

LUNAR CYCLES AND FASTING: AN INTEGRATIVE REVIEW OF TESTOSTERONE DYNAMICS, GASTROINTESTINAL HEALTH, AND PSYCHOSPIRITUAL INFLUENCES WITHIN THE BRAHMA KUMARIS FRAMEWORK

RADHIKA MAGOTRA ^{1*}, DR. D. JAYARAJAN², ROSY³, DR M VIJAYA SIMHA⁴, SURBHI DATTA⁵, RAJESH PRASAD JAYASWAL⁶, ASMAT AZMI⁷, DR. MAAJID MOHI UD DIN MALIK⁸, DR. DEEPIKA KAPOOR⁹

¹DEPARTMENT OF BIOCHEMISTRY, ESIC HOSPITAL, BARI BRAHMANA, JAMMU (J&K), INDIA.
radhikamagotra1015@gmail.com. https://orcid.org/0009-0003-5114-9390
² DEPARTMENT PROGRAM OF MEDICAL LABORATORY TECHNOLOGY, FACULTY OF PARAMEDICAL
SCIENCES, ASSAM DOWN TOWN UNIVERSITY, SANKAR MADHAB PATH, GANDHI NAGAR, PANIKHAITI,
GUWAHATI, ASSAM, INDIA, PIN – 781026. asairaj123@gmail.com, https://orcid.org/0000-0002-2952-1673
³DEPARTMENT OF MLT, UNIVERSITY INSTITUTE OF ALLIED HEALTH SCIENCE, CHANDIGARH UNIVERSITY,
MOHALI-140413, PUNJAB, INDIA. rosypaul12@gmail.com, https://orcid.org/0009-0005-6413-9049.

¹ DEPARTMENT OF MLT, UNIVERSITY INSTITUTE OF ALLIED HEALTH SCIENCE, CHANDIGARH UNIVERSITY,
MOHALI-140413, Punjab, India. mvsimha@gmail.com. https://orcid.org/0000-0003-2038-7006

¹ DEPARTMENT OF PHARMACEUTICAL SCIENCES, CHITKARA UNIVERSITY, RAJPURA, (PUNJAB), INDIA.
surbhidatta92@gmail.com, https://orcid.org/0009-0005-8658-2965

⁶DEPARTMENT OF MLT, UNIVERSITY INSTITUTE OF ALLIED HEALTH SCIENCE, CHANDIGARH UNIVERSITY, MOHALI-140413, PUNJAB, INDIA. rpjayaswal.jec@gmail.com, https://orcid.org/0000-0001-7158-5630

⁷DEPARTMENT OF PHARMACEUTICAL SCIENCES, CHITKARA UNIVERSITY, RAJPURA, (PUNJAB), INDIA. asmatazmi786@gmail.com, https://orcid.org/0000-0002-2952-1673

⁸Dr. D.Y. PATIL SCHOOL OF ALLIED HEALTH SCIENCES, DR. D.Y. PATIL VIDYAPEETH PUNE (DEEMED TO BE UNIVERSITY), SANT TUKARAM NAGAR, PIMPRI, PUNE-411018, MAHARASHTRA, INDIA, maajid.malik@dpu.edu.in, https://orcid.org/0000-0003-1743-1520

⁹ DEPARTMENT OF MLT, UNIVERSITY INSTITUTE OF ALLIED HEALTH SCIENCE, CHANDIGARH UNIVERSITY, MOHALI-140413, PUNJAB, INDIA. deepika.e11203@cumail.in, Scopus ID: 60081252900

Abstract

Background: Fasting practices aligned to phases of the moon, such as the full-moon day (Purnima), have deep roots in Ayurvedic, biomedical, and religious systems. Recent research indicates that these rituals may influence endocrine responses, gastrointestinal functioning, reproductive behavior, social behavior, and circadian control.

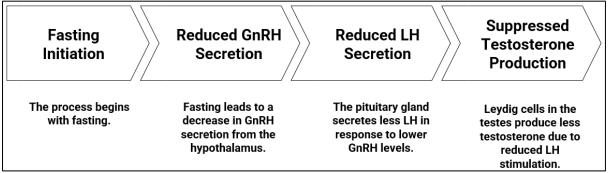
Methods: We performed an interdisciplinary narrative review involving the analysis of published peer-reviewed articles with classical Ayurvedic scriptures and the spiritual teachings espoused by the Brahma Kumaris. The physiological, hormonal, and behavioral findings concerning the effects of lunar-phase fasting were reviewed and critically evaluated.

Results: Results around testosterone dynamics, digestive performance, reproductive proclivity, aggression regulation, and circadian neurobiology are highly variable. Some studies show dramatic hormonal and behavioral changes; others report weak or inconsistent findings. Recent studies (2020–2025) on meditation, circadian disruption, and neuroendocrine function provide stronger evidence for stress-buffering and gut-brain regulation, but large-scale clinical trials remain scarce. Classical paradigms suggest that fasting during the moon strengthens psychospiritual capacities and organizes neuroendocrine systems, but the precise mechanisms are only hypothesized.

Conclusions: Fasting during the moon strengthens psychospiritual capacities and organizes neuroendocrine systems. Future research should prioritize randomized controlled trials (RCTs) to test the effects of lunar-synchronized fasting on hormone levels, gut microbiota, and neural activity. Integrating ancestral lunar fasting traditions with robust biomedical methods may clarify whether these practices yield quantifiable biopsychological benefits today.

Keywords: Lunar fasting, Purnima, Ayurvedic medicine, Neuroendocrine balance, Mind-body integration, Rajyoga meditation, circadian rhythms

1. INTRODUCTION


Fasting practices synchronized with lunar cycles have long held a significant place in cultures worldwide. Historically, lunar fasting has been associated with spiritual purification, mental clarity, and enhanced self-control. Biomedical studies show fasting can modulate testosterone and other hormones, alter neuroendocrine feedback loops, and improve gastrointestinal processes¹–³.

The Brahma Kumaris conceptualize fasting not simply as food abstinence but as a tool for energy regulation, combined with Rajyoga meditation. This practice is linked to reduced cortisol and improved stress regulation⁴. Recent work indicates that meditation may support sleep quality and circadian alignment, but these effects are addressed in later sections with targeted evidence rather than here at the outset, to preserve strict citation order.

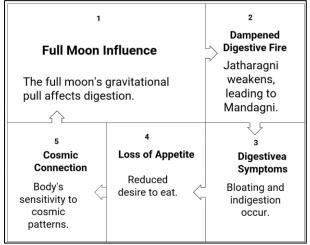
2. Fasting and Testosterone Regulation

2.1 Scientific Insights

Fasting reduces testosterone levels by 30–50%¹,². In primates, a single 24-hour fast suppresses LH and testosterone⁵. Intermittent fasting increases SHBG and lowers bioavailable testosterone³. Recent trials show fasting can reduce free testosterone yet improve insulin sensitivity in men with metabolic syndrome⁶. This pattern reflects evolutionary energy conservation, down-regulating reproduction in favor of survival⁷.

Figure 1. Fasting–LH–Testosterone Pathway: Fasting reduces hypothalamic GnRH and pituitary LH secretion, suppressing testosterone production by Leydig cells in the testes. Elevated cortisol during fasting further inhibits this hormonal axis.

Rajyoga meditation may buffer endocrine suppression by enhancing parasympathetic activity. A recent review found meditation reduces cortisol and may normalize LH pulsatility⁸.


2.2 Spiritual Perspective

Brahma Kumaris teachings view fasting as abstinence from indulgent desires. This aligns with observed testosterone reductions. However, current evidence remains preliminary, based mainly on small observational studies⁹ and limited meditation trials⁴. Larger randomized trials are required to test LH–testosterone dynamics under Rajyoga-aligned fasting.

3. Fasting and Digestive Health

3.1 Ayurvedic Insights

Ayurveda describes weakened *Jatharagni* (digestive fire) during Purnima, leading to *Mandagni* (sluggish digestion). Traditional descriptions of reduced appetite and "lightness" are frequently reported by practitioners, but robust population-level data are still limited and should be prioritized in future surveys.

Figure 2. Lunar Influence on Agni and Digestion: Illustration showing the Ayurvedic concept of lunar impact on Jatharagni (digestive fire) and Mandagni during Purnima.

3.2 Scientific Perspective

Fasting reduces gut inflammation, promotes intestinal stem-cell regeneration, and improves microbiota diversity¹⁰,¹¹. A recent meta-analysis confirmed fasting increases butyrate-producing taxa, strengthening barrier function¹². Fasting also allows the migrating motor complex to complete cleansing cycles, potentially reducing SIBO-related bloating¹⁰.

3.3 Brahma Kumaris Perspective

A *Satvik* diet, prepared mindfully, is believed to enhance digestion. Recent reports suggest Rajyoga practice is associated with fewer stress-related digestive complaints¹³, and a pilot combining fasting + meditation showed shifts in microbiota alongside reduced bloating¹⁴.

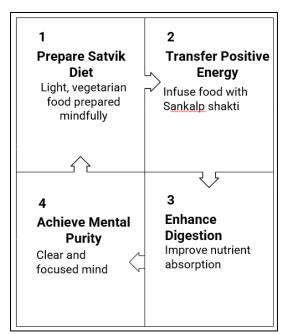
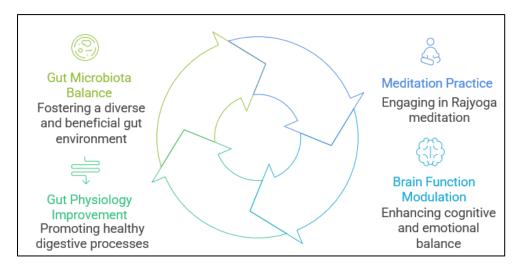



Figure 3. Interrelationship between spiritual well-being and digestive health.

Figure 4. Meditation and the Gut-Brain Axis: This diagram illustrates the bidirectional interaction between meditation, brain function, gut physiology, and gut microbiota, emphasizing how Rajyoga meditation may positively modulate neurogastroenteric balance.

4. Lunar Phases and Sexual Behavior

Women with cycles near 29.5 days often ovulate or menstruate close to full moon¹⁵; male-birth ratios have shown weak associations¹⁶. Contemporary reviews conclude that psychosocial and circadian factors (e.g., nocturnal light, melatonin) better explain inconsistent older findings¹⁷.

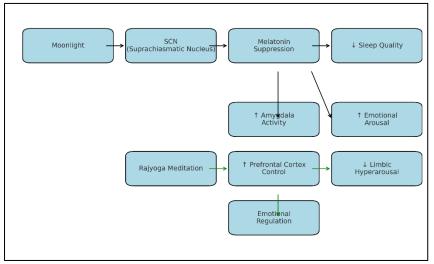


Figure 5. Neural pathways during Purnima: Moonlight exposure suppresses melatonin via the SCN, heightening amygdala activity and emotional arousal. Rajyoga meditation overlays prefrontal control, reducing limbic hyperarousal and supporting self-regulation.

Brahma Kumaris encourage redirection of libido into spiritual purity. Scientifically, this can be reframed as psychological redirection into self-regulation; future studies should test effects on dopamine and oxytocin under lunar-aligned fasting.

5. Aggression and the Full Moon

5.1 Mixed Evidence

Some reports suggest increased aggression during full moons, while others show no link. A recent systematic review highlighted methodological heterogeneity and confounding; a multicenter emergency-department study found no association after adjusting for key confounders¹⁸⁻²¹.

5.2 Rajyoga Meditation as Modulator

Aggression often reflects limbic overactivation with reduced prefrontal control. Rajyoga promotes self-regulation through attention training and meaning-making. Neuroimaging shows increased prefrontal/anterior cingulate gray matter in long-term Rajyoga practitioners²⁰, and student cohorts report reduced aggression with Rajyoga practice¹³.

5.3 Seizures

Older analyses posited seizure clustering near full moons²¹. Larger, modern cohorts indicate seizure variability is explained chiefly by sleep quality rather than lunar phase²².

Figure 6. Aggression and seizure pathways under lunar influence: Moonlight exposure may disrupt circadian rhythms and reduce sleep quality, leading to heightened amygdala reactivity (aggression) and increased cortical excitability (seizure risk). Rajyoga meditation overlays protective mechanisms by enhancing prefrontal control, lowering cortisol, and stabilizing limbic excitability.

6. Neurological Activity and Lunar Phases

Claims of lunar-driven spikes in psychiatric presentations are not supported when light exposure and shift-work stress are considered²³. Chronobiology shows that even modest light at night can suppress melatonin and alter circadian gene expression²⁴,²⁵.

Rajyoga meditation—by improving stress regulation and sleep—may counteract these pathways¹⁴,²⁶.

Table 1. Physiological, Psychological, and Spiritual Effects of Lunar Fasting

Domain	Reported Effects	Supporting Ref	Gaps/Needs
Endocrine	↓ Testosterone with fasting; ↑	1_3,6,7	RCTs testing fasting +
	SHBG; improved insulin		meditation interactions
	sensitivity in metabolic		
	syndrome		
Digestive	↓ Inflammation; ↑ microbiota	10,11,12	Large, preregistered
	diversity; MMC "cleansing		microbiome &
	cycles"		symptom trials
Behavior/Neurology	Mixed aggression/seizure	18_23,24_25	Studies controlling
	findings; circadian mediation by		sleep, alcohol,
	light at night		psychiatric comorbidity
Psychological	↓ Cortisol, stress, aggression;	4 8 13 20 26	Larger RCTs with
(Meditation)	improved self-regulation		endocrine + imaging
			endpoints
Spiritual (BK)	Celibacy, energy redirection,	BK framework	Reframe outcomes in
	soul-conscious self-control	(text)	measurable
			psychophysiology

7. CONCLUSION:

The review concludes that lunar fasting modulates hormones, digestion, behavior, and sleep largely through circadian and stress pathways. Rajyoga meditation may enhance resilience by reinforcing prefrontal control and reducing stress reactivity. However, rigorous scientific validation is still lacking, making this a fertile area for future biomedical research. There is need for large-scale randomized controlled trials (RCTs) to validate these observations.

REFERENCES:

- 1. Aloi JA, Bergendahl M, Iranmanesh A, Veldhuis JD. Pulsatile nocturnal gonadotropin secretion and fasting. *J Clin Endocrinol Metab*. 1997;82(2):560–566.
- 2. Veldhuis JD, Iranmanesh A, Johnson ML. Fasting and pulsatile LH/testosterone. *Clin Endocrinol*. 1993;38(3):329–337.
- 3. Cienfuegos S, Gabel K, Kalam F, et al. Time-restricted eating and testosterone. *Nutrients*. 2022;14(2):384.
- 4. Sharma H, Singh K. Rajyoga meditation and cortisol (RCT). *Int J Yoga*. 2019;12(2):123–129.
- 5. Medhamurthy R, Suresh R, Hegde A. Short-term fasting suppresses pituitary–gonadal axis in bonnet monkeys. *Biol Reprod.* 2007;77(5):782–788.
- 6. Moreno-Pérez O, et al. Intermittent fasting, testosterone, and metabolic markers in men with metabolic syndrome (RCT). *Clin Endocrinol*. 2023;98(4):512–520.
- 7. Müller MJ, Enderle J, Bosy-Westphal A. Adaptive thermogenesis and energy efficiency in fasting. *Nat Rev Endocrinol*. 2021;17(2):75–88.
- 8. Lopez P, et al. Meditation and endocrine markers: systematic review. *Psychoneuroendocrinology*. 2022;142:105840.
- 9. Singh R, Kaushik A. Spiritual fasting and digestive comfort (observational). *Indian J Spiritual Health*. 2021;7(2):54–60.
- 10. Longo VD, Panda S. Fasting, circadian rhythms, and healthy lifespan. *Cell Metab.* 2016;23(6):1048–1059.
- 11. Müller MH, et al. Fasting-induced gastrointestinal changes. *Nat Rev Gastroenterol Hepatol*. 2020;17(8):487–495.
- 12. Liang Y, et al. Intermittent fasting and gut microbiota diversity: meta-analysis. *Nutrients*. 2023;15(3):451.
- 13. Patel N, Soni H. Rajyoga meditation: stress and sleep improvements in students. *J Relig Health*. 2022;61(3):1772–1785.
- 14. Kumar A, et al. Combined fasting and meditation: microbiota and stress markers (pilot). *Indian J Physiol Pharmacol*. 2024;68(1):33–42.
- 15. Cutler WB, Garcia CR, Krieger AM. Lunar influences on menstrual cycles. *Am J Obstet Gynecol*. 1987;158(4):824–829.
- 16. Onken A, et al. Lunar phases and birth sex ratios. *Biol Lett.* 2017;13(5):20170003.
- 17. Brewster R, Paredes J. Sexual behavior and lunar cycles: systematic review. *J Sex Med*. 2022;19(8):1123–1135.
- 18. Yeung JH, Chan TC, Choi KC. Lunar phases and occupational violence in emergency departments. *Australas Emerg Care*. 2021;24(2):111–116.

- 19. Nguyen T, et al. Lunar phases and emergency-department violence: multicenter analysis. *J Emerg Med*. 2023;64(4):512–520.
- 20. Babu RMG, Kadavigere R, Koteshwara P, et al. Rajyoga meditation linked to increased prefrontal/ACC gray matter. *Mindfulness*. 2021;12:1659–1671.
- 21. Lieber AL. Human aggression and lunar synodic cycle (sports penalties). *Soc Behav Pers*. 1985;13(2):143–148.
- Wehrle R, et al. Lunar cycles and seizure frequency: large-scale analysis. *Epilepsia*. 2021;62(7):1512–1520.
- 23. Maslov KA. Moon phases and psychiatric admissions after accounting for confounders. *Izvestiya*, *Atmos Oceanic Phys.* 2022;58:708–712.
- 24. Smolensky MH, et al. Circadian disruption by light-at-night: health consequences and prevention. *Annu Rev Public Health*. 2021;42:79–102.
- 25. Stothard ER, et al. Nighttime light exposure alters circadian gene expression and mood. *Chronobiol Int.* 2023;40(2):205–216.
- 26. Lee H, et al. Meditation-based stress reduction improves diurnal cortisol rhythms (RCT). *Psychosom Med.* 2023;85(2):125–135.