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Abstract

Trust is a pivotal element in effective human—Al collaboration, influencing whether people adopt,
use, or reject Al systems. This research work presents a comprehensive investigation of trust in Al
systems from social-psychological and technological perspectives. We examine theoretical
foundations of trust, comparing human-to-human trust paradigms with trust in artificial intelligence
(Al) agents. Key factors that shape trust in Al are analyzed, including attributes of Al systems (e.g.
performance, transparency), human user characteristics (e.g. personality, prior experience), and
contextual dynamics (e.g. task risk, team environment). We further explore how trust develops and
evolves during human-Al interactions, highlighting phenomena such as overtrust, undertrust, and
trust calibration over time. Practical implications are discussed, focusing on strategies to build and
maintain appropriate trust through explainable and reliable Al design, user education, and
organizational policies. The outcomes of trust — such as user acceptance, reliance on Al
recommendations, satisfaction, and collaboration effectiveness — are synthesized from recent
research findings. Finally, we outline current challenges (like measuring trust and addressing
cultural differences) and future research directions to foster trustworthy Al and optimize human—Al
teamwork. Our findings underscore that calibrated trust is essential to harness the full potential of
Al while safeguarding human agency and collaboration efficacy.

Keywords: Trust in Al; Human-Al Collaboration; Trustworthy Al; Trust Dynamics; Explainable
Al; Human-Al Teaming

1. INTRODUCTION

The rapid integration of artificial intelligence (Al) into various facets of life and work has elevated the importance
of trust between humans and Al systems. Al technologies — from machine learning algorithms and recommender
systems to advanced Large Language Models (LIms) like ChatGPT — now assist or collaborate with humans in
decision-making, creative tasks, and critical operations. However, public trust in these Al systems has not kept
pace with their growing presence [6][7]. Global surveys indicate that while Al adoption is rising, only about 46%
of people are willing to trust Al systems, reflecting a significant trust gap. This gap represents a major barrier to
the successful deployment of Al, as users who lack trust may refuse to use Al recommendations or underutilize
Al capabilities. Conversely, excessive or misplaced trust can lead to overreliance on Al, with users following
flawed Al advice uncritically, potentially causing errors or safety incidents. The development of calibrated,
appropriate trust in Al is therefore critical for realizing effective human—Al collaboration [8][9].

Trust in an Al context can be defined as a user’s willingness to rely on an Al system to perform a task, given a
feeling of vulnerability and expectation of beneficial outcomes. This mirrors classic definitions of interpersonal
trust which emphasize accepting vulnerability based on positive expectations of another party’s competence and
intentions. In human—Al relationships, the core of trust similarly involves perceptions of the AI’s ability, integrity,
and predictability [10][11]. There are important distinctions, however, between trust in human partners and trust
in Al. Unlike humans, Al systems lack emotions and conscious intentions; thus qualities like benevolence or
moral integrity—often central to human trust—are less directly applicable. Users primarily base trust in Al on the
system’s technical performance, reliability, and helpfulness, rather than on empathy or honesty. That said, as Al
agents become more sophisticated and human-like (for example, Al assistants with conversational abilities or
anthropomorphic robots), people may start attributing human characteristics to them. Researchers suggest that
trust in Al then becomes a blend of traditional automation trust (focused on functionality) and interpersonal trust
(involving social attributions). This convergence heightens the need for a nuanced understanding of how
psychological factors (e.g. perceived intentionality or social presence) intersect with technical factors in shaping
trust [12][13][14].
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From a social-psychological perspective, trust in Al can be viewed through the lens of trustor—trustee dynamics.
The human user (trustor) brings individual dispositions (such as general propensity to trust technology, personality
traits, and prior experiences), while the Al system (trustee) has design attributes (such as transparency, accuracy,
and reliability) that affect its trustworthiness. These interactions occur within a broader context — the task,
environment, and social setting — which can modulate trust. For instance, working in a high-stakes domain
(healthcare, finance, etc.) may require greater proof of reliability to earn trust than a low-stakes entertainment
application [15][16]. Likewise, organizational culture and societal norms influence how comfortable people are
collaborating with Al. Figure 1 illustrates the interplay between the human trustor, the Al trustee, and the
surrounding context in forming trust. Effective human—Al collaboration demands alignment among all three
elements so that the user’s trust in the Al is well-calibrated to the AI’s actual capabilities and the situation’s
requirements [17][18][19].

Al System
Factors

- reliability

User Factors - transparency Co:at:tf':al
= trust propentiy - performance
- familiarity - task
- domain l - environment
expertise = social norms

Figure 1: Trust in Al as an interplay between the human user (Trustor),

Figure 1 above highlights that trust in Al emerges from the interaction of user factors, Al system factors, and
contextual factors. Misalignment in any of these can lead to distrust or mis-calibrated trust. For example, even a
highly reliable Al may not be trusted by a user who has a general skepticism toward technology or who lacks
understanding of the AI’s workings. Conversely, a user with high trust propensity might overtrust an Al system
even when it makes mistakes. The goal is to achieve appropriate trust — neither too low nor too high —
corresponding to the AI’s true trustworthiness [20].

2. THEORETICAL FOUNDATIONS OF TRUST IN Al

2.1 Defining Trust in Human—Al Relationships

In human-Al collaboration, trust can be defined as “the attitude that an Al agent will help a human achieve their
goals in a situation characterized by uncertainty and vulnerability”. This definition adapts concepts from
interpersonal trust to the Al context, emphasizing the trustor’s willingness to rely on the Al. Key to this reliance
is the expectation that the Al will perform competently and predictably in the interest of the human user [21].
Trust thus involves an assessment of risk — the human must believe that potential benefits of using the Al outweigh
the risks of errors or misuse. If the perceived risk is too high (for example, if the Al is viewed as unreliable or
prone to failure), the user may withhold trust and choose not to use the AI’s recommendations. On the other hand,
if the Al is deemed trustworthy, the user is more willing to accept its guidance, even though doing so makes them
vulnerable to the Al’s decisions [22][23].

Traditional trust research in psychology (e.g. in human teams) identifies multiple dimensions of trust, such as
cognitive trust (based on rational judgments of ability and reliability) and affective trust (based on emotional bonds
and empathy). In Al systems, trust is predominantly cognitive: users weigh the AI’s technical merits — its
algorithms, accuracy, consistency — in deciding trust. Al lacks emotions and intentions, so affective and ethical
dimensions (like benevolence or integrity) are not inherently present in the Al itself. However, users often
anthropomorphize Al agents, perceiving them as having human-like traits especially if the Al communicates in
natural language or adopts a persona. In such cases, human trustors might inadvertently apply social and affective
criteria to the Al (e.g. judging an Al chatbot as “friendly” or “caring”). This can shape trust in complex ways.
Some studies even find scenarios where people trust Al more than fellow humans — for example, if Al is seen as
more impartial or less likely to act out of self-interest [24][25]. A recent survey in the UK revealed a segment of
users who prefer Al’s decisions, perceiving Al as unbiased and accurate compared to potentially biased human
judgments. Such findings underscore that trust in Al isn’t simply lower or higher than trust in humans; it operates
on different grounds, with perceived objectivity of Al sometimes boosting trust relative to fallible human actors
[26].

2.2 Trustor, Trustee, and Context: A Socio-Technical Framework

A useful way to conceptualize trust in Al is through a three-dimension framework consisting of the trustor (human
user), the trustee (Al system), and the context of their interaction. Each dimension contributes specific antecedents
of trust, as summarized below and in Figure 2 and Table 1. This socio-technical perspective is rooted in both
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psychological theory and human—computer interaction research, aligning with frameworks from human-
automation trust literature and interpersonal trust adapted for Al [27].

e Trustor (User) Factors: These are characteristics of the human who is asked to trust the Al. Different
individuals bring different baselines of trust (known as trust propensity or disposition to trust technology).
Personality traits have been linked to trust in Al; for example, people high in openness or conscientiousness tend
to report higher trust in Al systems. Technological expertise and prior experience with Al also play a role —a user
familiar with an Al tool’s functioning may trust it more (or less, if their knowledge makes them aware of its
limitations). Self-efficacy in using technology (confidence in one’s ability to work with the AI) correlates with
higher trust as well. On the flip side, users who are more sensitive about privacy or who fear technology might
exhibit lower initial trust. Cognitive biases and cultural background can further influence how a person approaches
trusting an Al. For instance, in cultures with high uncertainty avoidance, users might be generally cautious about
autonomous systems [28][29].

e Trustee (Al System) Factors: These encompass the properties of the Al that affect its trustworthiness as
perceived by users. The performance of the Al — including its accuracy, reliability, and predictability — is a
fundamental determinant of trust. If an Al consistently produces correct and useful outputs (e.g. a recommendation
system giving relevant suggestions), users gain confidence in it. Transparency and explainability are also crucial:
when Al systems provide understandable explanations for their decisions, users’ trust increases because the
decision-making is less of a “black box”. Studies show that explainable Al (XAI) can mitigate distrust and even
make users more resilient in their trust, meaning they won’t abandon the Al after a single error if they understood
why it made that error. Other Al attributes affecting trust include fairness (ensuring the AI’s decisions are unbiased
and equitable) and accountability (the system’s ability to log decisions and enable recourse) — these qualities
reassure users that the Al will act in ethically acceptable ways. Anthropomorphic design features (giving Al
human-like avatars or personalities) can sometimes increase trust by making the interaction feel more natural and
socially present. However, such effects depend on user preferences and cultural context (some users find human-
like Al creepy or might hold it to higher standards). Security and privacy protections embedded in the Al also
factor into trust, as users need to trust the Al with potentially sensitive data. If an Al system is known to preserve
user privacy and is robust against cyber threats, it will be perceived as more trustworthy [30][31].

e Contextual Factors: The environment and context in which the human-Al interaction takes place
significantly influence trust. Task characteristics are one aspect — e.g., if the task is safety-critical (like an
autonomous driving system or a medical diagnosis aid), users may be naturally more cautious and demand greater
proof of reliability before trusting the Al. The complexity or ambiguity of the task also matters; when tasks are
complex, users might rely more on Al assistance but only if they trust its competence. Team versus individual
setting is another factor: in multi-member teams where Al is a team “member,” trust can be impacted by team
dynamics. Recent research indicates that in two-person teams, humans tend to trust human partners more than Al
partners, whereas in three-person teams the trust levels for Al vs. human teammates become more comparable
[32][33].

Figure 2 shows the Conceptual model of key antecedents and outcomes of trust in Al collaboration. User factors
(e.g. trust propensity, experience), Al system factors (e.g. reliability, transparency), and contextual factors (e.g.
task criticality, team environment) feed into the user's trust in the Al. Appropriate trust then leads to positive
collaboration outcomes such as effective use of Al, better performance, and user satisfaction. (This model is
conceptual; arrows indicate influence directions.)

User Factors

= Trust propensity
* Experience

Al System Factors
= Reliability
= Transparency

Contextual Factors
= Task criticality
= Team environment

— < oy

Trust in Al

Collaboration Outcomes

= Effective use of Al
= Better performance
= User satisfaction

Figure 2: Conceptual model of key antecedents and outcomes of trust in Al collaboration.

Table 1 summarizes these antecedents of trust in Al, categorized by whether they stem from the user, the Al, or
the context. Notably, these factors often interact. For instance, an Al’s transparency (system factor) might be
especially important for a novice user to build trust, whereas an expert user might focus more on the Al’s
performance. Likewise, contextual risk can amplify or dampen the influence of other factors (e.g., in a high-risk
context, even a generally trusting person may be more skeptical of an Al until proven safe) [34][35][36].

Table 1: Key Antecedents of Trust in Al Systems.
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Antecedent

Category Description and Examples

Inherent characteristics of the human user. Examples: Trust propensity (general tendency to
trust technology), relevant personality traits (e.g. openness, which correlates with higher Al
trust), technology experience and expertise, confidence in using Al (self-efficacy), and prior
exposure to or knowledge of the specific Al system. Users with more positive prior experiences
or higher tech familiarity often develop trust more easily, whereas those with privacy concerns
or low tech literacy may be more skeptical. Cultural background and personal values (like risk
tolerance) also fall in this category.

User (Trustor)
Factors

Attributes of the Al that affect its perceived trustworthiness. Key examples: Performance
competence (accuracy, reliability, low error rate) — a baseline for earning trust; Transparency
& Explainability — the AI’s ability to explain its decisions or reasoning, which builds
understanding and trust; Fairness and Ethics — assurance that the AI’s decisions are unbiased
and align with moral norms; Security & Privacy — protection of data and resistance to
breaches; Anthropomorphism (human-like interface or communication style) — can
sometimes increase user comfort and trust by making the Al seem more relatable or socially
present, though this depends on user preferences and context.

Al System
(Trustee)
Factors

Aspects of the environment and human-Al interaction process. Examples: Task criticality and
risk — high-stakes decisions demand more trustworthiness for trust to form; Team or
organizational setting — e.g. working alongside an Al in a team, where trust might be
influenced by team dynamics and whether the Al is presented as a collaborator or just a tool;
User interface and interaction quality — a well-designed, user-friendly Al interface can
enhance trust by reducing frustration and making the AI’s actions clear; Social influence —
opinions of peers, leaders, or media about the Al can raise or lower individual trust; Cultural
and regulatory context — societal attitudes toward Al and the presence of regulations
(providing oversight) shape baseline trust. For instance, users in an environment with strong
Al governance may feel safer trusting Al.

Context &
Interaction
Factors

2.3 Trustin Al vs. Trust in Human Teammates

Given the rising prevalence of Al “agents” working alongside, it is instructive to compare how trust operates in
mixed teams versus traditional human-only teams. Research in organizational psychology has long studied team
trust among humans, finding it to be essential for team cohesion, information sharing, and performance [37].
When an Al joins a team — for example, an Al decision-support system included in a team’s deliberation — it
changes the trust dynamics. Team members must not only trust each other but also develop trust in the Al’s
contributions. One question is whether humans trust an Al teammate differently than a human teammate. Recent
experimental studies indicate that team size and composition can affect this trust relationship. In a study by
Georganta and Ulfert [2], individuals in a two-member team reported higher trust in a human teammate than in
an Al teammate, whereas in a three-member team, the trust gap between human and Al team members closed,
with Al members being trusted nearly as much as human members [38]. The authors suggest that in a larger team,
the AI’s contributions might be perceived as more complementary and normalized (especially if two humans can
“outvote” or validate the Al), whereas one-on-one, people have less baseline trust in an Al than in another person.
Figure 3 illustrates these findings, showing average trust ratings in Al vs. human teammates in different team
setups. This chart compares average trust ratings (on a 5-point scale) for human and Al teammates. In two-person
teams, humans were trusted more than Al partners; in three-person teams, trust in Al members was similar to trust
in human members (based on data adapted from recent research on human—Al teams). Such results highlight that
team context influences trust in Al collaborators [39].
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Figure 3: Trust in Human vs. Al Team Members in Different Team Sizes.
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One reason human teammates often enjoy higher initial trust is the rich social signals and shared understanding
humans naturally have. Humans can communicate intent, show empathy, and build rapport — factors that
contribute to affective trust and team identity, which Al currently struggles to replicate [40]. Moreover, people
may assume a human teammate is accountable to similar ethical and social norms, whereas an Al might be seen
as a tool without accountability or as a black-box whose reasoning is opaque. However, as Al systems improve
in natural communication and as people gain more experience working with them, these differences can lessen.
For instance, if an Al consistently proves its expertise and explains its suggestions, team members may come to
trust it much like a respected human expert [41][42].

An interesting phenomenon in human—Al teams is trust asymmetry: humans evaluate the trustworthiness of Al,
but do Al agents “trust” humans? While Al systems do not possess trust emotions, designers can encode
mechanisms for Al to gauge human reliability or to defer to human judgment under certain conditions (a kind of
algorithmic trust in the human). In a collaborative setting, optimal performance requires mutual trust — humans
trusting the AI’s capabilities and the Al (or its governing system) trusting human inputs and decisions. For
example, in semi-autonomous driving, the car’s Al might monitor the human driver’s alertness level (a proxy for
trustworthiness) to decide when to hand over control. This idea of reciprocal trust in human—Al interaction is an
emerging research direction. It recognizes that collaboration is a two-way street: not only do humans adjust their
trust in Al, but Al systems can also be designed to adapt based on the human’s behavior and reliability
[43][44][45].

3. Dynamics of Trust in Human-Al Collaboration

Trust is not a static trait; it evolves over time as the human interacts with the Al system. The dynamics of trust
involve initial trust formation, continuous updating of trust based on outcomes, and potential decay or growth of
trust as conditions change. Understanding these dynamics is crucial, as it helps in designing interactions that keep
trust calibrated — encouraging users to trust the Al when it is appropriate, but also to remain vigilant and not
overtrust [46][47].

3.1 Initial Trust Formation and Calibration

When a user first encounters an Al system, they have an initial trust level that serves as a baseline. This might be
influenced by reputation (what they’ve heard about the Al), analogous trust (trust in similar systems they’ve used),
or general attitude toward technology. Some Al systems benefit from institutional trust: for example, if a reputable
hospital deploys an Al diagnostic tool, patients may initially trust it because they trust the institution behind it
[48][49]. Initial trust is also shaped by the design of the AI’s introduction. An Al that provides clear
documentation, demonstrations of its capabilities, or transparency about its limitations can foster a reasonable
initial trust. Conversely, if an Al is introduced with hype but little explanation, users might either be skeptical
(low initial trust) or have unrealistically high expectations (inflated initial trust) [50].

After initial deployment, trust calibration begins as the user experiences the AI’s performance. Ideally, trust
should increase when the Al proves reliable and decrease when the Al makes errors, tracking the true reliability
of the system. However, human psychology doesn’t always calibrate trust perfectly. People may exhibit
confirmation bias — if they start with high trust, they might overlook early mistakes by the Al, staying overtrusting;
if they start with distrust, they might downplay the AI’s correct actions, remaining undertrusting. Designers
sometimes include tutorials or controlled early tasks to help calibrate trust. For instance, a drone interface might
initially show the AI’s confidence level in controlling the drone, so the human pilot learns when they must
intervene [51][52].

Research has introduced techniques like dynamic trust calibration to actively manage this process. One approach
is for the Al to intentionally adjust its level of autonomy or the information it provides based on the user’s trust
level. If the system senses the user trusts it too much (e.g. the user is blindly accepting all Al suggestions), it might
inject an occasional alert or require user confirmation on critical actions — effectively reminding the user to stay
engaged. If the user trusts too little (e.g. frequently overrides a competent Al’s suggestions), the Al could provide
more convincing evidence or explanations to justify its recommendations [53]. The goal is to avoid misuse
(overtrust leading to errors) and disuse (undertrust leading to ignoring a useful Al). Figure 4 conceptually depicts
the trust development loop in human—AlI interaction: the user’s trust influences how they rely on the Al; this
reliance leads to outcomes (successes or failures); those outcomes then feedback to adjust the user’s trust moving
forward. The cycle illustrates how a user’s trust level affects their reliance on the Al, which in turn influences
performance outcomes and feedback that update trust. For instance, higher trust leads to greater reliance on Al
recommendations; if outcomes are successful, trust may further increase (positive reinforcement), but if the Al
performs poorly, trust will decrease. Proper trust calibration seeks a balance where reliance on the Al is
commensurate with its capability [54][55].
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Figure 4: Trust Development Loop in Human-Al Collaboration.

One notable dynamic is that users often exhibit initial overtrust in novel Al systems, followed by a correction
phase as they encounter imperfections. A recent overview by Schmutz et. al. [4] observed that users tend to
overestimate a new Al teammate’s capabilities at first, giving it more trust than warranted, but over time, as they
see its limitations or mistakes, their trust in the Al declines to a more realistic level [56][57]. This pattern was
seen in contexts like creative collaboration and decision teams — the novelty and advanced appearance of Al can
induce a brief “halo effect.” However, without sustained performance, trust drops, and teams sometimes even
become less effective than human-only teams due to coordination issues and loss of trust. This underscores that
maintaining trust requires consistent Al performance and good user understanding of the Al. It also highlights
that the trajectory of trust is important: a small early failure by the Al can significantly dampen users’ future trust
(sometimes disproportionately so — one mistake might outweigh many correct actions in the user’s mind).
Conversely, if an Al handles an early critical test successfully, it can earn a strong trust credit moving forward
[58].

3.2 Overtrust, Undertrust, and Trust Repair

Overtrust occurs when users trust an Al more than its actual performance merits. Overtrust is dangerous because
it can lead to complacency. For example, drivers of cars with advanced driver-assistance may become too trusting
and stop paying attention, assuming the Al will handle every situation — sometimes with fatal results if the system
fails unexpectedly [59]. Overtrust often stems from automation bias, where users assume the Al is always correct.
It can be exacerbated by opaque Al: if users do not understand how the Al arrives at decisions, they might simply
defer to it, especially if it’s right most of the time. To combat overtrust, researchers emphasize the importance of
keeping the human “in the loop” and designing for appropriate reliance. One strategy is providing continuous
feedback about the AI’s confidence and status, so that users have cues when the Al is unsure or encountering
novel conditions. Another strategy is training users with scenarios of Al failure, so they appreciate the AI’s limits.
Some recent work on explainable Al suggests that good explanations not only build trust but also prevent
unwarranted trust by revealing uncertainties: if the Al explains its reasoning and also highlights what it doesn’t
know, users are less likely to trust it blindly [60][61].

Undertrust is the opposite problem — the user fails to trust a capable Al, thus forgoing its benefits. Undertrust can
manifest as the human frequently overriding or ignoring the AI’s suggestions, even when the Al is correct. This
leads to suboptimal outcomes since the AI’s valuable inputs are wasted. Undertrust often arises from initial
skepticism, negative first impressions, or previous experiences where an Al errored and lost the user’s confidence
[62]. It can also occur due to lack of transparency: if users can’t tell why the AI’s recommendation is good, they
may err on the side of caution and stick to their own judgment. Trust repair techniques are important when trust
has been broken (e.g., after an Al malfunction). In human teams, trust repair might involve apologies or
compensatory actions. For Al, researchers have explored analogous concepts: an Al could acknowledge an error
and provide a detailed analysis of what went wrong and how it’s been corrected, to attempt to regain user trust.
Another approach is performance improvement — the Al needs to perform flawlessly for a period to rebuild
confidence, possibly combined with assurances (for instance, updated software that fixes the bug that caused the
failure). Empirical studies have found that explaining the cause of a failure can partially restore trust, especially
if the cause is understood and addressed, whereas a mysterious failure with no explanation can permanently
damage trust in the system [63][64].

A related dynamic concept is trust resilience — how robust a user’s trust is in the face of errors or conflicting
information. Ideally, users should not swing from complete trust to total distrust from a single incident; rather,
their trust adjustments should be proportional. Designing Al for graceful failure can help here: if an Al can detect
its own likely failure and warn or ask for human confirmation, the user’s trust might be only mildly reduced
instead of completely shattered. For example, a medical Al that flags “I’m not very confident about this case”
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allows the human doctor to double-check, preventing a blind error and preserving trust in future cases where the
Al is confident.

The CHAI-T framework proposed by McGrath et. al. [1] explicitly includes active trust management as part of
human-Al teaming. In this process framework, the idea is that teams (and system designers) should monitor trust
levels throughout the collaboration and apply interventions if trust is mis-calibrated. This could involve interface
changes, additional communication between human and Al, or training interventions during the team’s lifecycle.
The framework also stresses that trust is not an end in itself, but a means to achieve better team performance.
Thus, the goal is not to maximize trust blindly, but to find the optimal trust level where the human appropriately
relies on the Al to maximize outcomes. Figure 5 provides a hypothetical illustration of trust calibration over a
series of interactions, highlighting how user trust might rise or fall in response to the AI’s performance over time
[65].

100%
e —_— Al Performance
80% — User Trust
(2 9
=
(1~ 600/0
S
=)
= 409%
)
Q.
20%
0%
1 2 4 5 6 7 8

Figure 5: Example of Trust Calibration Over Time.

The plot in Figure 5 shows a hypothetical scenario of an Al system’s performance accuracy (red line) across
repeated tasks and a user’s self-reported trust level in the Al (green line). Trust is updated based on the AI’s
successes and failures. In this example, the user’s trust initially grows as the Al performs well, dips when the AI’s
performance drops (at tasks 4 and 8), and partially recovers after the Al’s performance improves again. Ideally,
the trust trajectory (green) should align with the AI’s true reliability (red), indicating calibrated trust. Misaligned
patterns (e.g. trust remaining high despite poor performance, or vice versa) would suggest overtrust or undertrust
[66][67].

3.3 Social and Cognitive Factors in Trust Dynamics

Social-psychological processes heavily influence how trust dynamics play out in human-Al interaction. One such
factor is social identity and team dynamics. If a human views an Al as part of “the team,” they may extend trust
more readily. Some organizations personify Al agents (giving them names, avatars, or human-like communication
styles) precisely to encourage users to treat them as teammates rather than mere tools. However, studies have
found that making an Al too human-like can sometimes backfire if the Al then violates social expectations. For
example, an anthropomorphic Al that errs might be judged more harshly (“it misled me”) than a plain tool-like
Al that errs (“it malfunctioned”) [68]. There is evidence that teams with strong psychological safety — an
environment where human members feel safe to take risks and admit mistakes — can also incorporate Al more
effectively, since users are less afraid to critique or question the Al, leading to healthier calibration. A recent
systematic review noted that team-level trust in Al is linked to both individual trust perceptions and organizational
culture, suggesting a multi-level trust phenomenon. In other words, a company that fosters trust in technology and
provides a supportive climate can raise the baseline trust its employees have in Al tools, and vice versa [69].
Cognitive factors also play a role. Human cognitive biases can distort trust. Automation bias (as mentioned) leads
to overtrusting automated systems. The opposite bias is algorithm aversion — some people inherently distrust
algorithms especially in subjective domains (e.g. creative judgment), preferring human judgment even if it’s
statistically worse. Confirmation bias might cause users to interpret the AI’s behavior in a way that confirms their
pre-existing trust level. There’s also the halo effect for Al [70]: if the Al is very good at one task, users might
assume it’s good at unrelated tasks too. Managing these biases is challenging. Some interface designs attempt to
debias users, for instance by periodically highlighting when the human’s decision differed from the AI’s and what
the outcomes were, to force reflection on whether distrust or trust was justified [71].

4. Impacts of Trust on Collaboration and Performance

Why is trust so frequently cited as the “make-or-break™ factor in human—Al teamwork? The reason is that trust
directly affects user behavior and decisions regarding the Al, which in turn determine whether the collaboration
fulfills its potential. In this section, we discuss the practical implications of trust: how it influences adoption of Al
systems, the usage patterns (reliance vs. override), the overall performance of human—Al teams, and user-related
outcomes like satisfaction and acceptance. Table 2 at the end of this section provides a summary of major
outcomes associated with trust in Al, based on recent research findings [72][73].
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4.1 Adoption, Usage, and Reliance

At the most fundamental level, trust in Al is a key driver of whether people choose to use Al systems at all. If an
individual or organization doesn’t trust an Al application, they are unlikely to adopt it. Numerous studies across
domains (from manufacturing to medicine) have identified lack of trust as a primary barrier to Al implementation.
For instance, medical practitioners often refrain from using Al diagnostic tools unless they trust the system’s
accuracy and believe it will behave safely and transparently. When trust is present, however, it significantly
increases the intention to adopt and continue using Al. In technology acceptance terms, trust boosts the perceived
usefulness and willingness to depend on the system in the long run [74].

Beyond initial adoption, trust levels govern how users interact with an Al on a day-to-day basis. High trust
generally leads to greater reliance — users follow the AI’s recommendations or delegate tasks to the Al more
frequently. This can improve efficiency and outcomes if the Al is competent. For example, a trusted Al assistant
in customer support might be allowed to handle many queries autonomously, saving human agents’ time and
providing faster responses. On the other hand, low trust results in users double-checking or overriding the Al
often, essentially negating the benefits the Al could provide. One study on Al in hiring showed that when trust
was low, hiring managers would ignore the AI’s candidate rankings and stick to manual review, whereas those
with higher trust integrated the AI’s insights into their decisions. Proper trust thus ensures that Al is used where
it can add value, and not used when it’s not appropriate — a concept sometimes referred to as appropriate reliance
or calibrated reliance [75][76].

Wen et. al. [3] found that managers with greater trust in an Al decision support system were willing to give the
Al more weight in decisions, but they also recognized which decision aspects required human intuition, achieving
better synergy. Thus, trust enabled an effective division of labor — routine, data-driven evaluations were left to the
Al, and unusual or value-sensitive judgments were handled by humans, reflecting the manager’s calibrated
approach.

From a broader perspective, widespread trust in Al can accelerate the diffusion of Al innovations. Societies with
higher public trust in Al might see faster uptake of Al-driven services (like autonomous public transport or Al-
based medical screening), reaping benefits in productivity and convenience. Conversely, low public trust can stall
such initiatives. For example, if only 30% of citizens trust autonomous vehicles, policymakers will face resistance
in deploying them widely. A global study in 2025 highlighted this tension: although 66% of people reported using
some form of Al regularly, barely half actually trust Al systems, indicating that many use Al with caution and
perhaps under duress (e.g. because it’s imposed at workplaces). Building trust is therefore seen as essential to
unlock AI’s full value for society [77][78].

4.2 Human-Al Team Performance and Decision Quality

In collaborative settings, trust markedly influences team performance and the quality of decisions made by
human—Al pairs or teams. Ideally, a well-calibrated trust leads to what some call augmented intelligence — the
human and Al together outperform what either could do alone. This has been demonstrated in certain domains:
for instance, in radiology, an Al plus a human radiologist (with appropriate trust) can catch more abnormalities
than either one separately. However, achieving this synergy is not guaranteed. If trust is lacking, the collaboration
may underperform even a single human or Al [79][80]. Indeed, a thought-provoking finding by some researchers
is that human—Al combinations sometimes perform worse than the best human or the best Al alone, particularly
when team processes (like trust and communication) break down. Schmutz et. al. [4] observed that many human-—
Al teams did not meet expectations because of coordination failures and declining trust — humans either ignored
good Al advice or overruled it at wrong times, while at other times they followed Al into errors due to misplaced
trust. Shared situational awareness and mutual trust (to the extent applicable) were missing, which are elements
well-known to be required in high-performing human teams [81].

When trust is optimal, several positive effects on performance are noted in research: faster decision-making
(because the human is not second-guessing the Al constantly), higher accuracy (as the human can effectively
catch the AI’s mistakes and vice versa), and improved team learning (the human and Al adapt to each other’s
patterns). For example, in a study of Al-assisted drone operations, operators who trusted the AI’s flight control
were able to focus on strategic mission elements, leading to better outcomes than operators who mistrusted the Al
and micromanaged the controls (distracting them from bigger issues). On the contrary, when operators overtrusted
the drone Al, some responded too slowly to system failures, leading to crashes that a moderately skeptical operator
might have averted [82].

4.3 User Attitudes, Satisfaction, and Acceptance

Trust not only affects task performance but also shapes users’ attitudes and overall acceptance of Al systems.
When users trust an Al, they tend to have more positive attitudes toward the technology — viewing it as useful,
reliable, and worth integrating into daily processes. This often translates into higher user satisfaction. For
example, customers interacting with a trusted Al chatbot report greater satisfaction with the service, because trust
reduces anxiety and friction in the interaction. They feel the system is on their side and competent, which makes
the experience smoother. Empirical evidence confirms a strong link between trust and satisfaction: in a variety of
settings (from e-commerce recommenders to virtual assistants), users who reported higher trust also reported
greater satisfaction and willingness to continue using the Al. Trust contributes to satisfaction by instilling a sense
of security and confidence — the user is confident the Al will work well, which removes stress. Moreover, trust
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can enhance the perceived reliability of the system; even if occasional issues occur, a trusting user views them as
exceptions against a backdrop of generally reliable service [83][84].

Importantly, trust influences the threshold for acceptance of Al decisions. In critical applications, a user often has
final say whether to accept or reject the Al’s output (e.g., a doctor deciding whether to follow an Al diagnostic
suggestion). High trust raises the likelihood of acceptance of the Al’s input in the decision process. In domains
like judicial risk assessments or hiring, studies have found trust to be a robust predictor of whether decision-
makers accept Al recommendations, sometimes even more so than the Al’s actual accuracy. That is, if the
decision-maker doesn’t trust the Al, they might reject its correct recommendation; if they trust it, they’ll accept
its recommendation, sometimes even when it might be wrong (hence the need for calibration). Factors such as
empathy perception can mediate this: research suggests that if users feel the Al understands nuanced human
considerations (like fairness or empathy in hiring), they are more inclined to accept its outputs. Conversely, if the
Al is seen as too cold or “unfeeling,” a human decision-maker might override it on emotional or ethical grounds
even if the AI’s logic is sound [85][86].

Trust also fosters user engagement. A trusted Al is more likely to be used frequently and explored deeply. Users
might try more of the AI’s features and engage in a more interactive manner (e.g. asking a digital assistant more
follow-up questions, or exploring creative options suggested by an Al). This engagement can lead to better
outcomes because the Al can assist more fully [87][88]. For instance, in educational technology, students who
trusted an Al tutor engaged with it more and ended up learning more, whereas those who distrusted it only
sporadically used it and gained less. In customer service, when customers trust an Al agent, they’re more willing
to share relevant information about their needs (since they trust the Al will use it properly), enabling the Al to
provide better assistance. Trust thus can facilitate information disclosure and cooperation. A 2024 study by Amin
et. al.[5] demonstrated that users were significantly more willing to disclose personal information to an Al chatbot
(for mental health advice) when they had higher trust in the system’s benevolence and competence. This points to
a virtuous cycle: trust encourages users to input more data and context to the Al, which can improve the Al’s
performance and personalization, further reinforcing trust [89][90].

Table 2 compiles key outcomes associated with trust in Al, supported by findings from recent research. Broadly,
trust is a facilitator: it enables greater usage, better integration of Al into tasks, and more positive user perceptions.
However, it must be the right amount of trust to truly yield benefits — too little and the AI’s power is untapped,
too much and users risk errors. The succeeding section will focus on how we can achieve that right balance by
design — discussing practical methodologies and design principles to build trustworthy Al and foster well-
calibrated trust. Trust (or lack thereof) in an Al system has significant consequences on how users behave and the
overall success of human—Al collaboration. This table outlines several key outcomes influenced by user trust,
along with brief descriptions [91].

Table 2: Major Outcomes of Trust in Al Systems.
Outcome / Metric | Influence of Trust

Strong trust increases the likelihood of adopting Al technology and accepting its
recommendations. Users are more willing to deploy and rely on an Al tool they trust,
whereas distrust can prevent deployment or lead to rejection of Al outputs. High trust has
been linked to greater intention to use Al across domains — e.g. physicians adopting
diagnostic Al, or customers opting for Al services.

Adoption &
Acceptance

Users with higher trust tend to rely on the Al’s suggestions or decisions more often in
practice. This can manifest as allowing the Al to automate tasks or frequently following
Al recommendations. Appropriate trust leads to optimal reliance, where users leverage
the Al when it is beneficial. With low trust, users either use the Al minimally or
constantly override its recommendations, reducing potential benefits.

Reliance on Al &
Usage Level

Properly calibrated trust generally improves decision outcomes in human—Al teams.
When users trust a competent Al, they combine human judgment with Al input
effectively, often achieving higher accuracy or productivity than either alone. If trust is
too low or too high, team performance can suffer — undertrust may ignore correct Al
solutions, and overtrust may accept incorrect Al outputs, both leading to poorer
decisions. Studies have shown trust to be critical for realizing performance gains from Al
assistance.

Users are more satisfied with Al-assisted processes when they have trust in the system.
Trust reduces anxiety and creates a sense of partnership, improving the user experience.
User Satisfaction | A trusted Al instills confidence — users feel more secure and positive about the outcomes.
& Confidence Conversely, interacting with an untrusted Al often yields frustration, stress, or
dissatisfaction. High trust thus correlates with favorable user evaluations and comfort
with the Al

Decision Quality &
Performance
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Outcome / Metric | Influence of Trust

In settings where humans and Al work together (e.g. decision-making teams, creative
collaboration), trust in Al leads to smoother collaboration. The human treats the Al as a
reliable team member, facilitating open information exchange and efficient coordination.
Quality Low trus_t results i_n_frictions — the human might con§t§1ntly double-check the Al or
exclude it from critical parts of the process, undermining teamwork. Trust also
contributes to a positive “team climate” where the human is receptive to the Al’s input.

When users trust an Al system, they tend to engage more deeply with it — exploring its
features, providing it with more input, and interacting with it more frequently. For
example, a person will converse longer with a trusted Al assistant and volunteer more
relevant information (like personal preferences or concerns) to it. This improved
information sharing (enabled by trust) can further enhance the Al’s effectiveness,
creating a virtuous cycle. If trust is low, users keep interactions with the Al to a minimum
and withhold information (e.g. a patient not telling a health chatbot certain symptoms due
to distrust), which in turn limits the AI’s ability to help.

Teamwork &
Collaboration

User Engagement
& Information
Sharing

5. Building and Maintaining Trust in Al Systems

Given the importance of appropriate trust for successful human—Al collaboration, a key question is: How can we
design and deploy Al systems in ways that foster well-calibrated user trust? This section discusses approaches
and best practices — both technical and organizational — to build initial trust, maintain it over time, and avoid trust
breaches [92]. The focus is on creating Al systems that are not only trustworthy in design but also effectively
communicate their trustworthiness to users. We divide the discussion into several interrelated strategies:
enhancing Al transparency and explainability, ensuring reliability and safety, using human-centered design
(including anthropomorphic or interactive elements), and educating or training users for better trust calibration
[93].

5.1 Transparency and Explainability

“Transparency” in Al refers to making the system’s workings visible or understandable to users, and
“explainability” refers to the Al’s ability to provide understandable reasons for its outputs. Decades of research
in automation have shown that people trust systems more when they can comprehend how they operate. This
remains true for modern Al: one of the most consistently recommended trust-building measures is to integrate
explainable Al techniques [94]. For example, an Al image classifier might highlight the sections of an image that
led to its decision, giving the user insight into the Al’s reasoning. Such explanations demystify the “black box”
and allow users to judge the AI’s competence. When users see that an AI’s reasoning aligns with their own logical
analysis, their trust in its conclusions increases. Moreover, if the Al makes a mistake, a good explanation can
make it a learning moment rather than a trust-breaking event (the user sees why the error happened and can
maintain trust that errors will be identifiable and rare) [95].

Recent research supports the impact of explainability on trust. Ha and Kim (2024) found that providing
explanations for an AI’s recommendations significantly boosted users’ trust and their resilience to occasional Al
errors. Another study showed that contextual explanations (tailored to the user’s situation) in an Al loan decision
system improved both trust and perceived fairness of the system [96]. On the other hand, poorly implemented
explanations (e.g. too technical, or obviously irrelevant boilerplate) can backfire, as they might be seen as
confusing or even misleading. Thus, explainability must be done in a user-centered way. Guidelines for XAl often
suggest using simple language, visual aids (charts or highlights), and providing explanation at the right level of
detail for the target user (e.g. a doctor might want a different explanation than a patient) [97].

Transparency goes beyond just output explanations. It also involves being open about the Al’s capabilities and
limitations. For instance, an Al assistant might clearly state: “I have knowledge up to 2022 and may not know
recent events,” or a medical Al tool might indicate it is not designed to handle pediatric cases if that’s a limitation.
This up-front transparency sets correct expectations, which is crucial for trust [98][99]. If users know what the Al
can and cannot do, they are more likely to trust it within its scope and not to push it beyond, preventing misuses
that lead to disappointment. Transparency can also include the AI’s confidence levels or uncertainty in its outputs.
By exposing uncertainty (e.g. “I am 60% confident in this prediction”), the Al actually increases user trust in the
long run. It sounds counterintuitive — admitting uncertainty — but it makes the Al appear more honest and allows
the user to apply appropriate caution when confidence is low. Many modern Al interfaces now present confidence
scores or ranges for this reason [100].

5.2 Reliability, Robustness and Safety

No amount of explanation can make up for an Al that frequently fails. Thus, the foundation of building trust is to
ensure the Al system is technically reliable and robust. Trust is closely tied to the AI’s trustworthiness — if the
system behaves consistently well, users naturally become more trusting. Several measures can enhance reliability
and safety:

. Rigorous Testing and Validation: Al systems, especially those deployed in critical applications, should
undergo extensive testing across diverse scenarios to ensure they perform as expected. By catching and fixing
bugs or biases before deployment, we reduce the chance of trust-eroding failures in the field. For instance, stress-
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testing an Al medical diagnostic on edge cases can improve its reliability and prevent misdiagnoses that would
destroy physician trust [101].

. Fail-safes and Redundancies: Incorporating safety nets builds trust that even if something goes wrong,
the system will handle it gracefully. For example, a robotic assistant might have emergency stop mechanisms or
an Al might be programmed to recognize when it’s out of its depth and request human intervention. Users trust
systems that know their limits. As Lee and See (2004) famously noted in automation trust, design should facilitate
appropriate trust by making systems predictable, self-revealing, and fail-safe. In practical terms, an Al could
switch to a safe mode or alert the user when anomalies occur [102].

. Continuous Performance Monitoring: For long-lived Al services, having monitors that track
performance and detect drifts or degradations helps maintain trust. If an Al model’s accuracy starts to drop
(perhaps due to changing data patterns), the system can either retrain or inform users about decreased confidence
until fixed. Users of Al are more likely to trust a system that demonstrates self-monitoring and improvement over
time, as it shows the AI’s maintainers are ensuring ongoing quality [103].

. Security and Privacy Safeguards: Trust is not only about accuracy; it’s also about whether the Al will
do something harmful with user data or be manipulated. Building secure Al systems that protect data and resist
adversarial attacks is crucial for user trust, especially in an era of frequent data breaches. For example, if users
know that an Al assistant keeps their data encrypted and doesn’t share it without consent, they will trust it more
with personal information. Clear privacy policies and compliance with regulations (like GDPR) can be
communicated to users to bolster trust in how the Al handles their data [104].

. Consistency and Predictability: Humans tend to trust systems that behave consistently. If an Al’s
output varies wildly or seems erratic, trust falters. Ensuring the AI’s behavior is predictable (or when it changes,
the change is explainable) helps maintain user confidence. Consistency can be improved by smoothing outputs,
avoiding random-like behavior, or at least explaining variability. For instance, a finance Al advisor should not
give contradictory advice to a user in a short span; if market changes cause different advice, it should explain that
context, maintaining an image of logical consistency [105].

5.3 Human-Centered Interface and Communication

The way an Al system communicates with the user is a critical factor in trust. A Human-Centered Design that
takes into account user needs, mental models, and comfort can significantly enhance trust. Several interface and
interaction design considerations have proven effective:

. Clarity and Consistency in Ul: The user interface should present information in a clear, organized
manner. Inconsistent or confusing interfaces can cause user errors and erode trust (“if the interface is sloppy, what
does that say about the underlying AI?”). Using familiar design patterns, clear language (avoiding technical
jargon), and logical workflows helps users feel in control and understand the AI’s actions. For instance, labeling
Al-generated content clearly vs. user-provided content can avoid misunderstandings that might otherwise reduce
trust if users are unsure who (Al or human) produced what [106.

. Feedback Mechanisms: A trust-enhancing interface encourages two-way communication. Users should
be able to give feedback to the Al (like correcting it or indicating preferences) and see that the Al adapts or
responds to that feedback. When users feel they have agency in the interaction, their trust increases because it
becomes a collaboration rather than a one-sided automation. For example, a recommender system might allow
users to thumbs-up or thumbs-down recommendations; seeing future recommendations change accordingly shows
the user that the Al is listening, which builds trust that the system is respectful of their input [107].

o Anthropomorphic and Social Cues: Introducing human-like elements in Al interactions can sometimes
foster a social form of trust. Polite language, conversational tone, or even a simple avatar can make the Al feel
more approachable and trustworthy on an interpersonal level. Research has shown that moderate
anthropomorphism (like giving a chatbot a name and a bit of personality) can increase user engagement and trust,
as long as the AI’s competence also meets expectations. The CASA (Computers Are Social Actors) paradigm
suggests people subconsciously apply social rules to computers; hence, an Al that follows social etiquette (e.g.
saying thank you, apologizing for errors) may engender more trust. Caution is needed: if the Al is too human-like
and then fails, users may feel betrayed in a personal way. The design should align the AI’s persona with its actual
capabilities [108].

. Trust Signals and Reassurance: Sometimes small design elements can reassure users. For instance,
displaying certifications or verifications (“This AI’s algorithm is approved by FDA” in a medical app, or “Model
last updated on __ with X% validated accuracy”) can serve as trust signals. Providing access to credentials of
data sources (“Trained on 1 million verified cases from XYZ database”) also helps. In collaborative scenarios, if
the Al can expose its reasoning process step by step (perhaps in a side panel), the user can follow along, which
makes the process feel more like working with a human partner and builds trust in each step rather than only the
final answer.

. Preventing Emotional Misinterpretation: A subtle issue is that users sometimes anthropomorphize Al
in negative ways too, for example interpreting a factual, terse response from a chatbot as “rude” or “unhelpful,”
which can hurt trust. Designing the AI’s communication style to avoid such impressions is important. If a chatbot
injects a bit of empathy (“I’m sorry to hear you’re facing this issue, let’s see how I can assist”), users often trust
it more than if it gives a cold response, even if the end solution is the same. Emotional intelligence in Al responses,
to the extent possible, contributes to trust especially in domains like healthcare or counseling [109].
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User training and onboarding also belong in human-centered approaches. A well-crafted Onboarding Tutorial
that shows users how the Al works, including its benefits and limitations, can set a foundation for trust. For
example, introducing a fraud-detection Al to analysts might involve showing a few example cases side-by-side
where the Al was right and where it was wrong, teaching the analysts what to look out for. This transparency from
the get-go creates informed trust: users know when to lean on the Al and when to be cautious, which ironically
makes them more likely to trust it when appropriate (because they don’t fear unknown failure modes).

5.4 User Education and Organizational Practices

Beyond the Al system itself, there are external measures to cultivate a trust-friendly environment. User education
is one such measure. This can range from basic training on how to use the Al system to more general education
on AI’s strengths and weaknesses. When users understand how Al algorithms learn and make decisions, they are
more likely to trust the system rationally. For instance, if doctors learn that an Al diagnostic tool uses established
medical imaging patterns and has been validated in clinical trials with a certain accuracy, their trust grows because
they understand the underpinning (versus viewing it as magic). On the public front, improving Al literacy is key
— initiatives to educate consumers about Al (how recommendations are generated, what biases can occur) help set
realistic expectations and build trust through understanding, addressing the fear of the unknown [110].

Within organizations, leadership and culture play a role. If company leadership openly supports the Al, explains
why it’s adopted, and sets an example of trusting it (while also having appropriate oversight), employees will be
more willing to give it a chance. Conversely, if the introduction of Al comes without clear communication, it may
breed suspicion (e.g. employees might think the Al is there to monitor or replace them, leading to distrust and
even sabotage). Therefore, change management around Al deployment is crucial — involving users in the
deployment process, gathering their feedback, and iteratively improving the system helps in co-development,
making users feel a sense of ownership and trust.

Another practice is algorithmic accountability: having clear processes for when the Al makes an error — how it
will be addressed, who takes responsibility. When users know there’s accountability (e.g. a human supervisor
reviews Al decisions periodically, or there’s a contact to report issues), they trust the system more because it’s
not a wild unchecked entity. Some organizations set up Al ethics panels or monitoring teams, which indirectly
boosts trust among users who are aware that someone is ensuring the Al remains fair and reliable [111].

Finally, incorporating user feedback loops into ongoing development can maintain trust. As users gain experience,
they might identify blind spots or suggest improvements. Organizations that actively listen and update the Al
system engender trust that the Al is evolving to meet their needs. It tells users “we care that you trust this system,
and we’re working to keep it worthy of your trust.” For example, a software update addressing a known issue and
communicating that to users (“We heard your concern about X, the new version has fixed it...””) can recover or
reinforce trust.

6. Practical Applications and Broader Implications

Trust considerations in Al systems apply broadly across domains and types of applications. In this section, we
discuss how the theoretical principles of trust manifest in various practical applications of Al, and we generalize
lessons that cut across specific domains. The aim is to illustrate that while the context may differ — from healthcare
to finance to everyday consumer gadgets — the fundamental trust dynamics and the need for calibrated trust remain
universal. We also examine how focusing on trust can lead to better Al adoption outcomes and what it means for
the future of human—Al collaboration at a societal level.

6.1 Collaborative Decision Support Systems

A common class of Al applications is decision support systems, where Al provides recommendations or insights
to a human decision-maker. Examples include Al-powered diagnostic systems in healthcare, financial advisory
tools, or even Al assistants for military or emergency response decision-making. In all these cases, trust is the
linchpin of utilization. If a doctor doesn’t trust the AI’s diagnosis suggestion, they will ignore it, nullifying its
value. If they trust it appropriately, it can augment their decision — say by catching a rare condition the doctor
hadn’t considered, thereby improving patient outcomes. But if they overtrust it, they might accept a flawed
suggestion without cross-checking, potentially harming the patient [112].

Human resources (HR) is another emerging area — Al is used for screening resumes or even advising on employee
retention. Trust issues here involve fairness and biases. HR professionals might distrust Al if they fear it’s biased
against certain groups. Building trust thus requires transparency in the AI’s criteria (to show it’s fair) and possibly
keeping a human review stage to ensure nothing egregious happens. When trust is established, Al can speed up
hiring significantly, but companies often still keep a “human in the loop” to maintain a level of oversight that
reassures both the HR staff and the candidates that the process is accountable.

Across these decision support contexts, a few general lessons appear:

. Start with Al in an advisory role, not an authoritative role, until trust is earned. People prefer to have
Al as a recommendation agent initially, with themselves having final say. As trust grows, they may start deferring
more to the Al’s decisions in routine cases.

. Domain knowledge and trust: People with more domain expertise might be initially skeptical of Al
(feeling it encroaches on their expertise), but if shown that the Al is a tool that follows domain rules, they warm
up. Meanwhile, novices might overtrust Al because they assume it’s infallible. Training both groups differently

439



TPM Vol. 32, No. S7, 2025
ISSN: 1972-6325 |
https://www.tpmap.org/

Open Access

is crucial — experts might need to see the AI’s alignment with their knowledge (to trust it), whereas novices might
need cautionary training to not overtrust just because “the computer said so.”

. Audit trails: In sensitive decisions (like finance or law), trust is enhanced if the AI’s decisions are
auditable. Knowing that an AI’s recommendation can be reviewed and explained later makes human decision-
makers more comfortable using it, because it provides accountability. For example, a bank might trust an Al’s
credit decision if there’s a clear record of factors that led to that decision, which can be shown to regulators if
needed.

6.2 Al Assistants and Human-Centered Al Tools

A very visible category of Al in everyday life is Al assistants — think of Siri, Alexa, Google Assistant, or Al
customer service chatbots. For these, user trust is crucial for continued use. If an assistant repeatedly gives wrong
answers or has unclear sources, users lose trust and abandon it. Conversely, if it reliably helps with tasks (like
scheduling, information retrieval) and maintains a friendly, helpful demeanor, users integrate it into daily routines,
showing user loyalty born from trust [113].

One interesting observation is that the threshold for trust may be different depending on the application’s stakes.
Users might readily trust a virtual assistant to set an alarm or play music (low stakes), but not to give medical
advice (high stakes) unless it has proven credibility. So, trust calibration often involves context: a single Al system
might be trusted for some things and not others. Some voice assistants explicitly state when they can’t handle a
request (“I’m sorry, I’m not sure about that”) — which, while a limitation, actually builds trust because it prevents
the AI from confidently giving a wrong answer. Users learn that if the assistant does answer, it’s likely correct
within its domain, and if it doesn’t know, it will admit it. This honesty is critical. A study of user interactions with
chatbots found that admitting uncertainty and providing sources increased users’ trust in the information the
chatbot did provide, versus a chatbot that always gave a answer even if it was a guess.

6.3 Organizational and Societal Implications

On a broader level, fostering trust in Al has implications for how organizations structure work and how society at
large views Al integration. Organizations that successfully implement Al often create new roles and processes
around the Al. For instance, some companies have “Al translators” or analysts whose job is to interpret Al outputs
for others, bridging the gap and thereby building trust among the broader team. These are roles that recognize not
everyone will automatically trust or understand the Al, so a human facilitator can help. Over time, as trust
increases, these roles might evolve or be less hands-on, but they serve as scaffolding in the interim.

Companies also need to consider ethical use because public trust can quickly erode if Al is misused. A company
could have an incredibly accurate Al, but if users find it invades privacy or is used in a way they find
uncomfortable, trust is lost (for example, the backlash to some social media algorithms that were seen as
manipulative). Thus, building trust is also about aligning Al use with human values and transparently
communicating those values. As one example, when an Al is used in hiring, companies often publicly share how
they mitigate bias in that Al. This transparency aims to build trust not just with immediate users (HR staff) but
also with stakeholders like job applicants and regulators.

At the societal level, surveys like the KPMG 2025 global study highlight that while people see the benefits of Al,
they remain wary — demanding regulation and oversight as a condition for their trust. This has led to calls for
policy frameworks that ensure Al systems are audited and certified for aspects like fairness, safety, and privacy.
Government and industry standards (e.g., the EU’s proposed Al Act) might, in the future, serve a similar role to
FDA approvals in medicine — giving the public a baseline assurance that an Al system meets certain trustworthy
criteria. Such measures could raise general public trust in Al technologies, facilitating their acceptance (just as
people trust that airplanes are safe largely due to stringent aviation regulations and oversight) [114].

7. Challenges and Future Research Directions

While significant progress has been made in understanding and improving trust in Al systems, many challenges
remain. Trust is a nuanced, context-dependent phenomenon, and achieving the “right” level of trust in practice
can be difficult. In this section, we outline some key challenges that researchers and practitioners face in fostering
trust in Al, and we highlight promising future research directions to address these issues. These include developing
better trust metrics, adapting to cultural differences, dealing with increasingly autonomous Al, and ensuring
ethical alignment.

7.1 Measuring and Evaluating Trust

One fundamental challenge is how to measure trust in human—Al interaction reliably. In research studies, trust is
often measured via user surveys (asking users to rate their trust or perceived trustworthiness of the Al) or by proxy
behaviors (like degree of reliance on the Al’s suggestions). Each method has limitations. Self-reported trust can
be subjective and influenced by users’ interpretation of what “trust” means. Behavioral measures (e.g. how quickly
a user follows an Al recommendation) might not capture the full picture—someone might trust the Al but still
double-check due to protocol, or conversely not trust fully but follow due to lack of alternatives. Developing
robust trust metrics that can be applied in real-world settings is an ongoing area of research. For instance, using
physiological signals (heart rate, eye tracking) to infer user stress or ease during Al interaction is one experimental
approach, but linking that definitively to trust is complex [102].

7.2 Cultural and Individual Differences
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As identified, trust in Al is not one-size-fits-all. Cultural differences can lead to different default trust levels in
technology. For example, surveys have found that in some East Asian contexts, people might be more accepting
of Al in roles of authority (perhaps due to cultural attitudes towards authority and high technology adoption rates),
whereas in some Western contexts, individuals emphasize personal autonomy and might be more skeptical of Al
making decisions for them. Designing Al systems that accommodate these differences is important as Al gets
deployed globally. Future research should delve deeper into how cultural values (like individualism vs.
collectivism, uncertainty avoidance, power distance) impact trust in Al. With such knowledge, Al interfaces could
potentially adapt — for instance, an Al might present itself differently or offer different explanation styles
depending on the user’s cultural background or personal preference (some users might want a very detailed
explanation to trust it, others may find that tedious and prefer to just see outcomes and develop trust through
usage) [108].

7.3 Al Evolution: From Tools to Teammates to Agents

As Al systems become more advanced, possibly attaining greater autonomy or even forms of general intelligence,
the trust paradigm will also evolve. One challenge is what some call the opacity paradox of advanced Al: as Al
(like deep learning networks or large language models) become more powerful, they also often become more
complex and harder to interpret, potentially undermining transparency-based trust approaches.

7.4 Ethical and Policy Challenges

Ensuring trust is not misused is also an important future focus. There is a potential dark side: techniques to increase
user trust could be exploited to get users to accept Al decisions beyond what they should (like persuasive Al that
encourages overtrust to push certain outcomes). It’s crucial that trust-building is tied to genuine trustworthiness,
not manipulation. Ethical guidelines need to emphasize that any trust calibration must aim for appropriate trust
aligned with the user’s interests, not simply maximal trust for the AI’s or provider’s benefit. Future policies might
require transparency not just of Al systems, but of their trust calibration strategies — for instance, if an Al is using
a certain tone or explanation to influence user trust, users might have the right to know that [82].

Another policy issue is accountability in trust failures. When a user trusts an Al and that leads to harm, who is
responsible? Was it the user’s “fault” for trusting too much, or the designer’s fault for making the Al appear more
capable than it is? These questions will shape regulations. Clear standards might emerge about how Al should
communicate uncertainty or limitations, and failing to do so could be seen as negligence on the developer’s part,
not a user error.

Finally, building public trust at large might involve certification of Al systems. We might see independent bodies
evaluating Al for criteria that matter to trust — such as fairness, security, and transparency — and giving them trust
“scores” or labels (similar to nutrition labels on food or safety ratings on cars). Research can contribute here by
identifying which factors most strongly correlate with end-user trust and should thus be part of such evaluations.
For example, a label might convey: accuracy level in domain, whether the Al explanation method is human-
auditable, bias audit results, etc. A well-informed public could then trust certified Al much like people trust FDA-
approved medicine [74].

7.5 Dynamic and Reciprocal Trust Considerations

Future human—Al relationships might involve more reciprocal trust elements. For instance, we might have Al
systems that selectively trust human input — e.g., a smart home Al might learn to trust one family member’s
commands over another in certain domains if one has given better feedback historically. There could be interesting
emergent behaviors: imagine two Als trying to gauge each other’s reliability when collaborating (like self-driving
cars negotiating at an intersection). Developing frameworks for “trust” between Al agents, and how humans fit
into those loops, could become relevant (though this stretches the traditional definition of trust) [104].
Furthermore, long-term trust in continuous use scenarios will need more attention. Many current studies are short-
term; what happens when someone works with the same Al assistant for years? Does trust plateau, or could there
be cycles of complacency and shock if a rare error occurs after a long time of perfection? Maintaining vigilance
without losing trust in long-term human—Al partnerships (like a person and their Al caregiver over decades) will
be an intriguing area. Perhaps periodic re-validation or “refreshers” might be needed — analogous to renewing a
certification, an Al might need to re-prove itself or update the user on how it has improved (or changed) over time
to sustain trust.

8. CONCLUSION

Trust is central to successful human—Al collaboration, dictating system adoption and utilization. This review
comprehensively investigates trust in Al from social-psychological and technological angles, contrasting human-
to-human trust with trust in artificial agents. We analyze key determinants of trust, including Al system attributes
like performance and transparency, user characteristics (e.g., personality and experience), and contextual factors
(e.g., task risk). The paper explores the dynamic evolution of trust during human-Al interaction, focusing on the
critical process of trust calibration—avoiding pitfalls like overtrust and undertrust. Practical implications are
discussed, highlighting design strategies for building appropriate trust through explainable and reliable Al, user
education, and effective organizational policy. Ultimately, calibrated trust is underscored as the vital component
needed to harness Al's full potential while preserving human agency and collaboration efficacy, setting the stage
for future research challenges.
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