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Abstract

Explainable artificial intelligence (XAI) has become an essential research area for making complex
Machine-Learning models transparent, trustworthy and actionable for human decision makers. As
artificial intelligence (Al) systems increasingly influence high-stakes decisions in domains such
as finance, healthcare and education, understanding how explanations impact human judgment is
critical. This paper presents a comprehensive examination of XAl for understanding human
decision-making patterns, synthesising theoretical foundations, recent empirical findings and
design considerations. The paper develops conceptual frameworks linking explanation types to
cognitive processes, summarises empirical evidence regarding the effects of explanations on task
performance, trust and cognitive load, and discusses challenges such as the white-box paradox,
algorithmic aversion and the risk of overreliance. We further propose guidelines for designing
human-centred XAl systems that align with users’ mental models, support various stakeholder
needs and incorporate mechanisms to recognise when explanations are insufficient. Finally, we
highlight open challenges and future directions for research at the intersection of XAl and human
decision-making.

Keywords: Explainable artificial intelligence; human decision making; cognitive load; trust and
reliance; human—computer interaction; interpretability; evaluation metrics.

1 INTRODUCTION

1.1 Motivation

Modern Al models often operate as black boxes, mapping input features to predictions without revealing the

internal reasoning process. While such models achieve high performance, their opacity undermines human trust

and raises concerns about fairness, accountability and regulatory compliance [7][8]. Without transparent

explanations, stakeholders cannot evaluate whether predictions are reasonable, understand which factors drive

outcomes or identify potential biases. The absence of interpretability hampers adoption in high-stakes contexts

such as credit scoring, medical diagnosis and automated hiring, where decisions have serious consequences.

Explainable Al seeks to address these issues by providing explanations that make models’ behaviour

understandable to humans, thereby enhancing trust and enabling humans to make informed decisions [9][10][11].

1.2 Scope and objectives

This research aims to provide a detailed overview of XAl for understanding human decision-making patterns. The

study does not examine case studies in specific domains; instead, it generalises principles and empirical findings

across multiple fields. Our objectives are to:

a) Summarise the taxonomy of explanation methods and relate them to cognitive processes;

b) Analyse empirical evidence on how explanations affect task performance, trust, reliance and cognitive load;

c) Discuss theoretical frameworks such as the white-box paradox and the halo effect that highlight potential
pitfalls of XAl;

d) Present guidelines for designing human-centred explanation systems;

e) Identify open research challenges and propose future directions.

2 THEORETICAL FOUNDATIONS Of EXPLAINABLE Al

2.1 Interpretability and transparency

The terms interpretability, transparency and explainability are often used interchangeably but denote different
concepts. Intrinsic interpretability refers to models whose internal structure can be directly understood by humans,
such as decision trees or generalised additive models (GAMSs) [12]. Post-hoc explanations are generated after
model training and aim to approximate the decision logic of a black-box model through surrogate models, feature
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attribution or example-based reasoning. Transparent models provide comprehensive access to all parameters and
operations, whereas interpretable models prioritise human comprehensibility over full transparency [13]. The goal
of XAl is not to reveal every detail of a complex neural network but to produce explanations that are faithful,
comprehensible and actionable for specific users [14].

2.2 Why interpretability matters

Explanations serve multiple purposes. First, they enhance trust by enabling users to verify that a model’s decision
logic aligns with domain knowledge and ethical principles. Second, explanations facilitate Error Detection and
model debugging by revealing spurious correlations and biases. Third, regulatory frameworks such as the EU’s
General Data Protection Regulation (GDPR) and guidelines from US government agencies mandate that
algorithmic decisions be explainable to affected individuals. Lastly, explanations support knowledge transfer,
allowing human experts to learn from model insights and integrate them into decision making [15][16][17].

2.3 Taxonomy of explanation methods

Figure 1 presents a high-level pipeline illustrating how data, a black-box model, an explanation module and the
human decision maker interact. Explanations are produced as post-hoc summaries of model predictions and may
influence the final human decision [18][19].
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Figure 1: XAl pipeline for human decision making.

Intrinsic methods include decision trees, rule-based systems and interpretable linear models (GAMSs). These
models are inherently transparent and can be inspected directly [20]. However, they often sacrifice performance
relative to complex models and may struggle to capture non-linear relationships [21]. Post-hoc methods operate
on trained black-box models and derive explanations by analysing the relationship between input features and
predictions. They can be further divided into:

a) Feature attribution methods, which assign importance scores to input features (e.g., LIME, SHAP,
integrated gradients). They are widely used because they are model-agnostic and produce heatmaps or bar
plots that highlight influential features.

b) Example-based methods, which select representative training examples or prototypes to justify predictions.
These include k-nearest neighbours, exemplar-based explanations and case-based reasoning.

c) Rule-based explanations, which extract logical rules that approximate the model’s decision boundaries.

d) Counterfactual explanations, which suggest minimal changes to input features required to alter the
prediction. They enable users to understand how decisions could differ under alternative circumstances.

e) Surrogate models, which train interpretable models on the inputs and outputs of the original black-box model
(e.g., decision tree surrogates).

Figure 2 depicts a taxonomy of XAl methods across two dimensions: intrinsic vs post-hoc and local vs global

explanations.

Intrinsic Post-hoc
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Figure 2: Taxonomy of explanation methods

Beyond the intrinsic/post-hoc distinction, several other dimensions enrich the taxonomy of explanations. Local vs
global refers to whether an explanation pertains to a single instance or provides a summary across many instances
[22][23]. Model-specific vs model-agnostic distinguishes explanations that exploit the structure of a specific model
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(e.g., saliency maps for convolutional neural networks) from those that treat the model as a black box and probe
it by perturbing inputs. Ante-hoc vs post-hoc separates methods that build interpretability into the model from
those that derive interpretability after training. Actionable vs descriptive distinguishes explanations that suggest
how to alter an outcome from those that merely describe factors influencing a prediction [24][25].

2.4 Cognitive frameworks and explanation questions

Explanations must align with human cognitive processes to be effective. Human reasoning often proceeds by
asking and answering different types of questions: Why did an event happen, why not, how, what if and what else.
Aligning explanation types with such questions supports deeper understanding and helps users integrate model
output into their mental models [26][27]. Figure 3 illustrates a conceptual framework linking explanation
questions to mental models and cognitive processes. Explanations in categories such as why or why not feed into
users’ reasoning processes, update their mental models and ultimately influence decision outcomes [28][29][30].

2 N ol & ™
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Figure 3: Cognitive framework linking explanation questions to human mental models.

Theories from cognitive psychology provide deeper insights into how explanations influence decision making.
Mental models theory posits that people construct internal representations of external systems to simulate
scenarios and reason about them. Explanations aid in refining these models by elucidating causal relationships,
highlighting alternative possibilities and correcting misconceptions. Dual-process theories differentiate between
fast, intuitive cognition (System 1) and slow, deliberative cognition (System 2). Simple visualisations or narratives
may suffice for System 1 processing, while complex tasks require analytical explanations that engage System 2.
Cognitive biases—including confirmation bias, anchoring and availability bias—can shape how explanations are
interpreted. For instance, users might favour explanations that confirm pre-existing beliefs, thereby reinforcing
misconceptions. Understanding these cognitive principles helps designers create explanations that are both
persuasive and accurate, while avoiding unintended biases [31][32][33].

2.5 Stakeholder perspectives and human-centred XAl

Traditional XAl methods often target technical stakeholders such as data scientists or developers, who need to
debug models and ensure fairness. However, many Al applications involve multiple stakeholders—decision
subjects, domain experts, regulators—who require different types of explanations [34][35]. For example, in credit
risk assessment the applicant may ask why their loan was denied, a regulator may ask whether the model complies
with fairness regulations, while a data scientist seeks to know which features drive predictions. A one-size-fits-all
approach is inadequate, underscoring the need for human-centred XAl that allows interactive exploration,
supports diverse questions and acknowledges the limitations of the model. Explanations must be tailored to the
user’s role, knowledge and cognitive style to be effective [36].

2.6 Historical evolution of XAl

The quest for interpretability predates the advent of modern deep learning. Early expert systems in the 1970s, such
as MYCIN, were built upon symbolic rules encoded by human experts and included modules that explained the
reasoning behind diagnoses. These systems highlighted the importance of trust and interpretability but were
limited by their inability to learn from data [37]. In the 1990s and 2000s, machine learning models such as decision
trees and logistic regression offered a compromise between accuracy and interpretability. As big data and deep
neural networks emerged, black-box models dramatically improved predictive performance but at the cost of
transparency [38]. This trade-off spurred a resurgence of interest in explainability. The development of
model-agnostic explanation techniques like LIME and SHAP in the mid-2010s facilitated the examination of
complex models, marking a turning point in XAl research. Subsequent years saw the rise of counterfactual
explanations, example-based reasoning, surrogate models and hybrid approaches that combine multiple
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explanation modalities. Recent work emphasises holistic frameworks that integrate user feedback, causal
reasoning and domain knowledge to create explanations that are more meaningful for diverse stakeholders
[39][40].

3 Linking Explanations to Human Decision-making Patterns

3.1 Cognitive load and mental workload

Human decision makers operate under varying levels of cognitive load. Cognitive load refers to the amount of
mental resources required to process information, and it is influenced by task complexity, time pressure, fatigue
and individual abilities [41]. High workload can impair the ability to process explanations, leading to overreliance
or underreliance on Al. Researchers use both subjective measures, such as the NASA Task Load Index (TLX),
and objective measures, including EEG or eye-tracking, to assess cognitive load. Senoner et. al. [1] measured
mental workload and its effect on appropriate reliance on Al. Participants were asked to determine the
trustworthiness of a source with or without explanations while their brain activity was recorded. Cau et. al [2]
found that under low workload participants appropriately calibrated their reliance on Al, while high workload led
to overreliance regardless of whether explanations were provided. Explanations alone did not mitigate the negative
effects of high mental workload. These results align with cognitive theory: when working memory is overloaded,
individuals may resort to heuristics or defer to the Al without properly evaluating the explanation [42]. To address
this, XAl systems can monitor indicators of mental workload (e.g., through physiological sensors or performance
data) and adapt the complexity of explanations accordingly. Figure 4 visualises how workload influences reliance
on Al. Data are adapted from the EEG study. Under low workload, participants showed near-optimal reliance on
Al, and explanations had negligible effect. Under high workload, reliance decreased markedly, again with little
difference between explanation conditions [43][44].
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Figure 4: Relationship between mental workload and appropriate reliance on Al.

3.2 Effects of explanation type on task performance and trust

Multiple studies have examined whether different explanation styles improve task performance and trust. An
experiment involving loan approvals compared feature-based, example-based, rule-based and counterfactual
explanations. High Al confidence increased user reliance and reduced cognitive load, but feature-based
explanations did not improve accuracy and counterfactuals improved accuracy yet were harder to understand.
Another research work of Shajalal et. al. [3] with 742 participants found that guided explanations (which provided
tailored suggestions) increased reliance more than transparent strategies, while no explanation sometimes also led
to high reliance [45][46]. These findings suggest that simply adding an explanation is insufficient; the explanation
must be designed to suit the task and user. Explanations may serve different functions: descriptive explanations
help users understand what the model did, while prescriptive or guided explanations tell users how to act. In
high-risk domains, users may prefer guided advice that highlights critical factors and suggests actions (e.qg.,
“review this loan’s debt-to-income ratio”). Conversely, in educational settings, descriptive explanations that
encourage exploration may foster learning [47][48][49].

Synthesising results across experiments is challenging because tasks differ widely—from medical diagnoses to
credit scoring to image classification—and participants vary in expertise. Nonetheless, a meta-analysis of
classification tasks concluded that XAl improves task performance overall, although the choice of explanation
type plays only a minor role. The meta-analysis emphasises that other factors, such as the complexity of the task,
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user expertise, and the risk associated with decisions, moderate the effect of explanations. For example, novices
may benefit more from example-based explanations that ground predictions in familiar instances, whereas experts
may prefer feature attribution that highlights domain-specific cues [50][51]. In high-stakes contexts, such as
medical diagnosis, even a small improvement in accuracy may justify the cost of implementing XAl, but the
explanation must align with clinical reasoning to be accepted. Researchers should thus consider context, user
goals and domain conventions when selecting explanation types.
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Figure 5. Comparison of task accuracy and trust across different explanation types.
The Figure 5 summarises general patterns observed in empirical studies. Although explanations improve trust, the
impact on accuracy is often marginal.

3.3 Individual differences and decision-making patterns

People differ in their propensity to seek or defer responsibility. Kim et. al. [4] explored how decision-making
styles—vigilance, hypervigilance and buckpassing—affect reliance on Al suggestions [52]. Buckpassing
describes the tendency to relinquish responsibility to others (in this case Al) and was found to correlate with
greater reliance on Al and less time spent reading explanations. Hypervigilant individuals, who experience anxiety
and indecision, also showed elevated reliance on Al but were more prone to reject explanations that conflicted
with their own judgement. In contrast, vigilant decision makers scrutinised explanations carefully and relied less
on Al, using explanations as an aid rather than a crutch. Another study examined the Need for Cognition, a
personality trait reflecting enjoyment of effortful thinking; participants with high need for cognition benefited
more from counterfactual explanations, whereas those with low need for cognition preferred simpler explanations.
These findings suggest that explanation interfaces should adapt to individual differences, offering more detailed
explanations to engaged users while providing concise summaries for others [53][54].

Beyond cognitive traits, demographic factors such as age, education and cultural background influence how
explanations are perceived. Younger participants, who have grown up with digital technologies, may be more
comfortable interacting with Al and may demand less justification, whereas older participants may require more
extensive explanations to build trust. Domfeh et. al. [5] have shown that collectivist cultures value group
consensus and may prefer explanations that emphasise fairness and social implications, whereas individualist
cultures may focus on personal benefit and effectiveness. Domain expertise also plays a role: novices might
require high-level analogies, whereas domain experts might expect explanations that use technical terminology
and align with professional reasoning. Incorporating user modelling and personalisation into XAl systems can
improve relevance and reduce cognitive overload, but it raises privacy and ethical questions about profiling users
and adapting persuasive strategies [55][56].

3.4 Trust, algorithmic aversion and overreliance

While explanations can increase trust, they may also produce undesirable effects. Algorithmic aversion refers to
the tendency of users to discount algorithmic advice after observing errors, even when it outperforms human
judgement. Explanations may exacerbate aversion by making errors more salient and by revealing complexities
that undermine confidence [57][58]. For example, if a feature attribution explanation highlights a spurious
correlation (e.g., zip code influences medical diagnosis), users may distrust the model altogether rather than
focusing on the overall pattern. Conversely, users may develop overreliance when explanations are too persuasive
or when they erroneously believe that the model’s reasoning is infallible. Overreliance is particularly dangerous
in safety-critical contexts, where blind acceptance can lead to fatal errors.

The white-box paradox posits that exposing the internal workings of a model can create a halo effect: users might
trust the model more simply because they see an explanation, even if the explanation is misleading or incorrect.
Misleading explanations can arise because the explanation module and the prediction module are separate
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components—one may be correct while the other is wrong. For instance, an Al system may produce an accurate
prediction for a patient’s risk of disease but accompany it with a low-quality explanation due to a bug or
approximate method. Users might accept the prediction uncritically because of the apparent transparency, leading
to explainability washing. Designers must therefore calibrate the persuasiveness of explanations to avoid both
overreliance and unwarranted scepticism. Strategies include highlighting model uncertainty, providing
counterexamples that illustrate failure cases, and educating users on the limitations of Al [59][60].

4 Empirical Evidence on XAl and Human Decision Making

4.1 Improving task performance and decision quality

Suffian et. al [6] hypothesised that providing explanations would automatically enhance decision quality. A
randomised experiment involving more than 2 000 participants evaluated whether heatmap-based XAl improves
human-Al collaboration in manufacturing and medical tasks. The results showed that explanations increased task
performance by 7.7% points in the manufacturing task and by 4.7 % points in the medical task [61]. Participants
also reported higher trust and found the Al easier to work with. Other experiments in image classification have
shown that visual saliency maps help participants identify errors in Al predictions and improve accuracy in
adversarial settings, though the effect size decreases as tasks become more complex [62][63].

However, a subsequent meta-analysis found that explanation type contributed little to performance differences,
and that studies with lower risk of bias reported smaller effect sizes [64][65]. This meta-analysis aggregated results
across tasks, including credit scoring, medical imaging and natural language processing, and noted that
heterogeneity among experimental designs made it difficult to draw universal conclusions. Gambetti et. al. [7]
found that an XAl-based clinical decision support system improved diagnostic accuracy compared with existing
scores but that clinicians still trusted the traditional Centor score more and demanded additional testing. This
underscores that trust and reliance may not align: participants may benefit from Al advice but still distrust the
system due to lack of familiarity or concerns about liability [66][67][68].

Moreover, performance gains from explanations may be domain-dependent. In tasks with well-understood causal
structures, such as diagnosing a simple disease, explanations may reinforce existing knowledge and improve
accuracy. In complex socio-technical systems, such as predicting recidivism, explanations may not significantly
improve performance and could even mislead if they oversimplify the model’s reasoning. The interplay between
explanation quality, domain complexity and user expertise therefore warrants careful empirical investigation
[69][70].

4.2 Cognitive load and explanation complexity

The relationship between explanation complexity and cognitive load has been explored in several recent studies.
An empirical study with prospective physicians compared local explanation types and found that complex
explanations increased cognitive load and sometimes decreased performance [71]. In this study, participants
assessed patient risk using explanations based on SHAP values, decision rules and narrative text. Although
narrative explanations were easier to read, they sometimes lacked specificity, while technical explanations
increased mental load. A separate study measured cognitive load and task time across explanation formats;
rule-based and counterfactual explanations improved performance but were harder to understand. The authors
suggested that counterfactuals require mental simulation of alternative states, which is cognitively demanding,
but provide actionable insights that can improve decisions [72][73][74].

Another line of work investigates the role of explanation length, format and modality [75]. Long textual
explanations may overwhelm users, whereas concise visual explanations may omit important nuances. Interactive
explanations that allow users to expand or collapse details could strike a balance. Multi-modal explanations—
combining text, charts and examples—may cater to different learning styles. When cognitive resources are
exhausted, users may ignore explanations or misinterpret them, leading to poor decisions. Therefore, explanation
designers should consider cognitive load when choosing the modality, depth and timing of explanations, possibly
by monitoring user attention and adapting accordingly [76][77].

4.3 Trust calibration and imperfect explanations

Recent research has begun to investigate scenarios where explanations themselves may be incorrect or
uninformative. In a mixed-methods study, participants were exposed to Al advice accompanied by correct or
incorrect explanations [78]. The study showed that participants were easily misled by flawed explanations and
often failed to detect the inaccuracies, leading to poor decisions and misplaced trust. This highlights the fragility
of human judgement when the explanation is accepted at face value. Similarly, a user study observed that
misleading explanations paired with accurate advice produced a halo effect, causing users to trust the Al more
than warranted. The effect persisted even when participants were trained to question the advice, suggesting that
the presence of an explanation can disarm skepticism [79][80].

These findings underscore the need for mechanisms to detect and signal the quality of explanations. A recent
proposal introduced User-centric Low-quality Explanation Rejector (ULER), which learns to abstain from making
predictions when it cannot provide a satisfactory explanation. ULER relies on human ratings of explanations and
follows guidelines from government agencies suggesting that Al systems should recognise their limitations
[81][82]. Other approaches include estimating explanation uncertainty, evaluating the stability of feature
attribution under perturbations, and cross-validating explanations using multiple methods. For instance,
comparing SHAP values with counterfactual explanations can reveal inconsistencies; if they point in opposite
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directions, the explanation may be unreliable. Ensemble explanation frameworks may provide more robust
insights by aggregating different explanation outputs [83].

4.4 Evaluation of human-centred XAl

A systematic review of human-centred XAl applications identified 73 studies across domains such as healthcare,
finance, education and criminal justice. The review highlighted that evaluation measures vary widely, including
subjective metrics (trust, satisfaction), objective metrics (accuracy, time) and behavioural metrics (choices,
reliance). Beyond these, some studies consider calibrated trust, defined as the degree to which reliance on Al
matches its actual performance, and fairness perceptions, reflecting whether users believe the Al treats different
groups equitably [84][85]. Another survey focusing on clinical decision support systems emphasised that adoption
is hindered by cognitive load and misalignment with clinical reasoning. The review called for deeper stakeholder
engagement and user studies to evaluate explanations in real-world contexts. For example, in clinical settings,
explanations might need to reference evidence hierarchies or connect to established guidelines to be accepted by
clinicians [86].

Research on smart home environments also emphasised that existing XAl methods are tailored for developers
rather than general users, urging human-centred approaches that consider user needs, cognitive abilities and
accessibility [87]. Evaluations should not only measure whether users understand the explanation but also whether
it leads to better decisions and supports fairness and accountability [88]. For instance, an explanation that is
understandable but encourages discriminatory decisions is ethically unacceptable. Inclusion of diverse
participants in user studies is therefore critical for ensuring that explanations do not disproportionately benefit or
harm certain groups. To this end, frameworks for fairness-aware XAl evaluation are being developed, which
assess whether explanations systematically differ across demographic groups and whether they mitigate or
exacerbate biases [89][90].

4.5 The effect of human—AlI collaboration patterns

Human—Al interaction patterns influence how explanations are used. A systematic review of Al use in disaster
management categorised interactions into decision support systems, task and resource coordination, trust and
transparency, and simulation and training. Decision support systems often present Al recommendations with or
without explanations; task and resource coordination systems require dynamic communication among multiple
stakeholders; trust and transparency interventions use XAl to build situational awareness and justify resource
allocation; simulation and training platforms employ XAl to teach users how Al behaves under various conditions
[91][92]. The review noted that while Al can improve situational awareness and decision making, limitations in
scalability, interpretability and interoperability hinder adoption. For example, a disaster response system may rely
on multiple heterogeneous Al models (for weather prediction, traffic routing and communication), each requiring
different explanations. Aligning explanations across models and presenting them in a unified interface remains
challenging [93].

Moreover, research on explainable decision systems for smart homes argued that current XAl methods seldom
provide actionable explanations for lay users and emphasised the need for co-designed systems that integrate
human—computer interaction (HCI) principles [94]. The emerging theme is that explanations should be integrated
into collaborative workflows and support shared decision making rather than being treated as post-hoc add-ons.
For instance, in team settings, explanations might need to support group decision making by highlighting how Al
suggestions align with team goals and by providing rationales accessible to all members. Additionally, transitions
of control between humans and Al should be explicit; when the Al takes over, users should understand why, and
when control returns to humans, they should know which factors led to the AI’s recommendation. Designing for
collaboration requires considering not only individual cognitive processes but also group dynamics,
communication protocols and organisational culture [95].

5 Designing and Evaluating Human-Centred XAl Systems

5.1 Evaluation metrics for explanations

Evaluating XAl methods remains an open challenge. Traditional metrics focus on fidelity (the extent to which
explanations accurately reflect model behaviour) and interpretability (how easily humans can understand an
explanation) [96]. Fidelity can be quantified by measuring the correlation between explanation scores and true
feature contributions or by assessing how well a surrogate model approximates the original model. Interpretability
is more subjective; it is often assessed via user studies or cognitive metrics [97]. Additional metrics include
completeness (whether the explanation accounts for all important factors), consistency (whether similar instances
yield similar explanations), stability (whether small perturbations in input produce similar explanations) and
compositionality (whether explanations can be composed to explain complex decisions) [98].

User-centric metrics include trust, satisfaction, perceived fairness, reliance, mental workload and calibration (how
accurately users assess model reliability). However, a recent preprint argues that current evaluations are
fragmented and fail to account for the multidimensional nature of explanations [99]. It proposes a normalised
evaluation framework that considers the data, model, prediction and user dimensions. Under this framework, an
explanation is evaluated not only on its faithfulness to the model but also on its ability to answer stakeholder
questions and support decision outcomes. Combining feature attribution with counterfactual explanations may
yield holistic insights, but comparative evaluation across methods remains difficult [1L00]. These various metrics
are summarised in Table 1, which outlines their definitions and typical measurement strategies.
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Table 1: Evaluation metrics for XAl and their typical measurements.

underlying model.

Metric Description Typical measurement
Degree to which the explanation Correlation between explanation scores and true
Fidelity accurately reflects the behaviour of the P

feature contributions; surrogate model accuracy.

Interpretability

Ease with which humans can
understand the explanation.

User studies assessing comprehension, time taken
to interpret, or subjective ratings of clarity.

Completeness

Extent to which the explanation
accounts for all factors that influence
the prediction.

Evaluated by adding features suggested by the
explanation and measuring change in prediction or
by testing coverage of known causal factors.

Consistency

Whether similar instances yield similar
explanations.

Statistical measures of variation across
explanations for perturbed inputs; ranking
similarity metrics.

Stability

Robustness of explanations to small
perturbations in input or model
parameters.

Distance metrics between explanations for
neighbouring points; sensitivity analyses.

Compositionality

Ability of explanations to be combined
to explain complex decisions
involving multiple components.

Assessment of whether explanations for
subcomponents can be composed to explain the
overall decision; hierarchical evaluation.

Degree to which explanations do not

Analysis of explanation content across subgroups;

generating explanations.

Fairness reinforce or introduce biases across fairness metrics such as demographic parity or
demographic groups. equalised odds applied to explanations.
Ability of explanations to provide User surveys on perceived helpfulness;
Actionability suggestions that users can act uponto |measurement of changes in user behaviour or
achieve desired outcomes. outcomes after receiving the explanation.
Efficiency Computational cost and scalability of | Time complexity, memory usage and throughput;

feasibility of real-time operation.

Evaluation frameworks should also consider fairness and ethical dimensions. For example, an explanation that
attributes high importance to sensitive attributes (e.g., race) may raise concerns about discrimination, even if the
model itself does not directly use these attributes. Fairness-aware evaluation measures whether explanations
inadvertently reveal biased correlations or reinforce stereotypes. Another emerging metric is actionability, which
assesses whether the explanation provides information that users can act upon. For instance, a counterfactual
explanation might suggest that a loan applicant could improve their credit score by reducing debt [101].
Actionability is crucial for empowering users to seek recourse and for complying with regulations such as the
GDPR. Finally, computational efficiency must be considered, as some explanation techniques (e.g., SHAP) are
computationally expensive, limiting their usability in real-time systems.

Table 2: Categories of XAl methods, examples, advantages and limitations.

rule-based models C
approximation

Category Examples Advantages Limitations
- Transparent and directly Often less accurate than complex
. Decision trees, - . .
Intrinsic local interpretable; no post-hoc models; may not capture

non-linear patterns

Intrinsic global

Generalised additive

Capture global trends while
remaining interpretable; can

Limited flexibility; require

example-based

exemplar selection .
reasoning

with human case-based

models (GAMs) model smooth functions careful tuning
Post-hoc feature  |LIME, SHAP, !\/Iodel—agnosnc; hlghllght M_ay be unsFa}bIe and lack
attribution integrated gradients important f_eatures, easy to _falthfulpess, ignore feature
visualise via heatmaps interactions
Post-hoc Prototypes, Provide tangible examples; align Risk of cherry-picking examples;
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Table 2 emphasises that each method involves trade-offs among accuracy, interpretability and faithfulness.

Evaluators must consider the target audience and context when selecting appropriate methods.

5.2 Guidelines for human-centred XAl design

Based on the literature review, we propose the following guidelines for designing human-centred XAl systems:

a) Stakeholder analysis: Identify the different stakeholders (decision subjects, domain experts, regulators,
developers) and their information needs. Tailor explanation content accordingly.

b) Alignment with cognitive models: Map explanation types to human question categories (why, why not, how,
what if) and to cognitive processes. Provide explanations that support causal and counterfactual reasoning.

c) Adaptive explanations: Allow users to request more detailed or alternative explanations. Adaptive systems
can modulate explanation complexity based on user expertise, mental workload or decision style
(buckpassing vs vigilance).

d) Trust calibration: Balance persuasiveness and scepticism to avoid overreliance and algorithmic aversion.
Provide confidence information and highlight uncertainties.

e) Explanation quality control: Incorporate mechanisms like ULER to abstain when explanations are likely to
be misleading or low quality. Use user feedback to improve explanation modules.

f) Integrate into workflows: Embed explanations within the decision process rather than as a post-hoc add-on.
Support interactive exploration where users can ask questions and test hypotheses.

g) Evaluate holistically: Use multidimensional evaluation metrics covering fidelity, interpretability, usefulness,
fairness and cognitive load. Conduct user studies in realistic environments to assess decision quality, not just
perceived understanding.

5.3 Graphical representation of evaluation results

Figures 4 and 5 already illustrated aggregated patterns across studies. Such visual summaries can help researchers

and practitioners compare results across explanation types and conditions. However, caution is warranted:

aggregated data may mask important nuances, such as the influence of individual differences or domain-specific
constraints. Nonetheless, graphical representation of evaluation results is a valuable tool for communicating

findings and facilitating cross-study comparisons [102][103].

6 Challenges and Limitations

6.1 Misleading and imperfect explanations

XAl methods are not infallible. Feature attribution methods such as LIME and SHAP approximate black-box
models and may produce explanations that are unstable or unfaithful [104]. When explanations are incorrect or
misleading, they can cause users to make erroneous decisions. The XAl halo effect describes a phenomenon where
users attribute greater credibility to Al advice simply because it is accompanied by an explanation. Addressing
these issues requires rigorous evaluation of explanation quality and mechanisms to signal when the explanation
should not be trusted [105].

6.2 White-box paradox and overreliance

The white-box paradox arises when revealing too much internal information leads to overreliance. Even accurate
explanations may create a false sense of understanding, leading users to accept Al advice without critical scrutiny.
Overreliance can have severe consequences in high-stakes settings, e.g., automated hiring or medical diagnosis
[106]. Designers should calibrate explanation detail, provide counterexamples and encourage users to interrogate
Al outputs. They should also train users to recognise when the Al may be uncertain or wrong.

6.3 Regulatory and ethical considerations

Regulations such as the GDPR emphasise the right to explanations for algorithmic decisions. New Al Acts in
Europe, the US and Asia propose risk-based frameworks that require providers to demonstrate the transparency,
robustness and governance of Al systems [107]. For instance, the European Al Act classifies Al systems into
prohibited, high-risk and low-risk categories and mandates human oversight and explainability for high-risk
applications. The US National Institute of Standards and Technology (NIST) released the Al Risk Management
Framework, which includes “explainability and interpretability” as a key characteristic of trustworthy Al.
Complying with these frameworks requires developers to document the data provenance, model assumptions and
limitations and to provide explanations that are both technically accurate and legally meaningful [108].

From an ethical perspective, explanations may influence users’ decisions and behaviours. Misleading or biased
explanations can be weaponised for persuasion or manipulation, particularly in domains like advertising or
political campaigning. Privacy concerns arise when explanations reveal sensitive attributes or training examples
that may lead to re-identification of individuals. Ensuring that explanations do not inadvertently leak sensitive
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information requires techniques such as differential privacy and data masking. Fairness considerations extend to
whether explanations themselves are fair: a system might generate different explanations for users in different
demographic groups, possibly reinforcing stereotypes or discrimination. Ethical XAl design therefore must
incorporate principles of transparency, accountability, privacy and non-discrimination and should be informed by
interdisciplinary collaboration among legal scholars, ethicists, social scientists and technologists [109].

Another regulatory challenge involves intellectual property and model secrecy. Companies may be reluctant to
disclose the inner workings of proprietary models due to competitive concerns. Regulatory frameworks need to
strike a balance between promoting transparency and protecting trade secrets. Recent proposals suggest using
third-party auditors or “algorithmic inspectors” who can access model internals under confidentiality agreements
and verify compliance without making proprietary details public. Ultimately, effective governance of XAl
requires clear standards, enforcement mechanisms and avenues for redress when Al decisions harm individuals
[110].

7 Future Directions

7.1 Interactive and conversational XAl

Future research should explore interactive systems that allow users to ask follow-up questions, request
counterfactuals or drill down into specific features. Such systems could employ natural language interfaces and
dialogue management to facilitate conversational explanations, providing a more engaging user experience. For
example, an applicant seeking a loan could ask: “What aspects of my credit report contributed most to this
decision?” The system might reply with a feature-importance explanation, after which the applicant could follow
up with “What changes would improve my likelihood of approval?” to trigger a counterfactual explanation. By
supporting this kind of dialogue, the system adapts to the user’s evolving information needs and clarifies
ambiguous points [111][112].

Conversational explanations also require multimodal interfaces. Visualisations (such as heatmaps or timelines),
interactive sliders and narrative text can complement verbal explanations. The integration of large language
models (LLMs) with traditional XAl techniques offers exciting possibilities: LLMs can translate technical
explanation content into fluent language, summarise complex reasoning and generate analogies or metaphors
tailored to user contexts. However, ensuring that LLM-generated explanations remain faithful to the underlying
model’s logic is critical to avoid hallucinations or oversimplification. Maintaining the chain of reasoning may
help align the narrative with the model’s operations and allow users to trace how specific features influenced the
prediction [113].

Interactive XAl should not be limited to user queries; it should also proactively detect confusion or
misunderstanding. Physiological signals like eye tracking, pupil dilation or voice hesitations can indicate when a
user is puzzled. The system could then offer clarification or ask whether additional detail is needed. User feedback
loops can help explanation modules learn which types of explanations are most helpful, which are confusing or
overwhelming and how to adapt to different decision styles (e.g., analytical vs intuitive). Incorporating
reinforcement learning techniques, the system could optimise its explanation policy based on feedback signals
such as user satisfaction, task performance and trust calibration.

7.2 Integration with cognitive models

Advances in cognitive science and neuroscience offer opportunities to design explanations that align more closely
with how humans reason. Mapping explanation types onto cognitive processes can guide the development of
dynamic explanations tailored to users’ mental models. For example, the dual-process theory posits that humans
engage in both fast, intuitive processing and slow, analytical reasoning. Explanations may need to appeal to both
systems: simple heuristics for quick understanding and detailed causal models for deeper analysis. Adaptive
interfaces could present a succinct explanation first and allow the user to expand for more detail as needed [114].
Integration with cognitive models also extends to computational frameworks such as ACT-R and SOAR, which
simulate human cognitive architectures. Embedding explanation modules into these architectures enables
researchers to test how different explanation styles influence cognitive load, memory and problem solving.
Neuroscientific techniques like EEG and fMRI can measure neural correlates of explanation comprehension,
offering objective insights into cognitive processes. For instance, a mental-workload study using EEG found that
high decision difficulty leads to overreliance on Al and that explanations may not mitigate this effect.
Understanding such relationships could inform the design of explanations that adapt to mental workload and
cognitive state.

Cognitive models can also inspire new types of explanations. Mental models research suggests that people often
construct causal chains and storylines to understand events. Narrative explanations that weave features into a
coherent story may be more effective than lists of feature weights. Analogical reasoning theory highlights the
power of drawing parallels between unfamiliar and familiar situations; explanations could leverage analogies to
link Al decisions to users’ everyday experiences. As cognitive science advances, XAl should continue to
incorporate insights into memory, attention, bias and reasoning to design explanations that not only inform but
also resonate with human cognition.

7.3 Cross-domain evaluation frameworks

There is a pressing need for standardised benchmarks and evaluation frameworks applicable across domains.
Current evaluation efforts are often fragmented: computer vision studies use ImageNet-based tasks and heatmaps,
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whereas natural-language processing studies use textual explanations, making direct comparisons challenging. A
cross-domain framework should include diverse tasks, data types (tabular, text, images, time series) and user
populations. For each task, ground-truth explanations derived from domain experts or synthetic data can serve as
references to assess fidelity. Benchmark suites like the Explanation Bank have been proposed for specific
domains; expanding them to a wider set of tasks would facilitate comparative evaluation.

Crowd-sourcing platforms, citizen science initiatives and collaborative networks (e.g., open science communities)
can enable large-scale user studies. Participants from different cultural backgrounds, educational levels and
professions can provide feedback on explanation understandability, usefulness and fairness. However,
generalising results across populations requires careful experimental design to control for confounding factors
and ensure representation. Meta-analysis techniques can aggregate results across studies, identify moderator
variables (e.g., explanation type, domain, user expertise) and generate generalisable insights [115].
Standardisation also involves defining protocols for reporting user studies. Researchers should clearly specify the
Al model, explanation method, task description, participant demographics, evaluation metrics and statistical
analyses. Repositories of code, data and instructions for replicating experiments should be made publicly available
to promote transparency and reproducibility. Journals and conferences can encourage or mandate such reporting
standards. Over time, cross-domain evaluation frameworks will enable researchers to compare methods, identify
best practices and accelerate progress toward effective XAl.

7.4 Ethics, bias mitigation and fairness in explanations

Future work must address how explanations themselves may encode biases or cause harm. Explanations may
highlight features that are correlated with protected characteristics (e.g., race or gender) even if the model does
not use these attributes directly, thereby enabling inference of sensitive information. Developing fair XAl requires
measuring and mitigating biases not only in model predictions but also in explanation content. Techniques such
as counterfactual fairness and SHAP-value adjustments can help remove spurious associations from explanations.
Researchers must also consider how explanations interact with existing cognitive biases: confirmation bias may
lead users to accept explanations that align with prior beliefs and dismiss those that contradict them.

Fairness research emphasises intersectionality—the idea that individuals may belong to multiple protected
categories and that biases can compound. XAl evaluation should therefore assess fairness across intersectional
groups and consider normative questions: Should explanations mention sensitive attributes at all? Should they
emphasise systemic factors beyond individual features? Participatory design with affected communities can help
answer these questions and ensure that explanations empower rather than disadvantage minoritised populations
[103][104].

Ethical considerations extend to transparency about the limitations of explanations. Systems should disclose when
the explanation is an approximation, when it may be unstable and what assumptions underpin it. In some cases,
withholding an explanation may be more ethical than providing a misleading one. Mechanisms for redress and
contestability should be integrated: users should have avenues to challenge decisions and explanations and to
provide feedback that leads to model improvement. Finally, global governance frameworks should ensure that
companies and governments are accountable for the fairness and transparency of their Al systems [105].

7.5 Explainability beyond Al predictions

Beyond explaining predictions, XAl could help people understand the limitations of Al systems. Mechanisms like
ULER can abstain from providing predictions when explanations are likely to be unreliable. Future systems may
present meta-information about data quality, model training conditions and uncertainties, enabling users to decide
when to rely on Al. Explainability could extend beyond single predictions to encompass the entire lifecycle of Al
systems. For instance, dataset documentation (data cards or model cards) can summarise the sources, sampling
procedures, biases and limitations of data used to train the model. Model cards can describe architectural choices,
hyper-parameters, performance across different subgroups and known failure modes. Exposing such
meta-information fosters transparency and allows users to assess whether the model is appropriate for their context
[78].

Moreover, explanations could help users understand when the Al is likely to fail. Uncertainty estimation
techniques (e.g., Bayesian neural networks, conformal prediction) can quantify confidence in predictions and
highlight regions of the input space where the model is undertrained. Explanations can then be conditioned on
uncertainty: they could state, “The model is only 60 % confident in this prediction because the data are outside
the training distribution,” prompting the user to exercise caution. Integrating explanation and uncertainty
information can support robust decision making, particularly in safety-critical contexts [82].

Finally, the notion of meta-explanation—explaining the explanation—has gained attention. Users may want to
understand how the explanation itself is generated, what algorithm or heuristic is used, and why it should be
trusted. Providing a transparent account of the explanation algorithm can build meta-trust and encourage sceptical
evaluation. Future XAl systems could include modules that answer meta-questions such as “Why did the
explanation focus on these features?”” or “How stable is this explanation if we perturb the input slightly?” This
meta-layer fosters deeper engagement and empowers users to critically assess the explanatory process itself.

8 CONCLUSION
Explainable Al represents a pivotal step toward integrating Al systems into human decision making. Recent
research emphasises that the value of explanations depends on alignment with human cognitive processes,
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stakeholder needs and task contexts. While explanations can enhance performance and trust, they also carry risks
of overreliance, algorithmic aversion and ethical pitfalls. Human-centred design, adaptive explanations and
multidimensional evaluation frameworks are necessary to harness the benefits of XAl. Future developments
should explore interactive explanations, cognitive alignment, cross-domain evaluation and fairness
considerations. By addressing these challenges, XAl can support informed, accountable and equitable human—Al
collaboration.
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