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Abstract:

Student motivation and engagement are pivotal yet latent constructs that benefit from timely, data-
driven prediction to inform proactive support in higher education. This paper presents a concise
synthesis of machine learning approaches for predicting multi-dimensional engagement
(behavioral, emotional, cognitive) and academic motivation (intrinsic, extrinsic), bridging theory
with deployable practice. We outline common data sources—Ilearning management system (LMS)
interaction logs, assessment trajectories, attendance and academic records, and psychometric
instruments—and emphasize feature engineering for temporal dynamics, interaction patterns,
effort proxies, and context transfer across courses. The modeling landscape spans interpretable
classifiers (logistic regression, decision trees, random forests, gradient boosting), kernel methods
(support vector machines), and deep learning architectures for sequential signals (RNN/LSTM,
temporal CNN, transformers), with growing interest in multimodal fusion and representation
learning. Evidence indicates that temporal and interaction features substantially improve early-
warning performance, while generalization benefits from course-agnostic features, calibration, and
domain adaptation. It is believed that this paper will help future researchers to gain insight about
the said domain.
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1. INTRODUCTION

Student engagement and motivation are widely recognized as pivotal factors in higher education learning
outcomes. Engagement — broadly defined as students” active involvement and participation in learning activities
— has been linked to better academic performance, retention, and overall student success. Conversely, low
engagement is often an early warning sign for academic difficulties or dropout. Student motivation, referring to
the drive or desire to learn, underpins engagement; motivated students are more likely to invest effort and persist
in the face of challenges [13][14]. However, student engagement is a complex, multifaceted construct subject to
diverse interpretations. It encompasses behavioral aspects (e.g. participation, time on task), emotional responses
(interest or enthusiasm), and cognitive investment in learning. Student motivation likewise includes multiple
dimensions — commonly distinguished as intrinsic motivation (learning for inherent satisfaction), extrinsic
motivation (driven by external rewards or outcomes), and amotivation (lack of motivation). Understanding and
measuring these latent constructs pose significant challenges in educational research [15][16].

Recent shifts toward online and blended learning have further heightened the importance of monitoring
engagement and motivation. During emergency remote teaching, for example, institutions observed varied student
engagement patterns, prompting calls for better analytical insight into student involvement [17][18][19].
Traditional methods (such as self-report surveys or manual observation) to gauge engagement/motivation can be
limited in accuracy and scalability. In this context, artificial intelligence and data analytics have emerged as
valuable tools in higher education [20]. In particular, machine learning (ML) models can analyze the vast data
generated by learning management systems and other platforms to predict students’ degree of engagement and
motivation. By identifying disengaged or demotivated students early, educators can intervene with targeted
support before minor issues escalate into major problems. Such predictive insights enable a proactive approach to
student success, aligning with the vision of learning analytics to inform timely, personalized pedagogical decisions
[21][22][23].
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Machine learning approaches have already shown considerable promise in this domain. Researchers have reported
accurate classification of students’ engagement levels using behavioral data, and strong correlations between
model-predicted engagement and academic outcomes (e.g. course assessment scores) [24]. Models can effectively
distinguish engaged vs. disengaged students, allowing instructors to focus attention on those most in need of
intervention. A recent systematic review noted a surge in studies applying ML to predict student performance and
engagement, underscoring the growing interest and confidence in these techniques. At the same time, challenges
remain regarding data quality, generalizability, and the interpretability of complex ML models in educational
contexts. This research work addresses both the theoretical underpinnings of student motivation and engagement
and the practical application of ML models to predict them in higher education, with an emphasis on computer
science and engineering education contexts (though the concepts generalize across disciplines) [25][26].

2. THEORETICAL FOUNDATIONS OF STUDENT ENGAGEMENT AND MOTIVATION

2.1 Student Engagement in Higher Education

Student engagement refers to the degree of attention, interest, curiosity, and involvement that students exhibit in
the learning process. It is now understood as a multidimensional construct encompassing behavioral, emotional,
and cognitive components. Behavioral engagement involves students’ participation in academic activities and
effort expended (e.g. attending classes, turning in assignments, contributing to discussions) [27][28]. Emotional
engagement refers to affective responses to learning — such as interest, enjoyment, or a sense of belonging — and
attitudes towards school or subject matter. Cognitive engagement denotes the investment in learning and
willingness to exert mental effort to comprehend complex ideas or master skills. These facets often overlap and
interact. Figure 1 depicts the relationship among the three core dimensions of engagement, which together
contribute to a student’s overall engagement level [29][30].

Emotional
Engagement

Cognitive
Engagement

Behavioral
Engagement

Figure 1: Key dimensions of student engagement and their overlap.
High levels of engagement are generally associated with positive educational outcomes. Engaged students tend to
spend more time on task, persist through challenges, and use deeper learning strategies, leading to better
understanding and performance. Empirical studies have shown that measures of engagement (such as time spent
in coursework or interactive participation) correlate with higher course grades and lower likelihood of dropping
out. For example, a recent study found that highly engaged students achieved better assessment results than those
with lower engagement [31][32]. Conversely, low engagement often manifests as poor attendance, minimal
assignment completion, or superficial interaction — factors that are strong predictors of academic difficulties and
attrition. Indeed, lack of student engagement has been identified as an antecedent to course failure and student
dropout in online and face-to-face settings. Early signs of disengagement (e.g. prolonged inactivity in an online
course) can thus serve as crucial warning signals for instructors [33][34].

Importantly, student engagement is context-dependent and can fluctuate over time. Environmental factors such as
course design, teaching methods, and peer interaction influence how students engage. For instance, collaborative
and interactive learning activities can foster greater behavioral and emotional engagement than passive lecture
formats. During the COVID-19 pandemic, sudden shifts to online learning highlighted how lack of interaction
with instructors and peers can undermine engagement, leading to reduced motivation and increased withdrawals
[35][36][37]. Researchers emphasize that engagement is not solely an individual student trait but also an outcome
of the learning environment and teaching practices. According to recent frameworks, engagement can be viewed
along a continuum from the person-oriented perspective (engagement arising from individual student’s
disposition) to a context-oriented perspective (engagement as a product of the learning context over time). This
perspective reminds us that improving student engagement often requires both supporting students’ skills and
motivation and creating more engaging learning environments [38].

From a theoretical standpoint, student engagement has been called an “organizing framework™ that ties together
diverse influences on learning. It is both a mediator and an outcome: engagement mediates between student
characteristics (or interventions) and learning results, and it is itself an outcome that educators seek to improve.
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This central role of engagement in learning has made it a focal point for educational interventions and for
predictive modeling, as discussed in later sections. Figure 2 illustrates the commonly observed positive correlation
between student engagement and academic performance, highlighting why engagement is such a critical target
for prediction and improvement efforts. This scatter plot (with a fitted trend line) shows a hypothetical positive
correlation between students’ engagement level (e.g. percentage of course activities completed) and their final
course grade. Consistent with empirical research, more engaged students tend to achieve higher academic
performance. Early identification of low-engaged students (lower left area) can prompt interventions to improve
their outcomes [39][40][41][42].
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Figure 2: Relationship between engagement and academic performance.

2.2 Student Motivation in Higher Education

Student motivation broadly refers to the internal processes that initiate, sustain, and direct learning activities. In
higher education, motivation influences whether students want to learn and how much effort and persistence they
will dedicate to their studies. Educational psychologists distinguish between intrinsic motivation — engaging in
learning out of genuine interest or enjoyment — and extrinsic motivation — engagement driven by external rewards
or requirements (such as grades, credits, or praise) [43][44]. A student with high intrinsic motivation in a computer
science course, for example, might spend extra hours experimenting with code out of curiosity, whereas an
extrinsically motivated student might complete exercises primarily to earn a good grade. Some students may also
experience amotivation, a state of lacking intent or incentive to learn, often accompanied by feelings that tasks
are irrelevant or beyond one’s control [45].

Academic motivation is grounded in several theoretical frameworks. One influential view is the Self-
Determination Theory (SDT), which posits that students are more intrinsically motivated when their basic
psychological needs for autonomy, competence, and relatedness are satisfied. In a supportive learning
environment where students feel a sense of control (autonomy), feel capable of mastering material (competence),
and feel connected to others (relatedness), they are likely to develop stronger intrinsic motivation to engage in
learning tasks [46][47]. Conversely, environments that undermine these needs (e.g. highly controlling instruction,
excessive fear of failure, or social isolation) can diminish intrinsic motivation and lead to more superficial
engagement. Other relevant constructs include self-efficacy (belief in one’s capabilities to learn or perform) and
goal orientation (whether a student is focused on mastering content versus just performing well or avoiding
failure). These factors can modulate motivation levels and the quality of engagement. For instance, a student with
high self-efficacy and a mastery goal orientation is likely to exhibit resilient, deep engagement in learning, even
when faced with challenges [48].

Understanding what drives student motivation is crucial because motivation energizes and directs engagement. A
motivated student is more likely to actively participate, persist longer, and employ effective learning strategies
[49]. As one study highlighted, understanding the drivers of academic motivation is essential for developing
effective educational strategies. Research has shown clear links between motivation and academic outcomes:
students with higher intrinsic motivation often achieve better learning outcomes and report greater satisfaction,
whereas students motivated purely by external factors may disengage once those factors are removed.
Furthermore, motivation and engagement are deeply intertwined — motivation can be seen as a precursor to
engagement (students must want to engage), and conversely, engaging successfully in learning can reinforce
motivation (through experiences of enjoyment or accomplishment) [50][51].

In the context of higher education, especially in computing and engineering disciplines, maintaining student
motivation can be challenging. Coursework is often rigorous and abstract, which may dampen the enthusiasm of
students who do not immediately see the relevance or who encounter repeated failures. Educators thus strive to
create motivating conditions: for example, relating course material to real-world applications (to increase
perceived value), providing timely feedback and achievable challenges (to build competence), and fostering a
supportive community (to satisfy relatedness). The rise of technology-mediated learning has introduced new
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opportunities and challenges for motivation. On one hand, gamification elements and interactive simulations can
boost motivation by making learning more engaging. On the other hand, the relative anonymity and autonomy of
online learning require students to be more self-motivated, which not all learners are prepared for. These
considerations underscore why predicting and supporting motivation is as important as addressing engagement in
modern educational settings [52][53].

Researchers have begun applying machine learning to understand and predict student motivation. Notably,
because motivation is a latent psychological trait, direct measurement is often done via surveys or psychometric
scales (e.g. rating one’s interest or effort). Recent work has explored whether other data sources can serve as
proxies for motivation — for example, analyzing students’ behavioral patterns or personal traits. A novel study by
Apampa et al. [3] leveraged personality traits as predictors of academic motivation. By collecting students’ Big
Five personality profiles, they trained ML models to predict levels of intrinsic motivation, extrinsic motivation,
and amotivation. Interestingly, they found that certain personality factors (like conscientiousness and openness)
were significant predictors of higher motivation, whereas neuroticism correlated with amotivation. Such findings
align with intuition — students who are organized and open to experience tend to be more self-driven learners —
and demonstrate how psychological features can be incorporated into predictive models [54][55]. While this line
of research is still emerging, it holds promise for identifying students who may be at risk of low motivation (for
instance, those whose personality or prior feedback suggests they might feel less competent or autonomous in a
given course).

2.3 Linking Motivation and Engagement

Motivation and engagement are distinct but deeply connected constructs in the learning process. Motivation can
be viewed as a leading indicator or underlying cause of engagement: a student who is highly motivated
(particularly intrinsically) is far more likely to exhibit strong engagement behaviors [56]. Conversely, patterns of
engagement can affect motivation — for example, a student who engages deeply and succeeds may become more
motivated through increased confidence and interest, whereas chronic disengagement and poor performance can
erode motivation. The dynamic interplay between these factors is depicted in Figure 3, which provides a
conceptual model: personal factors feed into motivation, which in turn drives engagement behaviors, leading to
academic outcomes; meanwhile, the learning environment (instructional context) also directly influences
engagement [57].
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Figure 3: Relationship between student motivation and engagement in context.

Theoretical frameworks support this linkage. As noted, Self-Determination Theory suggests that when students
feel autonomous, competent, and related (all of which bolster intrinsic motivation), they are more likely to engage
wholeheartedly in learning tasks. In practical terms, a student who finds a subject personally interesting and
valuable (intrinsic motivation) will typically pay closer attention, put forth more effort, and persist longer — classic
manifestations of engagement [58]. Empirical research affirms this connection. For example, students who report
higher motivation often show greater time spent on learning tasks and more active participation in class. In one
longitudinal study, motivation at the start of a course predicted subsequent engagement patterns, which then
predicted final grades. This suggests a causal chain: motivation — engagement — performance, although the
relationships are reciprocally reinforcing rather than strictly one-way [59].

On the other hand, engagement experiences can loop back to influence motivation. When students engage and see
progress or enjoy the learning process, it can enhance their self-efficacy and interest, fueling further motivation
(a positive feedback cycle) [60]. Conversely, if students are unengaged and fall behind, they may feel less
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competent or autonomous, which can diminish their motivation to try — a negative feedback cycle. Educators thus
face a critical task: breaking negative loops and fostering positive ones. Effective teaching strategies often target
both motivation and engagement simultaneously. For instance, introducing real-world projects in a computing
course can increase situational interest (boosting motivation) and also require active involvement (increasing
engagement), ideally leading to a virtuous cycle of deeper learning [61].

Because of this intertwining, it can sometimes be hard to disentangle whether an intervention should be labeled
as “motivational” or “engagement-focused” — most successful educational interventions address both. For
example, providing students with choices in assignments can increase their intrinsic motivation (by supporting
autonomy) and also lead to greater engagement in doing the chosen work. Similarly, timely and constructive
feedback can bolster a student’s motivation (by affirming competence and guiding improvement) and concurrently
encourage sustained engagement with the material [62][63][64].

This synergy is reflected in data-driven educational research as well. Features indicative of engagement (like
frequency of forum posts or quiz attempts) are often correlated with underlying motivational states. Modern
learning analytics and ML models sometimes use engagement behaviors as proxies for motivation, given that
motivation itself is not directly observable. However, researchers are also exploring direct modeling of motivation.
The aforementioned study by Apampa et al. [3] combined personality and motivation surveys to train models that
predict motivational orientations. Interestingly, by predicting who is likely to be intrinsically or extrinsically
motivated, one can indirectly anticipate how those students might engage; for instance, extrinsically motivated
students might engage primarily when grades are at stake, whereas intrinsically motivated ones may engage more
consistently. In practice, a comprehensive predictive system might include both motivation and engagement
indicators to get a full picture of student learning health [65][66].

3. Data Sources and Feature Engineering for Prediction

Machine learning models are only as good as the data fed into them. In the context of predicting student motivation
and engagement, a rich array of data sources can be utilized. Key data types include students’ online learning
interaction logs, academic records, demographic information, and even psychological measures [67][68]. This
section discusses common features and indicators extracted from these sources, and how they serve as proxies
for engagement or motivation in predictive modeling. Table 1 provides an overview of major feature categories
frequently used in the literature, along with their prevalence in recent studies.

3.1 Behavioral and Academic Data

By far the most widely used features for predicting engagement are behavioral indicators from Learning
Management Systems (LMS) and other educational platforms. These digital trace data capture students’ day-to-
day interactions with course materials and activities. In recent years, over 90% of studies on engagement
prediction have leveraged LMS log file data [69][70]. Such behavioral features include: number of logins,
frequency of content views, time spent on various pages or resources, number of forum posts or comments made,
assignment submission timestamps, quiz attempt counts, video watch duration, and so on. These metrics reflect
the quantity and pattern of a student’s participation, and thus serve as observable signs of engagement level. For
example, a student who consistently logs in daily, spends significant time reading course content, and participates
in discussion forums is likely more engaged than a student who rarely logs in and skims or skips content [71].
Academic performance data are another important source. Assessment results and grades (e.g. quiz scores,
assignment grades, GPA) are sometimes used as features to predict engagement or as related targets to co-predict.
About 41.8% of studies incorporate academic performance variables (such as prior or mid-term scores) as inputs
for predicting engagement or success [72]. The rationale is that performance and engagement are linked; past
grades can contextualize a student’s engagement behavior (e.g. a high-performing student may disengage if bored
or already comfortable, whereas a low-performing student may disengage due to frustration). In some cases,
academic scores are even used to derive engagement labels — for instance, defining “engaged” students as those
performing above a certain threshold and training classifiers to predict that label. However, more often
performance is a parallel outcome predicted alongside engagement (since ultimately educators care about both).
It is worth noting that academic background attributes (like previous coursework, high school grades, etc.) have
seen more limited use — only about 11.4% of studies utilize such data, perhaps due to availability or a focus on
within-course behaviors [73][74].

Other behavioral data beyond the LMS can also be relevant. In traditional classrooms, one might include
attendance records, participation in labs or group projects, and even co-curricular involvement. Some studies have
begun to use sensor or clicker data from physical classrooms to gauge attention and participation, though these
are less common [75]. A notable domain-specific example is in medical education: EI-Beshbishi et al. [2] analyzed
student engagement in a medical course by tracking interactions with course materials (frequency of viewing
content, completing activities) in the LMS, alongside their assessment scores. They then applied nine ML
algorithms to classify students’ engagement level [76][77]. Such approaches highlight that behavioral features
can span both online and offline (or hybrid) environments, capturing how students allocate time and effort. In
Benabbes et al. [4], study of an e-learning environment, the authors considered a variety of log-based features —
for instance, the total number of forum posts and the total time spent on the platform were used to model
engagement levels [78]. These features intuitively represent how actively a learner is involved in course
communications and materials. Figure 4 illustrates how these student data sources flow into feature extraction in
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a typical pipeline. Data sources (student information and interactions) are collected from systems such as the
LMS, academic records, and surveys. Relevant features are extracted and preprocessed (e.g. counts of clicks, time
spent, quiz scores, personality trait scores). A machine learning model (trained on historical data) then analyzes
these features to predict a student’s engagement level or motivation state. The predictions can trigger interventions
or feedback, allowing instructors or systems to support students (e.g. contacting disengaged students or providing
motivational resources).

4 N\ & N g N\
Feature Machine Interventions or
Extraction —* Learning —» Feedback
& Preprocessing (t:\gi(z Sfln (contacting disengaged students
LMS historical data) motivational resources)
academic records X
J e J
surveys
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Figure 4: Generic pipeline for predicting student engagement/motivation using machine learning.

In addition to raw activity counts, researchers often engineer more sophisticated features from behavioral logs
[79]. Examples include regularity metrics (e.g. variance in login intervals, to distinguish steady workers from
crammers), sequence patterns (the order in which a student accesses materials, which can indicate strategic
learning), or network measures in forums (like centrality of a student in discussion threads). These derived features
can provide deeper insight into engagement quality, not just quantity. For instance, a student who always accesses
the lecture notes before attempting quizzes might be more cognitively engaged in effective study strategies than
one who does so in reverse. Some studies have also incorporated text analysis of discussion posts or messages to
gauge engagement [80]. For example, analyzing the sentiment or emotion in forum posts can reflect emotional
engagement or frustration. Benabbes et al. [4] used a BiLSTM (bidirectional long short-term memory) neural
network with FastText embeddings to detect emotions in students’ forum posts, incorporating those as part of an
engagement prediction model. This kind of NLP feature adds a qualitative aspect to the engagement profile (e.g.
a student expressing confusion or enthusiasm in posts) [81][82][83].

Table 1 summarizes the major feature categories used and their prevalence in recent predictive modeling studies.
Behavioral LMS log features dominate, followed by academic performance metrics; demographic and especially
psychological features are comparatively rare in current literature.

Table 1: Major Feature Categories for Predicting Student Engagement/Motivation

Feature

Category Description and Examples Usage in Studies
Click-stream and activity data from online platforms. Examples:

Behavioral number of logins, pages viewed, time on task, forum posts Very high (=92% of

(LMS Logs) made, videos watched, assessments attempted. Indicates studies use LMS log data).

participation level and study habits.

Course grades and scores on assessments. Examples: quiz/exam
Academic scores, assignment grades, overall course grade, GPA.
Performance  |Sometimes prior academic history. Provides context on
achievement and can serve as a target or feature.

High (=41.8% of studies
include performance
metrics).

Background information about students. Examples: age, gender, |Moderate (=36.7% of
Demographic | prior education, socioeconomic status. Can influence studies include some
engagement patterns (though often indirectly). demographic attributes).

Prior academic records and related info. Examples: previous
semester GPA, entrance exam scores, academic major, etc. Used
to gauge preparedness or baseline ability.

Limited (=11.4% of
studies).

Academic
Background

Psychometric and affective measures. Examples: personality
traits (Big Five scores), motivation/self-efficacy survey
responses, learning style inventories, emotional states. Provide
insight into internal drivers of engagement.

Rare (=1.3% of studies) —
underutilized due to data
collection challenges.

Psychological

In higher education contexts, especially with large classes, demographic data are sometimes available and can be
considered. Demographics alone should not be used to draw causal conclusions, but they can help identify patterns
or disparities in engagement. For example, some studies have noted differences in online engagement behaviors
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across age groups or between traditional and non-traditional students, or investigated how first-generation college
students engage relative to others. In predictive models, demographic features (like age or gender) have shown
only modest incremental benefit, and their inclusion raises considerations of fairness and bias. If used, it is often
in aggregate analyses or to ensure that interventions are equitable across groups [84][85].

Academic background features (such as prior GPA, prerequisite course grades, etc.) can improve model accuracy
by accounting for student preparedness or ability. A student’s past academic performance may correlate with both
motivation and engagement in a new course [86]. For instance, a high-performing student entering a course might
have strong study skills (leading to high engagement) or conversely might become complacent (leading to lower
engagement if the course is too easy) [87][88]. Including such features can help models adjust predictions — some
researchers found that using prior academic data helped identify at-risk students more accurately. However, not
all studies have access to this data, and some focus on behaviors within a course as the primary indicators [89].
3.2 Personal, Psychological and Other Data

In contrast to the abundant clickstream and grade data, psychological and personal data are much less commonly
used in ML models for engagement/motivation — but they represent a promising frontier [90]. As shown in Table
1, only about 1% of studies incorporated psychological attributes like personality or motivation questionnaires.
One reason is that such data often require administering surveys or tests, which is not always feasible at scale or
in real time. Nonetheless, a few notable works have demonstrated the value of these features. The study by
Apampa et al. [3] is a prime example: it collected students’ Big Five personality trait scores and used them to
predict their intrinsic and extrinsic motivation levels. The ML models in that work effectively mapped personality
profiles to motivation outcomes, achieving high accuracy in identifying students’ motivational orientations. This
suggests that with the right data, we can directly predict motivation, not just infer it from behavior. Similarly,
researchers have looked at survey-based engagement scales (where students self-report their engagement or
disengagement) and tried to predict those from LMS data, essentially training models to approximate survey
results without continuously surveying students. This approach can help validate whether the behavioral metrics
truly align with the internal state of engagement.

Other personal data that have been explored include student attitudes and dispositions (e.g. self-regulated learning
skills, interest in subject, or satisfaction ratings). For instance, one study might use an entrance survey measuring
a student’s initial interest in the course topic as a feature to predict how their engagement will trend. In general,
open-response or Likert-scale survey data can be quantified and included in models, though few post-2023 studies
have published results on doing so at scale. An exception is when using public large-scale datasets like PISA or
national studies: for example, one research group used data from a global student survey to predict self-efficacy
(a motivational construct) using ML, finding moderate success with algorithms like XGBoost. However, such
analyses are more correlational and not yet common in course-specific early-warning systems [92][93].

One underutilized but potentially rich source of data is textual and linguistic data from students (outside of forum
emotions already mentioned). For example, analyzing reflective essays or feedback that students write could yield
features about their mindset or motivation. Topic modeling or sentiment analysis on course feedback might
indicate motivation levels (e.g. a student writing about how they value the course versus expressing apathy). As
natural language processing (NLP) techniques advance, we may see more incorporation of these kinds of
qualitative data into engagement/motivation models [94].

It’s also worth noting the rise of multi-modal data for engagement detection, though most examples to date are in
controlled research settings. These include using video of students (face and gaze tracking to detect attention),
audio (voice tone in class discussions), or even physiological sensors (heart rate, EEG) to measure engagement or
affective states. For instance, computer vision techniques have been used to analyze facial expressions and infer
when students are bored or disengaged. While such approaches are at the frontier and raise privacy concerns, they
illustrate the breadth of data that could inform engagement predictions. A 2023 engagement detection tutorial
noted that combining facial emotion recognition with deep learning models allowed real-time prediction of learner
engagement with reasonable accuracy. In the coming years, we might see research that fuses these sensor-derived
features with traditional LMS data to improve prediction robustness, especially in hybrid learning scenarios
[95][96].

4. Machine Learning Models and Techniques for Prediction

Researchers have experimented with a variety of machine learning algorithms to predict student engagement
levels and motivation, ranging from interpretable classical models to more complex ensemble and deep learning
methods. This section reviews the landscape of ML techniques applied, discusses model performance reported in
recent studies, and addresses how models are evaluated. We organize the discussion into supervised learning
approaches (classification and regression), deep learning and hybrid methods, and note common evaluation
metrics. Figure 4 later in this section provides a comparative illustration of prediction accuracy achieved by
different model types in an example scenario [97][98].

4.1 Supervised Learning Approaches

Supervised classification has been the predominant approach in engagement prediction research. In supervised
learning, models are trained on historical student data with known labels (e.g. engagement level, often categorized
as “low/medium/high” or “engaged vs not engaged”) or target values (e.g. a motivation score). Classification
models aim to predict discrete classes such as “student is disengaged” or “student is highly motivated” based on
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input features, whereas regression models predict a continuous value (e.g. a motivation scale rating or percentage
of activities completed) [99].

According to a recent systematic review [100][101], 88.6% of relevant papers employed classification methods
to predict student engagement or performance. This high prevalence is due to many formulations of the problem
being naturally classification: for example, identifying which students are “at-risk” (disengaged) vs “on-track”
(engaged), or classifying motivation level (perhaps using a threshold on a motivation scale). Only about 12.7% of
studies used pure regression approaches, and these were typically cases predicting a numeric outcome like final
exam score (which is more a performance prediction than engagement) or a continuous engagement index. In
some cases, researchers converted what could be a regression problem into classification by binning the outcome
(e.g. defining engagement categories). Clustering (unsupervised learning) has also been explored to detect patterns
of engagement, but usually as a supplement to classification; for instance, clustering students by behavior to define
engagement categories, then using classification to predict those categories.

Common classification algorithms used include Decision Trees (DT), Random Forests (RF) and other ensemble
trees, Support Vector Machines (SVM), Naive Bayes (NB), k-Nearest Neighbors (KNN), and Logistic Regression
(LR). These algorithms have been popular due to their relative interpretability and effectiveness on tabular
educational data. A meta-analysis of recent studies showed that decision trees, random forests, and SVM were
among the most frequently employed algorithms (each appearing in roughly 40-45% of studies). For example, a
study might train a decision tree to classify students into “low” or “high” engagement based on features like
number of clicks, time online, and assignments missed. Decision trees are intuitive for educators to understand —
they produce rules like “IF forum posts < 5 and total hours online <2 THEN disengaged” — which is a desirable
property. Random forests (an ensemble of decision trees) often yield higher accuracy by averaging many trees,
though at the cost of some interpretability. SVMs have also been applied with success, particularly when the data
is high-dimensional or when a clear margin between classes exists in the feature space [101].

In terms of performance, many studies report classification accuracies in the range of ~80-95% for identifying
engaged vs disengaged students or for predicting course success using engagement data. For instance, Benabbes
et al. [4] found that a decision tree model achieved about 98% accuracy (AUC 0.97) in classifying students’
engagement level in an online course. This exceptionally high accuracy was likely in a controlled dataset with
clearly separable groups (indeed, they clustered students into distinct engagement profiles before classification).
Another study by EI-Beshbishi et al. [2] compared nine classifiers on a medical course dataset and reported that
Logistic Regression performed best with 95% accuracy in predicting student engagement levels. These figures
suggest that, at least in some contexts, student engagement (as defined by the study) can be predicted with very
high correctness by ML models. It’s worth noting that such results can depend on how the engagement “label”
was determined — for example, if the label itself is derived from the same behavioral metrics, a model can appear
extremely accurate by essentially learning a threshold. In EI-Beshbishi et al. [2] case, they defined engagement
levels based on participation in activities, and indeed found that the frequency of logins and content views was
strongly related to engagement, which makes those features highly predictive [102][103].

When multiple classes or continuous values are involved, performance can be more modest. Some studies attempt
to predict a numeric engagement score (e.g., a self-reported engagement survey averaged to a 0—100 scale) using
regression. The accuracy of such regression models might be reported in terms of RMSE or correlation; for
example, a model might achieve an $R"2$ of 0.5 in predicting a survey engagement score — indicating moderate
success. However, given engagement’s complexity, many opt to simplify it into categories for prediction [104].
Multi-class classification is used when engagement is categorized into more than two levels (e.g.
low/medium/high engagement). An example is the UCI “Student Performance” dataset (from Kalboard 360 LMS)
that some researchers used, which labels student performance/engagement as Low (L), Medium (M), High (H). In
one investigation, logistic regression and other classifiers were trained on such a dataset; they needed to handle a
three-class classification. Techniques like one-vs-rest or softmax logistic regression can do this directly. Kurniadi
et al. [11] specifically looked at a regularized logistic regression to predict multi-class student performance
categories and found it effective. They emphasize addressing class imbalance in such multi-class contexts (since
often the “High” engagement group might be much smaller than the “Low” or “Medium”). In general, multi-class
engagement classification can be more challenging, and researchers sometimes report precision/recall for each
class to show, for example, that High-engagement students are predicted with 90% precision but Low-engagement
with only 75%, etc [105].

Figure 5 provides a hypothetical comparison of several popular ML algorithms’ accuracy in predicting student
engagement on an example dataset. (These values are illustrative; actual performance varies by context.) As
shown, decision tree and random forest models often perform strongly, with ensemble methods typically a few
points more accurate than single models. Simpler models like Naive Bayes may lag slightly in accuracy but can
still be in a useful range. What specific model works best has differed across studies — there is no single winner
for all contexts. For instance, while El-Beshbishi et al. [2] found logistic regression to be top in their case, other
studies have found decision trees or boosting models to outperform. A benchmark from one review indicated that
ensemble methods generally outperform individual classifiers in educational predictions, echoing a common
theme in ML [106].
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Figure 5: Comparison of classification accuracy for different ML models predicting student engagement
Beyond accuracy, other evaluation metrics are crucial in educational contexts. Models are often evaluated on
precision, recall, F1-score, and AUC (Area under ROC Curve), especially when dealing with imbalanced classes
(e.g. far fewer disengaged students than engaged). Commonly reported metrics in recent studies include precision
and recall in the 0.8-0.95 range for the majority class and somewhat lower for the minority class. For example,
the medical course study reported precision = 100% and recall = 88.4% for the positive class (engaged) when
using the best model, indicating it was very precise in identifying engaged students but missed some (recall ~88%).
Such detailed metrics are important if an intervention is to be based on the predictions — one might prefer a model
with slightly lower accuracy overall if it ensures higher recall of at-risk (disengaged) students, to not miss those
who need help [107].

It’s also worth noting that class imbalance is a common issue; often only a small fraction of students are labeled
as “disengaged” or “at-risk” in a given dataset. Researchers have used techniques like SMOTE (Synthetic
Minority Over-sampling Technique) to balance training data. Rozi et al. [7] specifically explored resampling
methods for imbalanced educational data and found that applying SMOTE significantly improved model accuracy
for minority classes. This suggests that careful handling of class imbalance is essential to avoid models that simply
predict the majority class (e.g. labeling everyone as engaged and achieving high accuracy because most were
engaged, but failing to identify the truly disengaged ones). Many studies thus report metrics like F1 or AUC which
are more informative under imbalance than raw accuracy. According to one review, accuracy and F1-score are
the most common metrics, used in 75% and 57% of studies respectively, followed by precision and recall [108].
4.2 Deep Learning and Advanced Models

While classic ML algorithms have dominated, there is a growing trend of applying deep learning techniques and
advanced models in this domain, particularly as datasets become larger and more complex (e.g., MOOCs with
tens of thousands of students, or multimodal data). Deep learning can capture non-linear relationships and
temporal patterns that might be present in engagement data (for instance, sequences of actions over time) [109]..
One area where deep models excel is in analyzing sequential or time-series data of student interactions. For
example, recurrent neural networks (RNNs) and their variants (like LSTM and GRU) have been used to model
the sequence of student activities and predict future engagement states or even grades. Another application is
using Convolutional Neural Networks (CNNs)) or other deep architectures for specialized data types. For instance,
if we have clickstream data represented as an image or matrix (students x activities), a CNN might detect patterns
of engagement. More concretely, CNNs have been used for visual data in engagement detection: some works feed
video frames of students’ faces into CNNs to classify engaged vs not engaged. While that is more an affective
computing approach, it intersects with our topic when combined with other data [110].

Deep reinforcement learning (DRL) has also made an entry in student performance/engagement prediction.
Bagunaid et al. [8] proposed a DRL-based early warning system for student performance. In their approach, a
deep RL model learned to trigger alerts for at-risk students in a smart education setting. Although their focus was
on performance, engagement data was part of the input, and the system essentially “learned” optimal policies for
when to warn about disengagement/performance issues. This is an advanced use-case, but it demonstrates the
expanding toolkit beyond standard supervised learning [111]. DRL could be particularly useful for prescriptive
analytics — not just predicting engagement, but also learning what interventions to apply to improve engagement
(treating it as a sequential decision-making problem).

One cannot overlook ensemble and hybrid methods under advanced models. Ensemble methods like Gradient
Boosted Trees (e.g. XGBoost, LightGBM) have gained popularity for their strong performance on structured data.
In educational data mining competitions, boosted tree models often rank near the top. These models can handle

401



TPM Vol. 32, No. S7, 2025
ISSN: 1972-6325 |
https://www.tpmap.org/

Open Access

nonlinear interactions and typically yield higher accuracy than single models. For example, in EI-Beshbishi et al.
[2], in addition to Logistic Regression being best, they also tested a Gradient Boosted Tree which was among the
top performers (though slightly below LR in that case). Another advanced technique is stacking (ensemble of
ensembles), which was used by some researchers to combine predictions from multiple base learners. Manzali et
al. [9] explored a hybrid model combining Random Forest and Naive Bayes for student performance prediction,
noting that this ensemble improved predictive accuracy over either model alone. The rationale is to capture
complementary strengths: for instance, a random forest might capture complex interactions, while a Naive Bayes
brings probabilistic simplicity that could generalize better in some cases. They found the RF+NB hybrid achieved
better performance than either individually. This exemplifies the general trend that ensembles generally
outperform single models in educational data prediction [112].

With deep learning, a challenge is interpretability. Educators and stakeholders often prefer simpler models that
provide understandable rules or feature importances. There is thus interest in Explainable Al (XAl) techniques
applied to educational ML. For example, researchers have begun using SHAP (SHapley Additive exPlanations)
values or rule extraction from tree ensembles to explain why a model predicted a student as disengaged. Chong et
al. [1] noted that the lack of consensus on engagement levels and definitions hampers the use of explainable Al —
i.e., it’s hard to build interpretable models when even the construct is not uniformly defined. Despite that, having
interpretable models is crucial for trust in academic settings. For deep models, one might use techniques like
attention mechanisms to highlight which time steps or features contributed most to an engagement prediction
[113].

In terms of performance, deep and advanced models have had mixed results depending on context. In some studies
with enough data, deep learning outperforms classical methods. For instance, a neural network model might
slightly outperform logistic regression in predicting course completion based on clickstream (perhaps capturing
nonlinear effects of feature combinations). However, many educational datasets are moderate in size (hundreds
or a few thousand students), where deep learning does not always significantly outperform well-tuned classical
models, and sometimes performs worse if data is limited. Chen et al. [5] observed that ensemble methods generally
outperform single models in terms of accuracy, but they did not note a clear dominance of deep learning over
ensembles of trees in current literature. This suggests that for structured tabular data (typical in LMS logs), tree
ensembles remain extremely competitive. Deep learning shines more when handling unstructured data (text,
images) or sequential patterns [114].

As an example, one 2024 study applied an LSTM to predict student engagement weekly in a MOOC and achieved
an F1-score slightly higher than a baseline random forest, but the improvement was modest and came at the cost
of complexity. On the other hand, for analyzing discussion forum text to infer engagement, a deep learning NLP
model (e.g. Transformers) could uncover nuanced indicators (like expressing boredom or excitement) that simple
keyword approaches might miss.

To evaluate advanced models, researchers use the same metrics as before (accuracy, F1, AUC, etc.). It is common
to see cross-validation used for model training given the often limited data, and hyperparameter tuning via grid
search or Bayesian optimization to get the best out of each model. Reporting of results usually includes a
comparison of multiple models (as in Figure 4, albeit hypothetical, such comparisons are the norm in papers to
demonstrate improvement) [115].

4.3 Model Evaluation and Performance Metrics

Evaluating the performance of ML models in predicting student engagement and motivation involves several
standard metrics and considerations unique to educational settings. As noted, accuracy, precision, recall, F1-
score, and AUC are commonly reported. However, it is crucial to interpret these metrics in the educational context.
A model with slightly lower overall accuracy but higher recall of disengaged students might be preferable if the
goal is to catch all students who need help (even at the cost of some false alarms). On the other hand, too many
false positives (low precision) could burden instructors with unnecessary interventions. Therefore, researchers
often seek a balance (F1-score) or consider domain needs (e.g., maximizing recall for at-risk identification, while
maintaining acceptable precision) [116].

It is also common to use cross-validation or separate training/validation/test splits to ensure models generalize
beyond the specific cohort. Some studies explicitly test models across different courses or semesters (to check
generalizability). For instance, a model trained on last year’s class is tested on this year’s class data to see if it still
accurately predicts engagement — an important step if the model is to be deployed in practice. Issues like concept
drift (where the meaning of engagement indicators might change over time or different instructional contexts) are
a challenge. Recent work reviews approaches to handle non-stationary data streams in educational settings. While
not the focus of this paper, it’s worth noting that maintaining model performance as courses evolve or as teaching
methods change is an active area of research.

In the studies reviewed, many models achieved strong metrics on retrospective data. For example, classification
AUCs above 0.90 are commonly reported, indicating the model can discriminate engaged vs disengaged students
very well. The true test, however, is deploying these models live and seeing if the predictions hold and can usefully
guide interventions. Some institutions have begun pilot programs integrating predictive models into dashboards
for instructors, often focusing on predicting course dropout or failure (which correlates with disengagement).
These early warning systems, if well-calibrated, have shown potential to improve student outcomes by enabling
proactive support [117].
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From an academic standpoint, Table 2 in the next section will enumerate a few representative research works,
including their algorithms and results, to concretize the discussion. Before that, we conclude Section 4 by
reinforcing that numerous ML techniques — from decision trees to deep neural networks — have proven effective
in modeling student engagement and motivation. The specific choice depends on data characteristics and the needs
for interpretability. As the field moves forward, we anticipate more hybrid models (combining, say, deep learning
for feature extraction from unstructured data with interpretable models for the final prediction) and a continued
emphasis on transparent algorithms that educators can trust.

5. Practical Applications and Discussion

Predictive models of student motivation and engagement are most valuable when their insights are translated into
actions that improve student learning. In this section, we discuss how the outputs of the machine learning
approaches described above can be applied in educational practice. We focus on three main areas: early warning
and intervention systems, personalized and adaptive learning, and a discussion of challenges (such as ethical
considerations and the need for alignment with pedagogy) along with future research directions. Throughout, we
emphasize that the goal of these models is not merely prediction for its own sake, but to enable more responsive,
supportive, and effective teaching and learning strategies [118].

5.1 Early Warning Systems and Targeted Interventions

One of the clearest applications of engagement/motivation prediction is in Early Warning Systems (EWS) for at-
risk students. These are systems that alert instructors, advisors, or students themselves when a learner is predicted
to be disengaged or poorly motivated, so that timely support can be provided. Many institutions are implementing
learning analytics dashboards that incorporate predictive models to flag students who may need help. The research
presented in earlier sections provides the backbone for such systems: by monitoring LMS logs and other indicators
in real time, a trained model can classify whether a student’s engagement level is low (relative to successful
patterns) even after a few weeks of classes. If the model’s prediction crosses a risk threshold, the system can
trigger an alert or recommendation [119].

Studies suggest that early identification of disengagement can significantly improve student outcomes. For
instance, if a model predicts by week 3 that a student is likely to disengage (based on low login frequency, few
interactions, or other features), an instructor can reach out to that student personally, inquire about challenges, and
encourage or guide them before it is too late in the semester. Chong et al. [1] noted that through prediction models,
instructors are “enabled to recognize disengaged students early and foster their needs towards learning”. This
might involve offering additional tutoring, clarifying misconceptions, or simply motivating the student with
encouragement and emphasizing the relevance of the material. In practice, some universities have adopted systems
where instructors receive a list of students “at risk of failing or dropping” each week, computed via predictive
analytics; these lists often align closely with those students showing signs of disengagement (missing activities,
etc.) [120].

There is evidence that such interventions can make a difference. A review of 38 learning analytics dashboard
studies found medium-to-large effects on student participation after dashboards were introduced — implying that
when students and instructors are given feedback on engagement, it can prompt increased participation. For
example, Kaliisa et al. [10] reported that certain dashboard interventions led to improved student engagement in
some studies, though they also cautioned about methodological issues in others. The key is that simply predicting
is not enough; closing the loop with action is essential. If an algorithm predicts a student is disengaging but no
one responds to that information, it does not benefit the student. Therefore, early warning systems must be
integrated with workflow: advisors might schedule a meeting with the student, or the system might send the
student a gentle nudge email like “We noticed you haven’t logged in much this week; remember that consistent
practice is important. Can we help you get back on track?”.

Another aspect is prioritization. In large classes, instructors can’t always closely monitor everyone. A good
predictive system can focus the instructor’s attention on a manageable subset of students who are most likely in
need of help (the precision aspect). For instance, rather than manually scanning hundreds of students’ activity
logs, an instructor might check the top 5-10 students flagged by the model as having low engagement and reach
out to them. Even if the model isn’t perfect, this directed approach is far more efficient than unguided attempts.
In El-Beshbishi et al. [2] deployment, they found that using RapidMiner to classify students as engaged or not
allowed accurate identification of non-engaged students, which could then be targeted [119][120].

5.2 Personalized and Adaptive Learning

Beyond reactive interventions, engagement and motivation predictions can feed into personalized and adaptive
learning systems that proactively adjust the learning experience to each student’s needs. The idea is to use the
model’s ongoing assessment of a student’s engagement/motivation to tailor content, pace, or support, thereby
keeping the student more engaged and motivated.

For instance, an intelligent tutoring system (ITS) or adaptive e-learning platform might monitor a student’s
interaction. If the model predicts the student’s engagement is dropping (perhaps they started skipping optional
exercises, or their quiz performance is deteriorating alongside reduced activity), the system could respond by
altering the learning path. It might present a motivational message, introduce a more interactive element (like a
short educational game or simulation) to rekindle interest, or adjust difficulty if the student appears frustrated.
This aligns with the concept of adaptive engagement strategies. Research in this area often leverages
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reinforcement learning: the system “learns” which actions (e.g., showing a hint, giving encouragement, presenting
a challenge problem) best increase a given student’s engagement metrics. For example, a deep reinforcement
learning model might decide to show a struggling student a simplified problem to build confidence (thus boosting
motivation through a sense of competence) [114][115].

Personalization can also mean recommending different content based on motivation profiles. A student predicted
to be highly intrinsically motivated might be given enrichment activities to further feed their curiosity (since
they’ll likely engage deeply with them), whereas a student with low motivation might be given more scaffolded,
gamified tasks to provide immediate extrinsic incentives and gradually cultivate interest. Another application is
forming adaptive groups or peer mentoring. If some students are predicted to be disengaged, the system might
pair them with highly engaged peers for group work, under the hypothesis that peer influence could increase their
engagement. There are studies on adaptive collaborative learning support where group composition or prompts
are adjusted based on engagement levels to ensure balanced participation.

Recommender systems for learning resources can use engagement as part of the utility function. An Al tutor might
say, “students with similar profiles to you found this supplemental video engaging.” This merges collaborative
filtering with engagement prediction to ensure recommendations are not only relevant to the learning objective
but also likely to spark the student’s interest. Recent advances in explainable recommendations (e.g., “because
you spent a lot of time on topic X, you might enjoy this advanced reading”) tie into keeping the student motivated
by autonomy and relevance [117].

Adaptive systems need continuous input from the predictive models — essentially closing a feedback loop: the
model predicts low engagement, the system adapts content, which hopefully improves engagement, which then is
observed by the model, and so on. There is a strong parallel here with learning companion or affective computing
systems that attempt to detect a student’s affective state (boredom, confusion, flow) and respond appropriately.
Engagement prediction is a form of that (engagement often correlates with affective states like interest or
confusion). In terms of results, some adaptive platforms have reported improved learning gains when
incorporating engagement-aware adjustments. For instance, an adaptive reading system that monitored student
engagement (via eye-tracking and comprehension quiz results) and adjusted reading difficulty accordingly led to
higher overall comprehension scores than a non-adaptive version. Though that example goes beyond just ML
prediction (it includes hardware sensors), it underscores the potential: by keeping students in an optimal zone of
engagement (not too bored, not too frustrated), adaptive systems can improve learning.

5.3 Challenges and Future Directions

While the use of ML models to predict and enhance student motivation and engagement is promising, several
challenges must be addressed to fully realize their benefits. We outline some key issues and future research
directions:

Data Privacy and Ethics: Educational data, especially when it includes sensitive information like psychological
traits or demographics, must be handled with strict privacy safeguards. There is a fine line between helpful
monitoring and a “big brother” effect. Students (and faculty) may justifiably worry about how their data is used,
who can see the predictions, and whether mistakes could unfairly label them. Ensuring transparency and obtaining
informed consent are crucial when deploying these models institution-wide. Moreover, any automated
intervention should ideally involve a human in the loop for high-stakes decisions. Future research may explore
privacy-preserving modeling techniques (like federated learning, where models train across institutions without
sharing raw data) to alleviate privacy concerns while still leveraging broad data.

Bias and Fairness: ML models can inadvertently perpetuate or even amplify biases present in training data. If
historically certain groups of students had lower engagement (perhaps due to extrinsic factors like work
commitments or a non-inclusive curriculum), a naive model might simply learn to predict disengagement for those
groups, leading to a self-fulfilling prophecy (they receive more alerts, possibly feel stigmatized, and remain
disengaged). Ensuring fairness means the models should be tested for bias across groups (gender, ethnicity, etc.)
and perhaps incorporate bias mitigation strategies. For example, one could use balanced training sets or add
fairness constraints so that the false positive/negative rates are similar across groups. Additionally, engaging with
the root causes of disengagement in different groups — something an algorithm alone can’t do — is important. As
a trivial example, if commuter students appear less engaged because of schedule constraints, the solution might
be structural (flexible deadlines or online resources), not just flagging them as at-risk [108].

Model Interpretability: As mentioned earlier, a significant challenge is that many powerful models (neural
networks, ensembles) are black boxes. Yet, educators often want to know why the model predicts a student is
disengaged, to take appropriate action. Efforts in explainable Al need to be applied here, providing human-
readable rules or feature importance. Chong et al. [1] highlighted that the lack of consensus on how to define or
quantify engagement makes it harder to have clear explanations. Future work could involve developing standard
engagement indices or levels (perhaps akin to standardized tests for engagement) that models can align with,
making outputs more interpretable [121].

Cold Start and Generalizability: A practical issue is that predictions are difficult for new students or new courses
where no historical data exists. A model trained on past offerings of a course might not directly apply to a brand
new course (different content, structure) or a brand new student population (e.g., if a university admits a
significantly different cohort one year). Future research may focus on transfer learning — adapting models to new
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courses by transferring knowledge from similar courses. Also, incorporating domain knowledge (e.g., known
pedagogical factors that affect engagement) could help models generalize better beyond their training data [102].
Multi-modal and Multi-dimensional Engagement: So far, most predictive models focus on quantitative log data
and perhaps some survey results. But engagement is multi-faceted and complex. Integrating multi-modal data
(text from discussion forums, sentiment from student feedback, video-based attention tracking in live classes, etc.)
could provide a more holistic view of engagement. For example, analyzing qualitative feedback or reflection
essays with NLP might reveal motivational shifts that raw click data cannot. A future direction is to combine such
data in a coherent model — perhaps using deep learning to fuse different feature types (vision, text, numerical) —
to improve predictive accuracy and depth of understanding. This is technically feasible but again raises
privacy/acceptance issues that must be carefully navigated [103].

Integration with Theory: Another challenge, as noted by Gasevi¢ et al. [12], is that learning analytics must become
more rigorous in adopting educational theory. Predictive models should ideally be informed by theories of
motivation (like SDT) and engagement, not just purely data-driven correlations. This can guide feature selection
(e.g., include features that correspond to autonomy, competence, relatedness needs) and interpretation of results.
Future research might blend ML with educational modeling — for instance, using cognitive or motivational models
(perhaps Bayesian Knowledge Tracing or similar) in conjunction with ML to better predict and support student
engagement. By incorporating theory, models can also suggest why a student is disengaged: is it a motivation
issue (they don’t see value), a self-regulation issue (poor time management), or a social integration issue (feeling
isolated)? Addressing those root causes requires more than numbers; it needs qualitative insight and theoretical
frameworks [104].

Continuous Improvement and Feedback Effects: When predictive systems are deployed, they can change the very
behavior they measure (students might engage more once they know they are being monitored or after receiving
an intervention). This feedback loop means models may need continuous recalibration. Also, measuring the
impact of these systems requires careful experimental or quasi-experimental studies. Some early studies reported
improvements in course grades and retention when using predictive alerts, but others found no effect or even
negative effects if not implemented well. It’s an ongoing research direction to determine the best practices for
using predictions to actually drive positive behavior change. For instance, how to word alert messages to be
motivating rather than discouraging? What is the optimal timing for interventions (immediately after a dip in
engagement vs periodic summaries) [105]?

The future directions point toward more human-centric and theory-driven approaches: explainable and fair
models, integrated with pedagogical interventions, continually refined through feedback, and evaluated for actual
impact on learning and retention. If these challenges are met, predicting and improving student motivation and
engagement through machine learning could become a standard, valuable component of higher education,
especially in large or online classes where traditional personal monitoring by instructors is difficult. As Pooja et.
al [6] notes in an analysis of Al in education, we are at the cusp of an era where intelligent systems can transform
learning by making it more personalized and responsive. The research work surveyed here provides a solid
foundation, and the coming years will likely see these methods mature and integrate seamlessly into educational
practice. Table 2 highlights a few representative studies, their context, methods, and key findings.

Table 2: Selected Recent Research Works on Predicting Student Engagement and Motivation

(S\t(légi) Focus & Context Data & Features |ML Methods Key Results
. . Models  accuratel redicted
Predicted  academic L y P
L Sl motivation levels (high R?).
motivation (intrinsic, . . o
o A Personality traits| Compared Found Conscientiousness &
extrinsic, amotivation) |, . " . . " .
amon universit (Big Five survey), [regression models, |Openness positively predicted
Apampa g Versity demographic  info;|decision trees, and |intrinsic/extrinsic motivation,
students (UK/Nigeria). o2 - . .
etal. [3] - Motivation neural networks to |while Neuroticism correlated with
Focus on  higher . . . L
. questionnaire as|map personality — |amotivation. Demonstrated ML
education ~ computer L o
) . labels (AMS). motivation. can identify students who may
science/business .
need support to improve
students. S
motivation.
LMS interaction . ) Achieved ~98% accuracy with a
Multi-step: . . ed
. data (e.g. number of ' Decision Tree in classifying
Predicted engagement . unsupervised ,
; forum posts, time . . [students’ engagement level.
level of e-learning : clustering to define
. . spent online). - |Noted most learners were
students in online engagement levels; |, »
Benabbes Extracted text - observers” and revealed a
courses (Morocco). . then supervised - :
et al. [4] . sentiment from e nonlinear correlation between
Aimed to detect and classification.
. forum posts engagement and success
track disengaged . . Tested several .
. X (emotion via - (moderate engagement linked to
learners in real time. . classifiers (DT, .
BiLSTM). Clustered performance up to a point).
/ SVM, etc.). '
students into Demonstrated importance of
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(S%g)r/) Focus & Context Data & Features |ML Methods Key Results
engagement groups combining behavioral and
for labels. emotional features.
Logistic Regression performed
best — 95% accuracy, precision
LMS activity data | Trained and ~100%, recall ~88% for engaged
Assessed medical (frequency of evaluated 9 class. Highly engaged students
student engagement in {content views, classifiers (Naive |scored significantly better on
El- a first-year course and [activity completion) | Bayes, Logistic exams than low-engagement
Beshbishi predicted its impact on |and assessment Regre_ssmn, peers. Vallciated that login .
etal. [2] performance (Egypt). |scores. Labeled Decision Tree, frequency (“number (_)f logins”)
Implemented an early |students by Random Forest, strongly correlates with
warning setup in a measured SVM, Gradient engagement. The system
basic science course. |engagement level in |Boosted Tree, etc.) |accurately classified students as
course activities. using RapidMiner. |engaged vs. non-engaged,
enabling timely instructor
interventions.

6. CONCLUSION

Our comprehensive analysis shows that these models are not ends in themselves, but catalysts for action. Early
warning systems can alert instructors to students who might otherwise “fall through the cracks,” enabling
proactive mentoring and support. The convergence of machine learning and learning analytics heralds a new era
of data-informed teaching and learning. By objectively and continually assessing how students engage and what
drives them, we can move toward more responsive education systems that cater to individual needs without
sacrificing scalability. Machine learning models, when used as supportive tools, have the potential to amplify
educators’ ability to foster these qualities in students. The research synthesized in this paper demonstrates
substantial progress post-2023 in model accuracy and application breadth. With continued refinement and ethical
vigilance, predicting and enhancing student motivation and engagement through machine learning will become
an integral component of effective higher education practice, leading to more students not only succeeding in their
studies but finding genuine fulfillment in the learning process.
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