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Abstract 

Explainable artificial intelligence (XAI) has become an essential research area for making complex 

Machine-Learning models transparent, trustworthy and actionable for human decision makers. As 

artificial intelligence (AI) systems increasingly influence high-stakes decisions in domains such 

as finance, healthcare and education, understanding how explanations impact human judgment is 

critical. This paper presents a comprehensive examination of XAI for understanding human 

decision-making patterns, synthesising theoretical foundations, recent empirical findings and 

design considerations. The paper develops conceptual frameworks linking explanation types to 

cognitive processes, summarises empirical evidence regarding the effects of explanations on task 

performance, trust and cognitive load, and discusses challenges such as the white-box paradox, 

algorithmic aversion and the risk of overreliance. We further propose guidelines for designing 

human-centred XAI systems that align with users’ mental models, support various stakeholder 

needs and incorporate mechanisms to recognise when explanations are insufficient. Finally, we 

highlight open challenges and future directions for research at the intersection of XAI and human 

decision-making. 

Keywords: Explainable artificial intelligence; human decision making; cognitive load; trust and 

reliance; human–computer interaction; interpretability; evaluation metrics. 

1 INTRODUCTION 

 

1.1 Motivation 

Modern AI models often operate as black boxes, mapping input features to predictions without revealing the 

internal reasoning process. While such models achieve high performance, their opacity undermines human trust 

and raises concerns about fairness, accountability and regulatory compliance [7][8]. Without transparent 

explanations, stakeholders cannot evaluate whether predictions are reasonable, understand which factors drive 

outcomes or identify potential biases. The absence of interpretability hampers adoption in high-stakes contexts 

such as credit scoring, medical diagnosis and automated hiring, where decisions have serious consequences. 

Explainable AI seeks to address these issues by providing explanations that make models’ behaviour 

understandable to humans, thereby enhancing trust and enabling humans to make informed decisions [9][10][11]. 

1.2 Scope and objectives 

This research aims to provide a detailed overview of XAI for understanding human decision-making patterns. The 

study does not examine case studies in specific domains; instead, it generalises principles and empirical findings 

across multiple fields. Our objectives are to: 

a) Summarise the taxonomy of explanation methods and relate them to cognitive processes; 

b) Analyse empirical evidence on how explanations affect task performance, trust, reliance and cognitive load; 
c) Discuss theoretical frameworks such as the white-box paradox and the halo effect that highlight potential 

pitfalls of XAI; 

d) Present guidelines for designing human-centred explanation systems; 

e) Identify open research challenges and propose future directions. 

2 THEORETICAL FOUNDATIONS Of EXPLAINABLE AI 

 

2.1 Interpretability and transparency 

The terms interpretability, transparency and explainability are often used interchangeably but denote different 

concepts. Intrinsic interpretability refers to models whose internal structure can be directly understood by humans, 

such as decision trees or generalised additive models (GAMs) [12]. Post-hoc explanations are generated after 

model training and aim to approximate the decision logic of a black-box model through surrogate models, feature 
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attribution or example-based reasoning. Transparent models provide comprehensive access to all parameters and 

operations, whereas interpretable models prioritise human comprehensibility over full transparency [13]. The goal 

of XAI is not to reveal every detail of a complex neural network but to produce explanations that are faithful, 

comprehensible and actionable for specific users [14]. 

2.2 Why interpretability matters 

Explanations serve multiple purposes. First, they enhance trust by enabling users to verify that a model’s decision 

logic aligns with domain knowledge and ethical principles. Second, explanations facilitate Error Detection and 

model debugging by revealing spurious correlations and biases. Third, regulatory frameworks such as the EU’s 

General Data Protection Regulation (GDPR) and guidelines from US government agencies mandate that 

algorithmic decisions be explainable to affected individuals. Lastly, explanations support knowledge transfer, 

allowing human experts to learn from model insights and integrate them into decision making [15][16][17]. 

2.3 Taxonomy of explanation methods 

Figure 1 presents a high-level pipeline illustrating how data, a black-box model, an explanation module and the 

human decision maker interact. Explanations are produced as post-hoc summaries of model predictions and may 

influence the final human decision [18][19]. 

Figure 1: XAI pipeline for human decision making. 

 

Intrinsic methods include decision trees, rule-based systems and interpretable linear models (GAMs). These 

models are inherently transparent and can be inspected directly [20]. However, they often sacrifice performance 

relative to complex models and may struggle to capture non-linear relationships [21]. Post-hoc methods operate 

on trained black-box models and derive explanations by analysing the relationship between input features and 

predictions. They can be further divided into: 

a) Feature attribution methods, which assign importance scores to input features (e.g., LIME, SHAP, 

integrated gradients). They are widely used because they are model-agnostic and produce heatmaps or bar 

plots that highlight influential features. 

b) Example-based methods, which select representative training examples or prototypes to justify predictions. 

These include k-nearest neighbours, exemplar-based explanations and case-based reasoning. 

c) Rule-based explanations, which extract logical rules that approximate the model’s decision boundaries. 

d) Counterfactual explanations, which suggest minimal changes to input features required to alter the 

prediction. They enable users to understand how decisions could differ under alternative circumstances. 

e) Surrogate models, which train interpretable models on the inputs and outputs of the original black-box model 

(e.g., decision tree surrogates). 

Figure 2 depicts a taxonomy of XAI methods across two dimensions: intrinsic vs post-hoc and local vs global 

explanations. 
 

Figure 2: Taxonomy of explanation methods 

Beyond the intrinsic/post-hoc distinction, several other dimensions enrich the taxonomy of explanations. Local vs 

global refers to whether an explanation pertains to a single instance or provides a summary across many instances 

[22][23]. Model-specific vs model-agnostic distinguishes explanations that exploit the structure of a specific model 
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(e.g., saliency maps for convolutional neural networks) from those that treat the model as a black box and probe 

it by perturbing inputs. Ante-hoc vs post-hoc separates methods that build interpretability into the model from 

those that derive interpretability after training. Actionable vs descriptive distinguishes explanations that suggest 

how to alter an outcome from those that merely describe factors influencing a prediction [24][25]. 

2.4 Cognitive frameworks and explanation questions 

Explanations must align with human cognitive processes to be effective. Human reasoning often proceeds by 

asking and answering different types of questions: Why did an event happen, why not, how, what if and what else. 

Aligning explanation types with such questions supports deeper understanding and helps users integrate model 

output into their mental models [26][27]. Figure 3 illustrates a conceptual framework linking explanation 

questions to mental models and cognitive processes. Explanations in categories such as why or why not feed into 

users’ reasoning processes, update their mental models and ultimately influence decision outcomes [28][29][30]. 
 

Figure 3: Cognitive framework linking explanation questions to human mental models. 

Theories from cognitive psychology provide deeper insights into how explanations influence decision making. 

Mental models theory posits that people construct internal representations of external systems to simulate 

scenarios and reason about them. Explanations aid in refining these models by elucidating causal relationships, 

highlighting alternative possibilities and correcting misconceptions. Dual-process theories differentiate between 

fast, intuitive cognition (System 1) and slow, deliberative cognition (System 2). Simple visualisations or narratives 

may suffice for System 1 processing, while complex tasks require analytical explanations that engage System 2. 

Cognitive biases—including confirmation bias, anchoring and availability bias—can shape how explanations are 

interpreted. For instance, users might favour explanations that confirm pre-existing beliefs, thereby reinforcing 

misconceptions. Understanding these cognitive principles helps designers create explanations that are both 

persuasive and accurate, while avoiding unintended biases [31][32][33]. 

2.5 Stakeholder perspectives and human-centred XAI 

Traditional XAI methods often target technical stakeholders such as data scientists or developers, who need to 

debug models and ensure fairness. However, many AI applications involve multiple stakeholders—decision 

subjects, domain experts, regulators—who require different types of explanations [34][35]. For example, in credit 

risk assessment the applicant may ask why their loan was denied, a regulator may ask whether the model complies 

with fairness regulations, while a data scientist seeks to know which features drive predictions. A one-size-fits-all 

approach is inadequate, underscoring the need for human-centred XAI that allows interactive exploration, 

supports diverse questions and acknowledges the limitations of the model. Explanations must be tailored to the 

user’s role, knowledge and cognitive style to be effective [36]. 

2.6 Historical evolution of XAI 

The quest for interpretability predates the advent of modern deep learning. Early expert systems in the 1970s, such 

as MYCIN, were built upon symbolic rules encoded by human experts and included modules that explained the 

reasoning behind diagnoses. These systems highlighted the importance of trust and interpretability but were 

limited by their inability to learn from data [37]. In the 1990s and 2000s, machine learning models such as decision 

trees and logistic regression offered a compromise between accuracy and interpretability. As big data and deep 

neural networks emerged, black-box models dramatically improved predictive performance but at the cost of 

transparency [38]. This trade-off spurred a resurgence of interest in explainability. The development of 

model-agnostic explanation techniques like LIME and SHAP in the mid-2010s facilitated the examination of 

complex models, marking a turning point in XAI research. Subsequent years saw the rise of counterfactual 

explanations, example-based reasoning, surrogate models and hybrid approaches that combine multiple 
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explanation modalities. Recent work emphasises holistic frameworks that integrate user feedback, causal 

reasoning and domain knowledge to create explanations that are more meaningful for diverse stakeholders 

[39][40]. 

3 Linking Explanations to Human Decision-making Patterns 

3.1 Cognitive load and mental workload 

Human decision makers operate under varying levels of cognitive load. Cognitive load refers to the amount of 

mental resources required to process information, and it is influenced by task complexity, time pressure, fatigue 

and individual abilities [41]. High workload can impair the ability to process explanations, leading to overreliance 

or underreliance on AI. Researchers use both subjective measures, such as the NASA Task Load Index (TLX), 

and objective measures, including EEG or eye-tracking, to assess cognitive load. Senoner et. al. [1] measured 

mental workload and its effect on appropriate reliance on AI. Participants were asked to determine the 

trustworthiness of a source with or without explanations while their brain activity was recorded. Cau et. al [2] 

found that under low workload participants appropriately calibrated their reliance on AI, while high workload led 

to overreliance regardless of whether explanations were provided. Explanations alone did not mitigate the negative 

effects of high mental workload. These results align with cognitive theory: when working memory is overloaded, 

individuals may resort to heuristics or defer to the AI without properly evaluating the explanation [42]. To address 

this, XAI systems can monitor indicators of mental workload (e.g., through physiological sensors or performance 

data) and adapt the complexity of explanations accordingly. Figure 4 visualises how workload influences reliance 

on AI. Data are adapted from the EEG study. Under low workload, participants showed near-optimal reliance on 

AI, and explanations had negligible effect. Under high workload, reliance decreased markedly, again with little 

difference between explanation conditions [43][44]. 
 

Figure 4: Relationship between mental workload and appropriate reliance on AI. 

 

3.2 Effects of explanation type on task performance and trust 

Multiple studies have examined whether different explanation styles improve task performance and trust. An 

experiment involving loan approvals compared feature-based, example-based, rule-based and counterfactual 

explanations. High AI confidence increased user reliance and reduced cognitive load, but feature-based 

explanations did not improve accuracy and counterfactuals improved accuracy yet were harder to understand. 

Another research work of Shajalal et. al. [3] with 742 participants found that guided explanations (which provided 

tailored suggestions) increased reliance more than transparent strategies, while no explanation sometimes also led 

to high reliance [45][46]. These findings suggest that simply adding an explanation is insufficient; the explanation 

must be designed to suit the task and user. Explanations may serve different functions: descriptive explanations 

help users understand what the model did, while prescriptive or guided explanations tell users how to act. In 

high-risk domains, users may prefer guided advice that highlights critical factors and suggests actions (e.g., 

“review this loan’s debt-to-income ratio”). Conversely, in educational settings, descriptive explanations that 

encourage exploration may foster learning [47][48][49]. 

Synthesising results across experiments is challenging because tasks differ widely—from medical diagnoses to 

credit scoring to image classification—and participants vary in expertise. Nonetheless, a meta-analysis of 

classification tasks concluded that XAI improves task performance overall, although the choice of explanation 

type plays only a minor role. The meta-analysis emphasises that other factors, such as the complexity of the task, 
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user expertise, and the risk associated with decisions, moderate the effect of explanations. For example, novices 

may benefit more from example-based explanations that ground predictions in familiar instances, whereas experts 

may prefer feature attribution that highlights domain-specific cues [50][51]. In high-stakes contexts, such as 

medical diagnosis, even a small improvement in accuracy may justify the cost of implementing XAI, but the 

explanation must align with clinical reasoning to be accepted. Researchers should thus consider context, user 

goals and domain conventions when selecting explanation types. 

Figure 5. Comparison of task accuracy and trust across different explanation types. 

The Figure 5 summarises general patterns observed in empirical studies. Although explanations improve trust, the 

impact on accuracy is often marginal. 

3.3 Individual differences and decision-making patterns 

People differ in their propensity to seek or defer responsibility. Kim et. al. [4] explored how decision-making 

styles—vigilance, hypervigilance and buckpassing—affect reliance on AI suggestions [52]. Buckpassing 

describes the tendency to relinquish responsibility to others (in this case AI) and was found to correlate with 

greater reliance on AI and less time spent reading explanations. Hypervigilant individuals, who experience anxiety 

and indecision, also showed elevated reliance on AI but were more prone to reject explanations that conflicted 

with their own judgement. In contrast, vigilant decision makers scrutinised explanations carefully and relied less 

on AI, using explanations as an aid rather than a crutch. Another study examined the Need for Cognition, a 

personality trait reflecting enjoyment of effortful thinking; participants with high need for cognition benefited 

more from counterfactual explanations, whereas those with low need for cognition preferred simpler explanations. 

These findings suggest that explanation interfaces should adapt to individual differences, offering more detailed 

explanations to engaged users while providing concise summaries for others [53][54]. 

Beyond cognitive traits, demographic factors such as age, education and cultural background influence how 

explanations are perceived. Younger participants, who have grown up with digital technologies, may be more 

comfortable interacting with AI and may demand less justification, whereas older participants may require more 

extensive explanations to build trust. Domfeh et. al. [5] have shown that collectivist cultures value group 

consensus and may prefer explanations that emphasise fairness and social implications, whereas individualist 

cultures may focus on personal benefit and effectiveness. Domain expertise also plays a role: novices might 

require high-level analogies, whereas domain experts might expect explanations that use technical terminology 

and align with professional reasoning. Incorporating user modelling and personalisation into XAI systems can 

improve relevance and reduce cognitive overload, but it raises privacy and ethical questions about profiling users 

and adapting persuasive strategies [55][56]. 

3.4 Trust, algorithmic aversion and overreliance 

While explanations can increase trust, they may also produce undesirable effects. Algorithmic aversion refers to 

the tendency of users to discount algorithmic advice after observing errors, even when it outperforms human 

judgement. Explanations may exacerbate aversion by making errors more salient and by revealing complexities 

that undermine confidence [57][58]. For example, if a feature attribution explanation highlights a spurious 

correlation (e.g., zip code influences medical diagnosis), users may distrust the model altogether rather than 

focusing on the overall pattern. Conversely, users may develop overreliance when explanations are too persuasive 

or when they erroneously believe that the model’s reasoning is infallible. Overreliance is particularly dangerous 

in safety-critical contexts, where blind acceptance can lead to fatal errors. 

The white-box paradox posits that exposing the internal workings of a model can create a halo effect: users might 

trust the model more simply because they see an explanation, even if the explanation is misleading or incorrect. 

Misleading explanations can arise because the explanation module and the prediction module are separate 
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components—one may be correct while the other is wrong. For instance, an AI system may produce an accurate 

prediction for a patient’s risk of disease but accompany it with a low-quality explanation due to a bug or 

approximate method. Users might accept the prediction uncritically because of the apparent transparency, leading 

to explainability washing. Designers must therefore calibrate the persuasiveness of explanations to avoid both 

overreliance and unwarranted scepticism. Strategies include highlighting model uncertainty, providing 

counterexamples that illustrate failure cases, and educating users on the limitations of AI [59][60]. 

 

4 Empirical Evidence on XAI and Human Decision Making 

4.1 Improving task performance and decision quality 

Suffian et. al [6] hypothesised that providing explanations would automatically enhance decision quality. A 

randomised experiment involving more than 2 000 participants evaluated whether heatmap-based XAI improves 

human–AI collaboration in manufacturing and medical tasks. The results showed that explanations increased task 

performance by 7.7% points in the manufacturing task and by 4.7 % points in the medical task [61]. Participants 

also reported higher trust and found the AI easier to work with. Other experiments in image classification have 

shown that visual saliency maps help participants identify errors in AI predictions and improve accuracy in 

adversarial settings, though the effect size decreases as tasks become more complex [62][63]. 

However, a subsequent meta-analysis found that explanation type contributed little to performance differences, 

and that studies with lower risk of bias reported smaller effect sizes [64][65]. This meta-analysis aggregated results 

across tasks, including credit scoring, medical imaging and natural language processing, and noted that 

heterogeneity among experimental designs made it difficult to draw universal conclusions. Gambetti et. al. [7] 

found that an XAI-based clinical decision support system improved diagnostic accuracy compared with existing 

scores but that clinicians still trusted the traditional Centor score more and demanded additional testing. This 

underscores that trust and reliance may not align: participants may benefit from AI advice but still distrust the 

system due to lack of familiarity or concerns about liability [66][67][68]. 

Moreover, performance gains from explanations may be domain-dependent. In tasks with well-understood causal 

structures, such as diagnosing a simple disease, explanations may reinforce existing knowledge and improve 

accuracy. In complex socio-technical systems, such as predicting recidivism, explanations may not significantly 

improve performance and could even mislead if they oversimplify the model’s reasoning. The interplay between 

explanation quality, domain complexity and user expertise therefore warrants careful empirical investigation 

[69][70]. 

4.2 Cognitive load and explanation complexity 

The relationship between explanation complexity and cognitive load has been explored in several recent studies. 

An empirical study with prospective physicians compared local explanation types and found that complex 

explanations increased cognitive load and sometimes decreased performance [71]. In this study, participants 

assessed patient risk using explanations based on SHAP values, decision rules and narrative text. Although 

narrative explanations were easier to read, they sometimes lacked specificity, while technical explanations 

increased mental load. A separate study measured cognitive load and task time across explanation formats; 

rule-based and counterfactual explanations improved performance but were harder to understand. The authors 

suggested that counterfactuals require mental simulation of alternative states, which is cognitively demanding, 

but provide actionable insights that can improve decisions [72][73][74]. 

Another line of work investigates the role of explanation length, format and modality [75]. Long textual 

explanations may overwhelm users, whereas concise visual explanations may omit important nuances. Interactive 

explanations that allow users to expand or collapse details could strike a balance. Multi-modal explanations— 

combining text, charts and examples—may cater to different learning styles. When cognitive resources are 

exhausted, users may ignore explanations or misinterpret them, leading to poor decisions. Therefore, explanation 

designers should consider cognitive load when choosing the modality, depth and timing of explanations, possibly 

by monitoring user attention and adapting accordingly [76][77]. 

4.3 Trust calibration and imperfect explanations 

Recent research has begun to investigate scenarios where explanations themselves may be incorrect or 

uninformative. In a mixed-methods study, participants were exposed to AI advice accompanied by correct or 

incorrect explanations [78]. The study showed that participants were easily misled by flawed explanations and 

often failed to detect the inaccuracies, leading to poor decisions and misplaced trust. This highlights the fragility 

of human judgement when the explanation is accepted at face value. Similarly, a user study observed that 

misleading explanations paired with accurate advice produced a halo effect, causing users to trust the AI more 

than warranted. The effect persisted even when participants were trained to question the advice, suggesting that 

the presence of an explanation can disarm skepticism [79][80]. 

These findings underscore the need for mechanisms to detect and signal the quality of explanations. A recent 

proposal introduced User-centric Low-quality Explanation Rejector (ULER), which learns to abstain from making 

predictions when it cannot provide a satisfactory explanation. ULER relies on human ratings of explanations and 

follows guidelines from government agencies suggesting that AI systems should recognise their limitations 

[81][82]. Other approaches include estimating explanation uncertainty, evaluating the stability of feature 

attribution under perturbations, and cross-validating explanations using multiple methods. For instance, 

comparing SHAP values with counterfactual explanations can reveal inconsistencies; if they point in opposite 
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directions, the explanation may be unreliable. Ensemble explanation frameworks may provide more robust 

insights by aggregating different explanation outputs [83]. 

4.4 Evaluation of human-centred XAI 

A systematic review of human-centred XAI applications identified 73 studies across domains such as healthcare, 

finance, education and criminal justice. The review highlighted that evaluation measures vary widely, including 

subjective metrics (trust, satisfaction), objective metrics (accuracy, time) and behavioural metrics (choices, 

reliance). Beyond these, some studies consider calibrated trust, defined as the degree to which reliance on AI 

matches its actual performance, and fairness perceptions, reflecting whether users believe the AI treats different 

groups equitably [84][85]. Another survey focusing on clinical decision support systems emphasised that adoption 

is hindered by cognitive load and misalignment with clinical reasoning. The review called for deeper stakeholder 

engagement and user studies to evaluate explanations in real-world contexts. For example, in clinical settings, 

explanations might need to reference evidence hierarchies or connect to established guidelines to be accepted by 

clinicians [86]. 

Research on smart home environments also emphasised that existing XAI methods are tailored for developers 

rather than general users, urging human-centred approaches that consider user needs, cognitive abilities and 

accessibility [87]. Evaluations should not only measure whether users understand the explanation but also whether 

it leads to better decisions and supports fairness and accountability [88]. For instance, an explanation that is 

understandable but encourages discriminatory decisions is ethically unacceptable. Inclusion of diverse 

participants in user studies is therefore critical for ensuring that explanations do not disproportionately benefit or 

harm certain groups. To this end, frameworks for fairness-aware XAI evaluation are being developed, which 

assess whether explanations systematically differ across demographic groups and whether they mitigate or 

exacerbate biases [89][90]. 

4.5 The effect of human–AI collaboration patterns 

Human–AI interaction patterns influence how explanations are used. A systematic review of AI use in disaster 

management categorised interactions into decision support systems, task and resource coordination, trust and 

transparency, and simulation and training. Decision support systems often present AI recommendations with or 

without explanations; task and resource coordination systems require dynamic communication among multiple 

stakeholders; trust and transparency interventions use XAI to build situational awareness and justify resource 

allocation; simulation and training platforms employ XAI to teach users how AI behaves under various conditions 

[91][92]. The review noted that while AI can improve situational awareness and decision making, limitations in 

scalability, interpretability and interoperability hinder adoption. For example, a disaster response system may rely 

on multiple heterogeneous AI models (for weather prediction, traffic routing and communication), each requiring 

different explanations. Aligning explanations across models and presenting them in a unified interface remains 

challenging [93]. 

Moreover, research on explainable decision systems for smart homes argued that current XAI methods seldom 

provide actionable explanations for lay users and emphasised the need for co-designed systems that integrate 

human–computer interaction (HCI) principles [94]. The emerging theme is that explanations should be integrated 

into collaborative workflows and support shared decision making rather than being treated as post-hoc add-ons. 

For instance, in team settings, explanations might need to support group decision making by highlighting how AI 

suggestions align with team goals and by providing rationales accessible to all members. Additionally, transitions 

of control between humans and AI should be explicit; when the AI takes over, users should understand why, and 

when control returns to humans, they should know which factors led to the AI’s recommendation. Designing for 

collaboration requires considering not only individual cognitive processes but also group dynamics, 

communication protocols and organisational culture [95]. 

 

5 Designing and Evaluating Human-Centred XAI Systems 

5.1 Evaluation metrics for explanations 

Evaluating XAI methods remains an open challenge. Traditional metrics focus on fidelity (the extent to which 

explanations accurately reflect model behaviour) and interpretability (how easily humans can understand an 

explanation) [96]. Fidelity can be quantified by measuring the correlation between explanation scores and true 

feature contributions or by assessing how well a surrogate model approximates the original model. Interpretability 

is more subjective; it is often assessed via user studies or cognitive metrics [97]. Additional metrics include 

completeness (whether the explanation accounts for all important factors), consistency (whether similar instances 

yield similar explanations), stability (whether small perturbations in input produce similar explanations) and 

compositionality (whether explanations can be composed to explain complex decisions) [98]. 

User-centric metrics include trust, satisfaction, perceived fairness, reliance, mental workload and calibration (how 

accurately users assess model reliability). However, a recent preprint argues that current evaluations are 

fragmented and fail to account for the multidimensional nature of explanations [99]. It proposes a normalised 

evaluation framework that considers the data, model, prediction and user dimensions. Under this framework, an 

explanation is evaluated not only on its faithfulness to the model but also on its ability to answer stakeholder 

questions and support decision outcomes. Combining feature attribution with counterfactual explanations may 

yield holistic insights, but comparative evaluation across methods remains difficult [100]. These various metrics 

are summarised in Table 1, which outlines their definitions and typical measurement strategies. 
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Table 1: Evaluation metrics for XAI and their typical measurements. 

Metric Description Typical measurement 

 

Fidelity 

Degree to which the explanation 

accurately reflects the behaviour of the 

underlying model. 

Correlation between explanation scores and true 

feature contributions; surrogate model accuracy. 

Interpretability 
Ease with which humans can 

understand the explanation. 

User studies assessing comprehension, time taken 

to interpret, or subjective ratings of clarity. 

 

Completeness 

Extent to which the explanation 

accounts for all factors that influence 

the prediction. 

Evaluated by adding features suggested by the 

explanation and measuring change in prediction or 

by testing coverage of known causal factors. 

 

Consistency 
Whether similar instances yield similar 

explanations. 

Statistical measures of variation across 

explanations for perturbed inputs; ranking 

similarity metrics. 

 

Stability 

Robustness of explanations to small 

perturbations in input or model 

parameters. 

Distance metrics between explanations for 

neighbouring points; sensitivity analyses. 

 

Compositionality 

Ability of explanations to be combined 

to explain complex decisions 

involving multiple components. 

Assessment of whether explanations for 

subcomponents can be composed to explain the 

overall decision; hierarchical evaluation. 

 

Fairness 

Degree to which explanations do not 

reinforce or introduce biases across 

demographic groups. 

Analysis of explanation content across subgroups; 

fairness metrics such as demographic parity or 

equalised odds applied to explanations. 

 

Actionability 

Ability of explanations to provide 

suggestions that users can act upon to 

achieve desired outcomes. 

User surveys on perceived helpfulness; 

measurement of changes in user behaviour or 

outcomes after receiving the explanation. 

Efficiency 
Computational cost and scalability of 

generating explanations. 

Time complexity, memory usage and throughput; 

feasibility of real-time operation. 

 

Evaluation frameworks should also consider fairness and ethical dimensions. For example, an explanation that 

attributes high importance to sensitive attributes (e.g., race) may raise concerns about discrimination, even if the 

model itself does not directly use these attributes. Fairness-aware evaluation measures whether explanations 

inadvertently reveal biased correlations or reinforce stereotypes. Another emerging metric is actionability, which 

assesses whether the explanation provides information that users can act upon. For instance, a counterfactual 

explanation might suggest that a loan applicant could improve their credit score by reducing debt [101]. 

Actionability is crucial for empowering users to seek recourse and for complying with regulations such as the 

GDPR. Finally, computational efficiency must be considered, as some explanation techniques (e.g., SHAP) are 

computationally expensive, limiting their usability in real-time systems. 

Table 2: Categories of XAI methods, examples, advantages and limitations. 

Category Examples Advantages Limitations 

 

Intrinsic local 
Decision trees, 

rule-based models 

Transparent and directly 

interpretable; no post-hoc 

approximation 

Often less accurate than complex 

models; may not capture 

non-linear patterns 

 

Intrinsic global 
Generalised additive 

models (GAMs) 

Capture global trends while 

remaining interpretable; can 

model smooth functions 

Limited flexibility; require 

careful tuning 

Post-hoc feature 

attribution 

LIME, SHAP, 

integrated gradients 

Model-agnostic; highlight 

important features; easy to 

visualise via heatmaps 

May be unstable and lack 

faithfulness; ignore feature 

interactions 

Post-hoc 

example-based 

Prototypes, 

exemplar selection 

Provide tangible examples; align 

with human case-based 

reasoning 

Risk of cherry-picking examples; 

may not capture general patterns 

Post-hoc 

rule-based 

Anchors, decision 

rules 

Provide succinct logical rules; 

easy to understand 

Rules may oversimplify and be 

brittle; generation can be 

computationally expensive 
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Category Examples Advantages Limitations 

 

Counterfactual 
Minimal changes to 

flip prediction 

Answer “what-if” questions; 

actionable for users seeking to 

change outcomes 

May propose unrealistic changes; 

solving optimisation can be 

complex 

 

Surrogate models 

Decision-tree 

surrogate, linear 

regression 

Global interpretability; 

summarise black-box behaviour 

Approximate only; may 

misrepresent complex decision 

boundaries 

 

Table 2 emphasises that each method involves trade-offs among accuracy, interpretability and faithfulness. 

Evaluators must consider the target audience and context when selecting appropriate methods. 

5.2 Guidelines for human-centred XAI design 

Based on the literature review, we propose the following guidelines for designing human-centred XAI systems: 

a) Stakeholder analysis: Identify the different stakeholders (decision subjects, domain experts, regulators, 

developers) and their information needs. Tailor explanation content accordingly. 

b) Alignment with cognitive models: Map explanation types to human question categories (why, why not, how, 

what if) and to cognitive processes. Provide explanations that support causal and counterfactual reasoning. 

c) Adaptive explanations: Allow users to request more detailed or alternative explanations. Adaptive systems 

can modulate explanation complexity based on user expertise, mental workload or decision style 

(buckpassing vs vigilance). 

d) Trust calibration: Balance persuasiveness and scepticism to avoid overreliance and algorithmic aversion. 

Provide confidence information and highlight uncertainties. 

e) Explanation quality control: Incorporate mechanisms like ULER to abstain when explanations are likely to 

be misleading or low quality. Use user feedback to improve explanation modules. 

f) Integrate into workflows: Embed explanations within the decision process rather than as a post-hoc add-on. 

Support interactive exploration where users can ask questions and test hypotheses. 

g) Evaluate holistically: Use multidimensional evaluation metrics covering fidelity, interpretability, usefulness, 

fairness and cognitive load. Conduct user studies in realistic environments to assess decision quality, not just 

perceived understanding. 

5.3 Graphical representation of evaluation results 

Figures 4 and 5 already illustrated aggregated patterns across studies. Such visual summaries can help researchers 

and practitioners compare results across explanation types and conditions. However, caution is warranted: 

aggregated data may mask important nuances, such as the influence of individual differences or domain-specific 

constraints. Nonetheless, graphical representation of evaluation results is a valuable tool for communicating 

findings and facilitating cross-study comparisons [102][103]. 

 

6 Challenges and Limitations 

6.1 Misleading and imperfect explanations 

XAI methods are not infallible. Feature attribution methods such as LIME and SHAP approximate black-box 

models and may produce explanations that are unstable or unfaithful [104]. When explanations are incorrect or 

misleading, they can cause users to make erroneous decisions. The XAI halo effect describes a phenomenon where 

users attribute greater credibility to AI advice simply because it is accompanied by an explanation. Addressing 

these issues requires rigorous evaluation of explanation quality and mechanisms to signal when the explanation 

should not be trusted [105]. 

6.2 White-box paradox and overreliance 

The white-box paradox arises when revealing too much internal information leads to overreliance. Even accurate 

explanations may create a false sense of understanding, leading users to accept AI advice without critical scrutiny. 

Overreliance can have severe consequences in high-stakes settings, e.g., automated hiring or medical diagnosis 

[106]. Designers should calibrate explanation detail, provide counterexamples and encourage users to interrogate 

AI outputs. They should also train users to recognise when the AI may be uncertain or wrong. 

6.3 Regulatory and ethical considerations 

Regulations such as the GDPR emphasise the right to explanations for algorithmic decisions. New AI Acts in 

Europe, the US and Asia propose risk-based frameworks that require providers to demonstrate the transparency, 

robustness and governance of AI systems [107]. For instance, the European AI Act classifies AI systems into 

prohibited, high-risk and low-risk categories and mandates human oversight and explainability for high-risk 

applications. The US National Institute of Standards and Technology (NIST) released the AI Risk Management 

Framework, which includes “explainability and interpretability” as a key characteristic of trustworthy AI. 

Complying with these frameworks requires developers to document the data provenance, model assumptions and 

limitations and to provide explanations that are both technically accurate and legally meaningful [108]. 

From an ethical perspective, explanations may influence users’ decisions and behaviours. Misleading or biased 

explanations can be weaponised for persuasion or manipulation, particularly in domains like advertising or 

political campaigning. Privacy concerns arise when explanations reveal sensitive attributes or training examples 

that may lead to re-identification of individuals. Ensuring that explanations do not inadvertently leak sensitive 
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information requires techniques such as differential privacy and data masking. Fairness considerations extend to 

whether explanations themselves are fair: a system might generate different explanations for users in different 

demographic groups, possibly reinforcing stereotypes or discrimination. Ethical XAI design therefore must 

incorporate principles of transparency, accountability, privacy and non-discrimination and should be informed by 

interdisciplinary collaboration among legal scholars, ethicists, social scientists and technologists [109]. 

Another regulatory challenge involves intellectual property and model secrecy. Companies may be reluctant to 

disclose the inner workings of proprietary models due to competitive concerns. Regulatory frameworks need to 

strike a balance between promoting transparency and protecting trade secrets. Recent proposals suggest using 

third-party auditors or “algorithmic inspectors” who can access model internals under confidentiality agreements 

and verify compliance without making proprietary details public. Ultimately, effective governance of XAI 

requires clear standards, enforcement mechanisms and avenues for redress when AI decisions harm individuals 

[110]. 

 

7 Future Directions 

7.1 Interactive and conversational XAI 

Future research should explore interactive systems that allow users to ask follow-up questions, request 

counterfactuals or drill down into specific features. Such systems could employ natural language interfaces and 

dialogue management to facilitate conversational explanations, providing a more engaging user experience. For 

example, an applicant seeking a loan could ask: “What aspects of my credit report contributed most to this 

decision?” The system might reply with a feature-importance explanation, after which the applicant could follow 

up with “What changes would improve my likelihood of approval?” to trigger a counterfactual explanation. By 

supporting this kind of dialogue, the system adapts to the user’s evolving information needs and clarifies 

ambiguous points [111][112]. 

Conversational explanations also require multimodal interfaces. Visualisations (such as heatmaps or timelines), 

interactive sliders and narrative text can complement verbal explanations. The integration of large language 

models (LLMs) with traditional XAI techniques offers exciting possibilities: LLMs can translate technical 

explanation content into fluent language, summarise complex reasoning and generate analogies or metaphors 

tailored to user contexts. However, ensuring that LLM-generated explanations remain faithful to the underlying 

model’s logic is critical to avoid hallucinations or oversimplification. Maintaining the chain of reasoning may 

help align the narrative with the model’s operations and allow users to trace how specific features influenced the 

prediction [113]. 

Interactive XAI should not be limited to user queries; it should also proactively detect confusion or 

misunderstanding. Physiological signals like eye tracking, pupil dilation or voice hesitations can indicate when a 

user is puzzled. The system could then offer clarification or ask whether additional detail is needed. User feedback 

loops can help explanation modules learn which types of explanations are most helpful, which are confusing or 

overwhelming and how to adapt to different decision styles (e.g., analytical vs intuitive). Incorporating 

reinforcement learning techniques, the system could optimise its explanation policy based on feedback signals 

such as user satisfaction, task performance and trust calibration. 

7.2 Integration with cognitive models 

Advances in cognitive science and neuroscience offer opportunities to design explanations that align more closely 

with how humans reason. Mapping explanation types onto cognitive processes can guide the development of 

dynamic explanations tailored to users’ mental models. For example, the dual-process theory posits that humans 

engage in both fast, intuitive processing and slow, analytical reasoning. Explanations may need to appeal to both 

systems: simple heuristics for quick understanding and detailed causal models for deeper analysis. Adaptive 

interfaces could present a succinct explanation first and allow the user to expand for more detail as needed [114]. 

Integration with cognitive models also extends to computational frameworks such as ACT-R and SOAR, which 

simulate human cognitive architectures. Embedding explanation modules into these architectures enables 

researchers to test how different explanation styles influence cognitive load, memory and problem solving. 

Neuroscientific techniques like EEG and fMRI can measure neural correlates of explanation comprehension, 

offering objective insights into cognitive processes. For instance, a mental-workload study using EEG found that 

high decision difficulty leads to overreliance on AI and that explanations may not mitigate this effect. 

Understanding such relationships could inform the design of explanations that adapt to mental workload and 

cognitive state. 

Cognitive models can also inspire new types of explanations. Mental models research suggests that people often 

construct causal chains and storylines to understand events. Narrative explanations that weave features into a 

coherent story may be more effective than lists of feature weights. Analogical reasoning theory highlights the 

power of drawing parallels between unfamiliar and familiar situations; explanations could leverage analogies to 

link AI decisions to users’ everyday experiences. As cognitive science advances, XAI should continue to 

incorporate insights into memory, attention, bias and reasoning to design explanations that not only inform but 

also resonate with human cognition. 

7.3 Cross-domain evaluation frameworks 

There is a pressing need for standardised benchmarks and evaluation frameworks applicable across domains. 

Current evaluation efforts are often fragmented: computer vision studies use ImageNet-based tasks and heatmaps, 
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whereas natural-language processing studies use textual explanations, making direct comparisons challenging. A 

cross-domain framework should include diverse tasks, data types (tabular, text, images, time series) and user 

populations. For each task, ground-truth explanations derived from domain experts or synthetic data can serve as 

references to assess fidelity. Benchmark suites like the Explanation Bank have been proposed for specific 

domains; expanding them to a wider set of tasks would facilitate comparative evaluation. 

Crowd-sourcing platforms, citizen science initiatives and collaborative networks (e.g., open science communities) 

can enable large-scale user studies. Participants from different cultural backgrounds, educational levels and 

professions can provide feedback on explanation understandability, usefulness and fairness. However, 

generalising results across populations requires careful experimental design to control for confounding factors 

and ensure representation. Meta-analysis techniques can aggregate results across studies, identify moderator 

variables (e.g., explanation type, domain, user expertise) and generate generalisable insights [115]. 

Standardisation also involves defining protocols for reporting user studies. Researchers should clearly specify the 

AI model, explanation method, task description, participant demographics, evaluation metrics and statistical 

analyses. Repositories of code, data and instructions for replicating experiments should be made publicly available 

to promote transparency and reproducibility. Journals and conferences can encourage or mandate such reporting 

standards. Over time, cross-domain evaluation frameworks will enable researchers to compare methods, identify 

best practices and accelerate progress toward effective XAI. 

7.4 Ethics, bias mitigation and fairness in explanations 

Future work must address how explanations themselves may encode biases or cause harm. Explanations may 

highlight features that are correlated with protected characteristics (e.g., race or gender) even if the model does 

not use these attributes directly, thereby enabling inference of sensitive information. Developing fair XAI requires 

measuring and mitigating biases not only in model predictions but also in explanation content. Techniques such 

as counterfactual fairness and SHAP-value adjustments can help remove spurious associations from explanations. 

Researchers must also consider how explanations interact with existing cognitive biases: confirmation bias may 

lead users to accept explanations that align with prior beliefs and dismiss those that contradict them. 

Fairness research emphasises intersectionality—the idea that individuals may belong to multiple protected 

categories and that biases can compound. XAI evaluation should therefore assess fairness across intersectional 

groups and consider normative questions: Should explanations mention sensitive attributes at all? Should they 

emphasise systemic factors beyond individual features? Participatory design with affected communities can help 

answer these questions and ensure that explanations empower rather than disadvantage minoritised populations 

[103][104]. 

Ethical considerations extend to transparency about the limitations of explanations. Systems should disclose when 

the explanation is an approximation, when it may be unstable and what assumptions underpin it. In some cases, 

withholding an explanation may be more ethical than providing a misleading one. Mechanisms for redress and 

contestability should be integrated: users should have avenues to challenge decisions and explanations and to 

provide feedback that leads to model improvement. Finally, global governance frameworks should ensure that 

companies and governments are accountable for the fairness and transparency of their AI systems [105]. 

7.5 Explainability beyond AI predictions 

Beyond explaining predictions, XAI could help people understand the limitations of AI systems. Mechanisms like 

ULER can abstain from providing predictions when explanations are likely to be unreliable. Future systems may 

present meta-information about data quality, model training conditions and uncertainties, enabling users to decide 

when to rely on AI. Explainability could extend beyond single predictions to encompass the entire lifecycle of AI 

systems. For instance, dataset documentation (data cards or model cards) can summarise the sources, sampling 

procedures, biases and limitations of data used to train the model. Model cards can describe architectural choices, 

hyper-parameters, performance across different subgroups and known failure modes. Exposing such 

meta-information fosters transparency and allows users to assess whether the model is appropriate for their context 

[78]. 

Moreover, explanations could help users understand when the AI is likely to fail. Uncertainty estimation 

techniques (e.g., Bayesian neural networks, conformal prediction) can quantify confidence in predictions and 

highlight regions of the input space where the model is undertrained. Explanations can then be conditioned on 

uncertainty: they could state, “The model is only 60 % confident in this prediction because the data are outside 

the training distribution,” prompting the user to exercise caution. Integrating explanation and uncertainty 

information can support robust decision making, particularly in safety-critical contexts [82]. 

Finally, the notion of meta-explanation—explaining the explanation—has gained attention. Users may want to 

understand how the explanation itself is generated, what algorithm or heuristic is used, and why it should be 

trusted. Providing a transparent account of the explanation algorithm can build meta-trust and encourage sceptical 

evaluation. Future XAI systems could include modules that answer meta-questions such as “Why did the 

explanation focus on these features?” or “How stable is this explanation if we perturb the input slightly?” This 

meta-layer fosters deeper engagement and empowers users to critically assess the explanatory process itself. 

8 CONCLUSION 

Explainable AI represents a pivotal step toward integrating AI systems into human decision making. Recent 

research emphasises that the value of explanations depends on alignment with human cognitive processes, 
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stakeholder needs and task contexts. While explanations can enhance performance and trust, they also carry risks 

of overreliance, algorithmic aversion and ethical pitfalls. Human-centred design, adaptive explanations and 

multidimensional evaluation frameworks are necessary to harness the benefits of XAI. Future developments 

should explore interactive explanations, cognitive alignment, cross-domain evaluation and fairness 

considerations. By addressing these challenges, XAI can support informed, accountable and equitable human–AI 

collaboration. 
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