation, [ is used to represent an imaginary component, sgn is used for sign, E is used to represent
expected (mean) value and Xij is cross-spectral density between two signals i and j.

o dPLI is a PLI extension that provides directional knowledge regarding the phase connections of two signals.
It can identify phase synchrony and determine which signal is moving ahead or lagging in direction. The null
connectivity for dPLI is indicated by 0.5 (0,0.5,1), whereas the null connectivity for PLI and wPLI is 0 (0,1).
dPLI = E[H(I(Xij))]

In the given equation, I is used to represent an imaginary component, H is used for the Heviside step function, E
is used to represent expected (average) value and Xij is cross-spectral density between two signals i and j.

e wPLI is another PLI form, which tries to improve the sensitivity to the actual phase synchronization. It helps
to diminish the volume conduction effect. Volume conductivity effect is a situation when the electrical activity of
one electrode spreads out to other electrodes and therefore, false electrical activity is recorded at several electrodes.
This might produce inaccurate connection estimates. The wPLI solves this problem by allocating weights to the
phase differences according to their dimensions. Because volume conduction is more likely to be the cause of
phase variations near 0 or 180 degrees, therefore, they are given less weight in the computation []. These measures
are used to investigate functional connectivity and brain network features.

wPLI =|E[(I(Xij))]|

ETI(IXi)I]

In the given equation, [ is used to represent an imaginary component, Xij is cross-spectral density of two signals
i and j and E is used to represent expected (mean) value.

[2.1.2.5] Network Analysis Graph Theory is a framework for analyzing and studying networks, which are made
up of nodes (vertices) and edges (links) connecting them. Graph theory is used for the representation and analysis
of complex links or connections in the brain networks. It comes under the category of whole n0Oetwork estimation
which analyzes the entire brain network and examines the connection between all pairs of brain areas or nodes.
Its goal is to characterize the overall brain network's global features and connectivity patterns. The network
dynamics and network connectivity also come under whole network estimation. Network dynamics is the study
of how the links or interactions within a network change over time. Researchers can learn more about how the
brain's connection patterns change during different cognitive states or in response to external inputs by studying
network dynamics. On the other hand, network connectivity is used by researchers to uncover and characterize
functional connections or networks in the brain that are linked to particular cognitive functions or neurological
diseases. Table 4 represents the studies that have employed time-frequency, functional connectivity and network
theory-based analysis methods to investigate EEG signals. These studies are provided with number of
participants, their findings, brain regions used and the criteria used for the classification of cognition. By
reviewing earlier research findings (Table 4), the author can gain a better understanding of connectivity and
network-related analysis approaches and gain significant knowledge about cognitive classification.
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Table 4: Studies related to time-frequency, connectivity and graph theory-based analysis of EEG [48-52, 64, 67-

72]

IAbbreviations Used in Table 4: HC = Healthy controls; RTF=Relative time spent by EEG frequency bands ; ROR=
Resting occipital thythm; PDD = PD with demented patients; MCI=Mild-Cognitive Impairment; PLI = Phase lag
index; MoCA = Montreal Cognitive Assessment; DSM=Diagnostic and statistical manual of brain dysfunction;
IMMSE = Mini-mental Score examination; HAMA = Hamilton anxiety rating scale ; HAMD = Hamilton depression|
rating scale; dwPLI = debiased weighted phase lag index

\Author Participants Regions used for|Criteria used for Main findings
analysis classification of cognitive
status
Min Caiet 68 PD patients [The posterior ¢ HAMA and HAMD e The study revealed unusual
al. (2021) (MCI /Non-  |middle frontal  scales used for anxiety and [functional interconnection
MCI) gyrus PMFG)  |depression access patterns in theta frequency
region band, in the region of
Lior Senior INot Specified | Diagnosis is done on e The study found distinct
Molcho et participants with the basis of MMSE score activity patterns among young
al. (2022) different and older participants in various
cognition= 60, imental states.
HC=22
Marta This study Central Region | EEG isrecorded inthe |o The results indicate specific
Kopansca et [involves 5 rest and open-eye state. pattern amplitudes at brain areas
al. (2022) people with a Based on the C3 & C4. The QEEG research
generalized international 10-20 gives critical information on the
anxiety system, the QEEG data particular brain wave patterns in
disorder(GAD). were collected by individuals with GAD, allowing
monitoring all waves from [for an early and reliable
central sites (C3, CZ, C4). |diagnosis of issues.
Emad PD=15,HC= 18 |All regions e Sparse discriminant e This study finds strong
|Arasteh et analysis is used to connections between the learned
al. (2022) discriminate between PD latent features and clinical
and HC indices connected to motor
symptoms in PD.
Ute INon- demented |All Brain e MMSE Score, PD e To analyze dynamic changes
Gschwandtn |PD=75, 72 HC |Regions patients were followed in EEG synchrony patterns, they
er et al. over 3 years developed a method termed
(2023) "Time-Between- Phase-
Crossing" (TBPC).

[2.1.2.6] Individual alpha frequency (IAF)
IAF is performed as a part of the FD. IAF analysis determines the peak (highest) frequency of the alpha frequency
band. The alpha (8Hz-12Hz) rhythm is an oscillatory brain activity that is, usually located in the brain's posterior
regions, especially when a person is comfortable and their eyes are closed. IAF is linked to cognitive abilities and
it reflects certain properties of the brain's functioning. One of the studies discovered that the IAF is highly constant
in healthy individuals up to the age of 80 years [53]. They discovered that the IAF cannot be modified by cognitive
therapies. Cognitive treatments are activities or exercises that aim to improve cognitive abilities. Cognitive
interventions refer to activities or tasks that are designed to improve cognitive abilities. Therefore, in the case of
a healthy individual with good cognitive functioning, the IAF is expected to remain stable even after cognitive
interventions are performed. IAF is one of the most used methods for examining subject-to-subject variation in
EEG rhythms. There are many different approaches in the literature for determining IAF, including the well-
known popular peak- frequency (PF) technique, the transition-frequency (TF) technique and the extended-band
(EB) technique. Although based on qualitative criteria, it could be challenging and time-consuming to repeat since
it requires a visual evaluation of each individual EEG spectrum. In order to get around this issue, earlier research
proposes a novel channel reactivity- based (CRB) technique for determining IAF [54]. Because of its emphasis
on quantitative indications and criteria, CRB focuses on task-driven alpha response patterns rather than the
existence of EEG peaks. Table 5 summarizes the investigations and findings based on IAF analysis methods of

EEG signals.

Table 5: Studies based on the IAF analysis method of EEG [20-22]

IAbbreviations are: HC = Healthy controls; IAF = Individual Alpha Frequency, MCI=moderate Cognitive Impaired
atient; DLB = Dementia with Lewy bodies; ADD = AD patients with dementia; PDD = PD with demented patient;

Author Participants Regions Criteria used for classification Main findings
used for |of cognitive status
analysis
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al. (2013)

= 43

e Cambridge Cognitive
Examination (CCE) was used
to evaluate global cognitive

Babiloni et al.[HC = 75, AD-[Frontal, e AD-MCIwasdiagnosed withje Author examined IAF and
(2017b) MCI= 75, |Central, a resting-state EEG with MMSE [found differences in the groups
PD-MCI=75  |Parietal, score of 24, of ADD, PDD, DLB and healthy
Temporal, e A logical memory testscontrols.
Occipital Score e The order is (HC > AD >
e A DSM criterion is used for[PD). The PDD and DLB had the
IPD-MCI lowest IAF values, while the HC
group had the greatest IAF

e Eyes-closed resting state (@ This study lasted four years

Olde Dubbelink et|HC = 14, PD  |Allregions |condition and was a longitudinal study

e The major peak frequency of
IAF was greater in HC as
compared to PD. (HC > PD)

function and detect the |¢ HC IAF remained largely

presence of dementia. stable between baseline and
follow-up, but PD group
experienced, on average, lower
IAF than baseline

Based on the prior research, spectral analysis may reveal the EEG signal's frequency content, but it does not give
the information that how these frequency components change over time. Similarly, IAF analysis provides
information about the peak alpha frequency in an individual, but it does not capture the changes in alpha activity
over time. Therefore, time & frequency analysis is an important tool in EEG analysis because it offers a more
comprehensive understanding of the rapid alterations in neurological activity that occur throughout time. Another
key component of EEG analysis is investigating brain connection patterns. Graph theory-based network analysis
and functional connectivity measurements may help in determining the connections between various areas of the
brain.
These techniques enable researchers to better understand the complex relationships and interactions that exist
between different brain regions or electrodes. Therefore, researchers can gain a deeper understanding of neural
mechanisms and identify potential biomarkers for the examination and treatment of PD by selecting a suitable
analysis method aligned with their research objective.

[3] EXPERIMENTAL ANALYSIS OF ML MODELS FOR CLASSIFICATION OF PD-D, PD-MCI, PD-
NC & HC
Various ML, DL and TL approaches can be used to predict and classify PDD, PD-NC, HC and PD-MCI
categories. There are numerous strategies available in the literature [55-59]. In the present work, some ML
methods have been used to classify PD-NC, HC, PD-MCI, & PDD. The dataset has been obtained from the North
Shore Institute of Health Science, Chicago. The purpose of this experiment is to find the best classification
approach for accurately classifying cognition using EEG signals. The results of the techniques have been
presented and tabulated for comparison.

[3.1] Objectives of this study are.

o Comparative analysis of ML algorithms for predicting different stages of cognition

e Spectral & temporal analysis for feature extraction of the Parkinson’s disease stage prediction i.e. HC, PD-
NC (high cognition), PD-MCI (intermediate cognition), PD-D (low cognition)
Various steps that lead to the classification are followed in next section (Fig. 4).
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Process flow of work
Data collection (EDF formaf)
Path mapping Readine FEG =ignals from files nzine MNE
Pre-processing
Datafiltering, Re-referencing Dropping channel, divide signals into epochs,

b4

Feafure exftraction
Set label Feature exfraction using spectral Divide the data into groups

Classification (imhbalizng framning models)

Comparative analysis

Fig. 4: Main steps of work process flow

Various steps that lead to the classification are followed in the next section. In Fig. 4, to get noise-free and artefact
free information from EEG signals, the preliminary stage is pre-processing. Pre-processing of these signals
includes data filtering, re-referencing, removing bad channels, dividing the signals into epochs and using ICA to
get rid of artifacts. After pre-processing of signals, labels are assigned to the various categories (PDD, HC, PD-
MCI, PD-NC) based on MoCA and UPDRS score. The next phase is feature extraction, which extracts important
characteristics from the pre-processed EEG signals using spectral and statistical evaluation approaches. These
obtained features are then used to train classifiers such as SVM, KNN, MLP, RF and LR. The trained classifiers
are subsequently tested and the results are presented in a tabular format. Various evaluation metrics (accuracy,
F1-score, precision, recall and AUC score) are used to compare the results of different classifiers.

[3.2] Dataset used

The North Shore institute (Chicago) makes the dataset available upon request through the appropriate channels
[60]. For the experiment, a total of 40 persons (healthy as well as PD patients) of the same sex & age group are
used. Standard clinical evaluation of PD patients includes obtaining scores on the UPDRS-III scale, disease-stage
scale Hoehn and Yahr (H&Y) & Montreal Cognitive Assessment i.e. MoCA recommended scale for measuring
cognitive changes in PD. The UPDRS is a standardized scale used to examine and monitor the severity of PD
symptoms. MoCA is a quick way to gauge a patient's mental health. The MoCA measures a variety of mental
abilities, such as focus, spatial awareness, memory, language and decision-making. A score of 30 indicates
excellent cognitive function; the test takes around 10 minutes to perform on average. UPDRS and MoCA are both
scoring systems used in medical assessments, they serve different purposes. The UPDRS is used specifically for
assessing Parkinson's disease symptoms, while the MoCA monitors cognitive skills in patients.

In this paper, the dataset is divided into four categories based on the MoCA scores, a PD-NC MoCA score is 26
or above; PD-MCI is defined as a score between 19 and 25 and PDD is defined as a score of 18 or below [61-62].
[3.3] Methodology

To highlight the efficiency of different ML methods, five different supervised classifiers are considered: Support
Vector Machine (SVM), Logistic Regression (LR) & K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP)
and Random Forest (RF) classifiers. Finally, a comparative analysis of these techniques is done.

[3.3.1] Data pre-processing

Data preprocessing is the most necessary step of EEG analysis which makes the data usable. The dataset includes
non- EEG parameters and there are total of 51 channels, but only 20 channels have been employed for the study
as all other channels are not mapped according to the “10-20” International Montage System. A band-pass filter is
used to process data with the frequency ranges from 0.5 Hz and 45 Hz. Frequencies higher than 45 Hz with line
noise & artifacts and low frequencies below 0.5 Hz, are also filtered. The signal is then normalized via re-
referencing. ICA is applied to remove ECG and EOG artifacts. ECG artifacts are heart-related and EOG artifacts
are related to eye blinking, eye movement, etc. To enhance the categorization and interpretation of the EEG data,
signal segmentation is carried out. The whole 3 minutes’ time series of the EEG signal is split up into units known
as epochs. Rest of the steps after preprocessing are feature extraction and classification, which are explored in the
proceeding subsections.
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[3.3.2] Feature extraction
Feature extraction is done using spectral analysis and statistical methods, after combining all these features, the
classifiers are trained for the classification. Fig. 5 illustrates the feature extraction procedure for one EEG sample
using spectral analysis. The EEG data is separated into segments of 5 seconds after preprocessing. After signal
segmentation, the Discrete Fourier Transform (DFT) is applied to each unit individually to transform TD signal to
FD signal. It provides the segmented EEG data's amplitude and phase information at various frequencies.

le-11 Spectral Power Density for Each Frequency Band

12 — delta

theta
~— alpha

101 — heta
~—— gamma

0.8 1

0.6 1

0.4 4

|
T

Power spectral density
Power Spectral Density (dB/Hz)

0.04

20 30 40
Frequency (Hz)

Fig. S: Steps for feature extraction using spectral analysis

(a) Spectral power

Spectral power density is computed with the Welch technique to calculate the spectral properties. From the total
power of the signal, it is possible to determine the power of each frequency band using the power spectral density.
To analyze the strength distribution over the neurological frequency spectrum, the EEG data is separated into five
frequency bands. For EEG data segmentation, the welch method relies on Discrete Fourier Transform (DFT) to
perform periodogram (TD signal to FD) calculations as displayed in Fig. 5. The windowed data is transformed
using a DFT to provide the overlapping segment periodogram. The power measure is then calculated by squaring
the data and averaging the periodograms.

(b) Statistical methods

Some temporal characteristics include the mean, peak-to-peak (PTP), variance, maximum, minimum, standard
deviation (SD), index of maximum value, index of minimum value & absolute difference of signal, as well as
skewness & kurtosis, are extracted using statistical methods.

[3.3.3] Classification

o Support Vector Machine (SVM): The linear and nonlinear issues can both be handled by the SVM algorithm.
The technique's main goal is to find the line, or hyperplane, that best divides the categories. The largest margin
between the values on either side of the decision line is the main focus of SVMs. The primary objective of the
technique is to locate the line (hyperplane) that optimally separates the categories.

o K-Nearest Neighbor (KNN): The KNN is an example of an irregular method used in ML. New data items
are classified in accordance with their similarities to records in the training set. The similarity is often defined in
terms of the Euclidean distance or another commonly used metric. When making predictions, the approach finds
the most similar existing record and gives that record's classification to the new record. The most popular class is
chosen from among a group of 3, 5 or 9 neighbors. KNN classifier's default K value is 5.

e Multi-Layer Perceptron (MLP): MLP classifier uses supervised learning, it needs a training dataset in order
to learn. The training dataset includes output labels and input data (x) (y). Using the input data, the MLP classifier
learns how to translate the data to the output labels. The MLP classifier may be trained to convert data into labels
and then used to make predictions on fresh data. This classifier takes in data (x) and outputs a label prediction
(y). As a robust ML strategy, it may be put to use in both regression and classification. It is often used in
applications like automatic speech and image recognition.

e Random Forest Classifier (RF): The supervised learning framework from which RF emerges. It can be
applied to ML problems involving regression and classification. Its foundation is the idea of ensemble learning,
which integrates a number of classifiers to tackle intricate issues and boost model effectiveness.

o Logistic Regression (LR): Making predictions regarding a dependent or target variable is done using this
supervised learning technique. Correlations between the variable that is dependent and several independent
variables are found using LR. For binary categorization, LR models are frequently utilized.
From the literature, ML techniques or hybrid ML techniques have been used due to the short size of the dataset
in this research field. However, to get better and more accurate results, the use of DL methods such as CNN and
RNN networks can be investigated further. These advanced methods can help to understand the cognitive patterns
in PD patients more effectively.
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e Deep Learning (DL): A subfield of ML called DL focuses on training multi-layered artificial neural
networks. These neural networks can perform difficult tasks like natural language processing, image and audio
recognition and more because they can learn data with the hierarchy structures. These are a few categories of DL.
¢ Convolutional Neural Networks (CNN): CNNs are a subset of DL architecture. These are used for processing
grid- like input, including images or 2D signals. CNNs do well in finding and assessing spatial trends in data.
They employ specialized layers, such as convolutional, pooling and fully linked layers.

¢ Recurrent Neural Networks (RNN): RNNs are a form of DL architecture that is specifically developed for
processing sequential input with temporal relationships. These are the best structures for dealing with time series
data. Unlike feedforward networks, RNNs feature connections that allow information to persist and be modified
over time. RNNs are suitable for applications such as recognition of speech & processing of natural languages,
because they process incoming data sequentially and retain information from previous inputs. Because RNNs
have internal memory states, they can access and recollect past data to influence their current forecasts. A couple
of RNN modifications that enhance the ability to detect long-term dependencies are the Gated Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM).

e Transfer Learning: To overcome the problem of having a limited amount of data, an approach called
Transfer Learning (TL) can be explored. This approach makes use of models that have already been trained on
large datasets from related areas, such as VGG16, VGG19, Inception V3, Resnet50, etc.

e Simulation of work has been performed using Python 3.9 on Google Colab. EEG data is in EDF format, EDF
stands for "European Data Format," a file format that stores information in 16 bits. MNE library is used to access
and edit EDF files. MNE library includes a high-level interface for easy access to read and write EDF files. EDF
browser is used to visualize all the EEG signals.

[4] RESULTS AND DISCUSSION

[4.1] Statistical Analysis

Table 6 displays the baseline clinical characteristics and demographics of the four study groups. All the groups
(HC, PD-NC, PD-MCI, PDD) are notably different from each other in terms of motor score (UPDRS), cognitive
score (MoCA) and disease duration. These groups are compared statistically on the basis of the average values
with their standard deviations. The means of several groups are compared using the ANOVA test to see if there
are any statistically significant differences between them. The ANOVA test is used to compare the means of
multiple groups to determine if the differences between them are significant. Except for age, all the groups showed
significant differences. In the ANOVA test, F and P values are obtained, where 0.05 (P<0.05) was chosen as the
statistical significance criterion. The p-values for UPDRS score, PD duration and MoCA score were 0.001, which
is significantly lower than the predefined significance criterion of 0.05. This indicates that there are substantial
differences between the categories in terms of these measures. However, the results for age were not significant,
suggesting that there are no differences in age across the categories.

Abbreviations used: N/A=Notapplicable; UPDRS III=Unified PD Rating Score (Part I1I to check the level of motor
symptoms); N=Number of candidates; MoCA=Montreal Cognitive Assessment (level of cognition), p<0.05
Table 6: Mean (SD) of baseline clinical and demographic characteristics of categories

HC,N=18  [PD-NC,N=6 __ |PD-MCL,N=7 _ [PDD,N=7 _ [F-value P-value
Age(years) 72(8.5) 71(7.0) 73(5.5) 73(10.2) 0.166 0.918
Sex(F/M) 7/11 4/2 2/5 2/5 - B
UPDRS IIT N/A 15(9.6) 15(7.1) 23(7.1) 25.690 0.001
SCore

MoCA Score 30(0) 30(1.1) 22(2.3) 12(4.7) 28.313 <0.001
Duration of PD___ [N/A 4(1.3) 5(4.5) 52.5) 13.892 0.001

The results from using traditional ML and ensemble approaches with a different set of features are analyzed and
discussed in this subsection. After model-specific hyper-parameter tuning to enhance model performance, all of
the results are mentioned. F1 score and AUC-ROC have been selected as the main techniques of evaluation since
they together offer a reliable method for determining predictive performance. The relative strengths in every
frequency range for all the four groups are used to conduct the classification. When compared to the other
ML techniques (SVM-78%, KNN-81%, MLP-75%, Logistic Regression-72%) in this experiment, the
RF approach yields the highest accuracy (91%) to identify four categories of cognition (PD-NC, PD-MCI, PDD,
HC) in PD.

The Logistic Regression classifier has a 72% overall accuracy for classifying various categories of cognition and

its hyperparameters are "C" = 0.0001, 0.001, 0.01, 0.1, 1 and "penalty" = 12. Table 7 compares the accuracy,

precision and F1 score for Parkinson's disease (NC, MCI, PDD) patients with healthy controls in the same sex

and age range. With 93.14% accuracy and a precision rate of 0.76, LR has the highest classification accuracy for

the PD-NC group but the lowest classification accuracy for the healthy control groups. The average curve area

(AUC) for LR according to the ROC curve (Fig. 6) is 0.90.

The AUC score ranges from 0 to 1, with 1 indicating the best possible classifier and 0.5 indicating the need for
improvement.

The model has a 90% chance of properly ranking a positive instance higher than a negative instance, according to
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an AUC score of 0.90. However, compared to other classifiers, this one has the lowest overall accuracy. Due to the
non-linear character of EEG signals, LR, which is a linear model, may not properly capture this non-linear nature.

As a result, its accuracy is lower than that of more sophisticated non-linear models.
Table 7: Logistic Regression

Class Accuracy Precision Recall F1 Score

Controls 75.52% 0.82 0.73 0.77

PD-NC 93.14% 0.76 0.70 0.73

PD-MCI 88.36% 0.59 0.81 0.68

PDD 86.87% 0.55 0.61 0.58
ult-Class ROC Curve for EEG Data for Logistic Regression Classifer]
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Fig. 6: AUC plot for Logistic Regression with spectral and statistical features

The overall accuracy for the classification of different categories of cognition using the KNN classifier is 81%
with the relative power across five frequency bands along with the statistical features. The hyperparameters used
for the KNN classifier are ‘n_neighbors’=7,5,3, ‘weights’= uniform, distance and ‘p’=1,2. Table 8 shows accuracy,
precision

& F1 score for healthy controls and PD patients (NC, MCI, PDD), with same-sex and age groups for KNN. This
classifier gives the highest accuracy to classify the PD-MCI group with 94.03% accuracy with a precision rate of
0.82, whereas it gives the lowest accuracy in predicting Healthy Control groups. ROC curve (Fig. 7) shows the
average curve area for KNN is 0.94, which means that the KNN model performs very well in distinguishing
between the classes. KNN is a non-parametric classifier, which performs well when the number of features is
relatively small and it can handle non-linear relationships between features and target variables more effectively.
Therefore, this classifier performs better than LR, SVM and MLP classifiers.

Table 8: KNN
Class Accuracy Precision Recall F1 Score
Controls 84.18% 0.85 0.84 0.84
PD-NC 91.34% 0.83 0.61 0.70
PD-MCI 94.03% 0.82 0.89 0.85
PDD 91.64% 0.65 0.80 0.72
Multi-Class ROC Curve for EEG Data for KNN Classifier
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Fig. 7: AUC plot for KNN Classifier with spectral and statistical features
With spectral and statistical information, the MLP classifier's total accuracy is 75%. The hyperparameters for the
MLP classifier are adaptive learning rate, 1000 maximum iterations and 100 hidden layer sizes. Table 9 shows the
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accuracy, precision & F1 score for matched age and sex groups made up of PD patients (NC, MCI, PDD) and
healthy participants. MLP predicts the PD-NC group with the highest accuracy (95.52% accuracy and a precision
rate of 0.88), but predicts the Healthy Control groups with the lowest accuracy. The ROC curve (Fig. 8) shows
that the average curved region for MLP is 0.92. In classification tasks, MLP perform better than LR classifiers
because they can capture the non-linear relationships between the input characteristics and the desired output,
while LR classifiers retain a linear relationship.

Table 9: MLP

Class Accuracy Precision Recall F1 Score
Controls 87.16% 0.87 0.87 0.82
PD-NC 95.52% 0.88 0.78 0.76
PD-MCI 90.45% 0.75 0.79 0.66
PDD 88.06% 0.64 0.64 0.60

Multi-Class ROC Curve for EEG Data for MLP Classifie)
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Fig. 8: AUC plot for MLP Classifier with spectral and statistical features
The highest accuracy (91%) is achieved by RF. Table 10 shows accuracy, F1 score, precision for sex and age-
matched, healthy individuals and PD patients (NC, MCI, PDD) using Random Forest. The hyperparameters used
for the RF classifier are ‘n_estimators’= 50, ‘min_samples_leaf’= [3, 4] and ‘max_depth’= 4, 5. It gives the
highest accuracy to classify PD-NC group with 99.1%, whereas HC group with 91.04%, PD-MCI with 95.22%
and PDD with 96.72% accuracy and the highest precision rate is 0.99. ROC curve (Fig. 9) shows the average curve
area for Random Forest is 0.99. An AUC score of 0.99 suggests that the model has a 99% chance of correctly
choosing a positive instance higher than choosing a negative instance. This classifier outperforms all other
classifiers to classify the cognitive status of patients because it effectively handles the complex and nonlinear
patterns present in the EEG data related to the cognitive processes, due to which RF gives the best performance
among all other models.
Table 10: Random Forest

Class Accuracy Precision Recall F1 Score
Controls 91.04% 0.99 0.85 0.92
PD-NC 99.1% 0.93 1.0 0.96
PD-MCI 95.22% 0.77 1.0 0.87
PDD 96.72% 0.82 0.98 0.89
Multi-Class ROC Curve for EEG Data for Random Forest Classifier
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Fig. 9: AUC plot for Random Forest Classifier with spectral and statistical features

The overall accuracy of SVM classifier is 77% with the spectral and statistical features. The hyperparameters used
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for the SVM classifier are 'C'= 1,10 and 'kernel= linear'. Table 11 shows accuracy, precision and F1 score for
patients with PD (NC, MCI, PDD) and healthy controls, in the same sex and age group using SVM. It gives the
highest accuracy to classify PD-NC group with 94.63% accuracy and a precision rate of 0.85, whereas it gives
the lowest accuracy in predicting Healthy Control groups. ROC curve (Fig. 10) shows the average curve area for
SVM is 0.87, which means that classifier needs to improve its performance. This classifier performs better than
LR and MLP classifiers because SVM's ability to capture and model nonlinear relationships can lead to better
performance compared to LR and MLP classifiers, which do not capture such complexities so effectively.

Table 11: SVM

Class Accuracy Precision Recall F1 Score
Controls 83.88% 0.83 0.84 0.84
PD-NC 94.63% 0.85 0.74 0.80
PD-MCI 88.66% 0.76 0.72 0.74
PDD 87.46% 0.55 0.64 0.59

Multi-Class ROC Curve for EEG Data for SVM Classifier
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Fig. 10: AUC plot for SVM Classifier with spectral and statistical features

Table 12 shows the Accuracy chart for all categories with different classifiers. In Fig. 11, Random Forest gives
the best accuracies for all categories. Among all the groups, PD-NC are classified with the highest accuracy by
all classifiers. All the accuracies are above 70% for all classifiers. Healthy Control groups are classified with the
lowest accuracy among all other groups.

Table 12: Accuracy comparison chart

SVM KNN MLP RF LR
Controls 83.88% 84.18% 87.16% 91.04% 75.52%
PD-NC 94.63% 91.34% 95.52% 99.1% 93.14%
PD-MCI 88.66% 94.03% 90.45% 95.22% 88.36%
PDD 87.46% 91.64% 88.06% 96.72% 86.87%
Comparison Chart based on Accuracy
12
1
08 — E — _L%
06 — . —_— \
0.4
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0
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== Controls === PO-NC === P0-M(| ==@=PDD

Fig. 11: Comparison chart on the basis of Accuracy

Table 13 shows the F1-Score Comparison Chart for all categories with different classifiers. In Fig. 12, the Random
Forest gives the highest F1 score for PD-NC group, whereas KNN classifier shows the lowest F1-score for PD-
NC group. KNN gives the best F1-score as 1 for PDD group, indicating the perfect precision and recall. Overall
Random Forest shows the best score (close to 1) for all categories.

Table 13: F1-Score comparison chart

SVM KNN MLP RF LR
Controls 0.84 0.84 0.82 0.92 0.77
PD-NC 0.80 0.70 0.76 0.96 0.73
PD-MCI 0.74 0.85 0.66 0.87 0.68
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Table 14: Precision comparison chart

SVM KNN MLP RF LR
Controls 0.83 0.85 0.87 0.99 0.82
PD-NC 0.85 0.83 0.88 0.93 0.76
PD-MCI 0.76 0.82 0.75 0.77 0.59
PDD 0.55 0.65 0.64 0.82 0.55
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Fig. 13: Comparison chart on the basis of Precision

On the basis of these comparison charts, Random Forest outperforms the other classifiers in Accuracy, F1-score
and Precision (Fig. 13 & Table 14). Random Forest effectively captures the complex and nonlinear patterns
present in EEG data related to cognitive processes, enabling accurate classification and interpretation of cognitive
states. RF has the ability to handle nonlinear relationships and it is robust to noise & outliers in EEG signals.
[4.2] Prisma Model

In the flow diagram of Prisma model (Fig. 14), the three primary steps of the search strategies are identification,
screening and eligibility. The identification stage is the first step in gathering all possibly relevant studies which
address the research problem. A thorough search is carried out across many databases, employing keywords,
subject headings and other search parameters. The primary purpose at this stage is to find as many studies as
possible that could be considered in the review, without regard for whether they fit the criteria. Following the
identification stage, numerous research are collected. The screening step involves eliminating studies written in
non-English languages and extraneous book chapters. Titles and abstracts are quickly evaluated to exclude
irrelevant research, duplicate entries and studies which fell beyond the scope of the review. Only studies that
passed the initial screening, proceeded to the next round. At the eligibility step, all remaining studies' full texts
are carefully examined to make sure they satisfied the comprehensive inclusion requirements for the review.
Compared to the original screening, this step offered a more thorough examination. The final synthesis of the
review then contained the studies that are found eligible after going through this procedure. In the included stage,
59 articles are chosen for review based on cognitive classifications in PD. These studies are organized as follows:
21 research compare MCI with non-MCI, while 11 studies distinguish between HC, MCI and non-MCI. Eight
research investigate MCI and PDD. Three studies examine HC, PD-NC, MCI and PDD. Eleven research compare
PD-NC, HC and MCI, while five studies categorize PD-NC, MCI and non-MCI [4,6-7,10-16,19-25,36-40,43-
50,53-55,57,61,63-75,77-87].
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Fig. 14: The flow diagram of PRISMA Model

The graph (Fig. 15) illustrates a comparison of studies conducted from 2016 onward, highlighting the accuracy
achieved in diagnosing cognitive decline in PD using EEG data. The studies use various ML approaches and the
accuracy ranges from 80% to 92%. Notably, [25] achieved the best accuracy of 92% by combining the Tsfresh
lib+ML pipeline with Occipital peak frequency. However, that high accuracy is limited to identifying only two
cognitive groups. The general pattern shows that improvements will occur over time, particularly with the
combination strategies, which consistently outperform single methods. Current approaches still fall short of
providing complete and highly accurate classifications for a full spectrum of cognitive disorders in PD. Therefore,
to more accurately classify the entire spectrum of cognitive impairment, more advanced and novel approaches
must be developed and integrated.
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Fig. 16: A) Frequency of ML models in EEG-based cognition detection studies for PD, B) Model type distribution
in PD cognition detection: comparative usage rates of non-neural and neural network techniques in 59 studies.
In Fig 16. Figure A presents a bar chart illustrating the frequency of various models used in the analyzed studies
to diagnose cognitive impairments in PD using EEG data. The analysis shows that RF and SVM were the most
commonly used models, accounting for 14% of the 59 publications reviewed [21, 25,36-40,48, 78]. These were
followed by KNN, which was utilized in 12% of research, LR in 10% and the LEAD-PD model in 8% of the
studies [63-69,71-72,78-80,84]. Figure B depicts a pie chart categorizing the models used in 59 selected studies
as non-neural machine learning (ML) techniques or neural network-based approaches. Notably, 11.5% of the
models used in this research were neural network-based, with DL approaches, including CNNs, being commonly
used. However, 88.5% of the models used were non-neural ML approaches.

[4.3] Discussion and Future Directions

From 2006 to 2024, multiple studies were conducted to diagnose brain dysfunction in PD utilizing EEG and ML
techniques. These investigations used EEG data to generate accurate cognitive biomarkers for PD patients,
allowing for more effective monitoring of cognitive function. However, the classification of cognitive impairment
has primarily relied on machine learning techniques due to the small size of medical datasets, which poses a
significant challenge. DL approaches have been utilized extensively in numerous EEG-based areas, including
emotion recognition, schizophrenia detection, epilepsy prediction and brain-computer interface (BCI)
applications. However, its use in detecting cognitive decline in PD is relatively unexplored. While machine
learning methodologies are frequently employed, only a few studies have explored deep learning for this purpose,
highlighting a significant research gap [81-85]. One study used a 1D CNN-LSTM architecture to extract salient
characteristics from EEG signals, resulting in excellent accuracy when categorizing PD patients with cognitive
deterioration [81,82]. Another study employed 3D- CNNs on sleep EEG data and achieved promising results in
identifying PD patients with MCI and NC [83].

When working with the EEG data, the challenges associated with EEG are unwanted noise, artifacts from many
sources such as muscle movements, eye blinks, electrical interference and non-stationary (properties change over
time) properties, which can impact data quality and analysis approaches in EEG signals. During EEG acquisition,
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the signals may change from one individual to another due to variations in skull thickness, structure of brain &
conductivity. This condition is called data variability which is the most common problem with EEG data [41].
Furthermore, EEG electrodes record signals from many brain locations, which makes it difficult to identify
specific signal sources. Improved source localization approaches help researchers and clinicians to provide more
precise details of the areas of brain that are involved in specific cognitive processes. This method can better
estimate the locations of neural activity within the brain. Advanced methods are frequently used in these
techniques to improve the accuracy of source localization. EEG analysis includes laborious preprocessing and
manual feature selection techniques which requires a lot of expertise. It requires an excessive amount of time and
work to manually choose and compute the features from EEG data, hence an automatic approach is required to
carry out each step for all EEG signals. Therefore, For the future, ML and DL technologies may be utilized to
analyze EEG signals in place of traditional approaches to automate the EEG analysis process. These methods can
be used for numerous purposes like feature extraction, identification, pattern recognition and data denoising, etc.
In this paper, the purpose of this experiment and comparison of various classification techniques is to present the
best method among various techniques available in the literature. The aim of this experiment is to find an effective
classifier that could deal with the complexity and non-linearity of EEG signals. In this experiment, feature
extraction is done by combining spectral characteristics and statistical features. Spectrum indicators of cognitive
impairment may be seen in the delta (0.5-4.0Hz), theta (4.0-8.0 Hz), alpha (8.0-10.0 Hz) and beta (13.0-30.0 Hz)
frequency range in PD patients. The classifiers such as LR, SVM, MLP, KNN and RF are thoroughly analyzed. The
findings show that the RF classifier surpassed the rest of the classifiers, attaining an impressive 91% accuracy.
This study's findings not only increase present diagnostic practices but also influence future research efforts,
helping both clinicians and scientists in the development of more accurate cognition classification techniques.
One of the major drawbacks of EEG-based cognition classification is the small dataset. Two strategies—data
augmentation (DA) and transfer learning (TL)—have drawn a lot of attention in the literature as potential
solutions to this problem. The process of creating additional training data from the old data after using various
DA approaches is known as data augmentation. Conversely, transfer learning fine-tunes pre-trained models which
have already been trained on relevant EEG datasets for the particular cognition categorization task. These
strategies may provide potential solutions to the problem of data scarcity in EEG-based cognitive classification.
Future studies could use advanced techniques, such as directional functional connectivity, to examine the neural
networks involved in cognitive processes in PD. In the frequency domain, bi-spectral analysis is also an effective
tool for researching cognition in PD. This method can be used by researchers if they want to deeply investigate
nonlinear interactions and complicated dynamics in EEG data, particularly when looking into cognitive functions
and neurological disorders. Bi-spectral analysis has been employed in EEG for BCI and emotion identification
tasks [39, 42], but its potential for classifying cognition in PD has not yet been investigated. Additionally, this
paper's experimental results demonstrate that ML algorithms have the capability to classify cognitive aspects in
PD with a high degree of accuracy. However, it is also important to investigate deep learning models and neural
networks like GNN (Graph Neural Networks), which have shown good accuracy and performance in BCI, seizure
detection and emotion classification tasks using EEG [73-75]. GNNs are a type of artificial neural network
that is designed to deal with networks or graphs. GNNs have shown potential in tasks such as functional
connectivity analysis, brain network analysis and EEG data classification, making them a useful tool in EEG-
based research. For future research, source-level EEG analysis may provide more accurate and detailed
information than sensor-level data, providing deeper insights into cognitive processes. Furthermore, rather than
assessing all brain regions, concentrating on specific regions of interest may produce more targeted and useful
results in the context of cognition detection in PD. Despite this, there has been a very modest number of
connection studies that have specifically addressed the cognitive states of PD patients [63-66, 70-72, 76-77]. This
indicates that there is still much to be learned regarding the brain processes that underlying cognitive dysfunction
in PD and there is a need for more research in this area.

5. CONCLUSION

In this paper, a comprehensive review of various pre-processing, analysis and classification techniques is given.
Early identification of several illnesses, such as cognitive impairment in PD and AD, is a challenging and complex
task. Therefore, in this paper the objective is accomplished using traditional ML methods such as MLP, RF, KNN,
LR & SVM, each of which has an F1 score ranging from 60 to 90%, an accuracy of between 72 and 91% and
precision ranges from 50 to 100%. The best outcome is obtained during Random Forest classification to classify
the cognitive status of four categories (HC, PD-NC, PD-MCI, PD-D). Random Forest, KNN, SVM, MLP and
Logistic Regression are the classification algorithms in descending order of maximum accuracy attained. Random
Forest effectively captures the complex and nonlinear patterns present in EEG data related to cognitive processes.
As a result, RF outperforms all other classifiers in the present case. To acquire the best outcomes from the
Classifiers, hyper-parameter optimization is also used. Therefore, this study's practical contribution to the field
of neuroscience is to use spectral analysis as a feature extraction method and find the optimum classification
algorithm to categorize the cognitive profile of PD patients using EEG signals.

Furthermore, A total of 59 previous researches are analyzed and it is discovered that non-neural techniques were
more frequently used, often in combination with other feature extraction methods. The highest accuracy rates are
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also reported in recent papers and calculated the percentage of each model employed in these investigations.
Data Availability Statement: Upon reasonable request, the North Shore Health Institute in Chicago will provide
the data supporting the study's conclusions.
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