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Abstract: 

Student motivation and engagement are pivotal yet latent constructs that benefit from timely, data- 

driven prediction to inform proactive support in higher education. This paper presents a concise 

synthesis of machine learning approaches for predicting multi-dimensional engagement 

(behavioral, emotional, cognitive) and academic motivation (intrinsic, extrinsic), bridging theory 

with deployable practice. We outline common data sources—learning management system (LMS) 

interaction logs, assessment trajectories, attendance and academic records, and psychometric 

instruments—and emphasize feature engineering for temporal dynamics, interaction patterns, 

effort proxies, and context transfer across courses. The modeling landscape spans interpretable 

classifiers (logistic regression, decision trees, random forests, gradient boosting), kernel methods 

(support vector machines), and deep learning architectures for sequential signals (RNN/LSTM, 

temporal CNN, transformers), with growing interest in multimodal fusion and representation 

learning. Evidence indicates that temporal and interaction features substantially improve early- 

warning performance, while generalization benefits from course-agnostic features, calibration, and 

domain adaptation. It is believed that this paper will help future researchers to gain insight about 

the said domain. 

Keywords: Student Engagement; Academic Motivation; Educational Data Mining; Machine 

Learning in Education; Learning Analytics; Predictive Modeling; Higher Education; Student 

Performance; Adaptive Learning; Early Warning Systems 

 

1. INTRODUCTION 

Student engagement and motivation are widely recognized as pivotal factors in higher education learning 

outcomes. Engagement – broadly defined as students’ active involvement and participation in learning activities 

– has been linked to better academic performance, retention, and overall student success. Conversely, low 

engagement is often an early warning sign for academic difficulties or dropout. Student motivation, referring to 

the drive or desire to learn, underpins engagement; motivated students are more likely to invest effort and persist 

in the face of challenges [13][14]. However, student engagement is a complex, multifaceted construct subject to 

diverse interpretations. It encompasses behavioral aspects (e.g. participation, time on task), emotional responses 

(interest or enthusiasm), and cognitive investment in learning. Student motivation likewise includes multiple 

dimensions – commonly distinguished as intrinsic motivation (learning for inherent satisfaction), extrinsic 

motivation (driven by external rewards or outcomes), and amotivation (lack of motivation). Understanding and 

measuring these latent constructs pose significant challenges in educational research [15][16]. 

Recent shifts toward online and blended learning have further heightened the importance of monitoring 

engagement and motivation. During emergency remote teaching, for example, institutions observed varied student 

engagement patterns, prompting calls for better analytical insight into student involvement [17][18][19]. 

Traditional methods (such as self-report surveys or manual observation) to gauge engagement/motivation can be 

limited in accuracy and scalability. In this context, artificial intelligence and data analytics have emerged as 

valuable tools in higher education [20]. In particular, machine learning (ML) models can analyze the vast data 

generated by learning management systems and other platforms to predict students’ degree of engagement and 

motivation. By identifying disengaged or demotivated students early, educators can intervene with targeted 

support before minor issues escalate into major problems. Such predictive insights enable a proactive approach to 

student success, aligning with the vision of learning analytics to inform timely, personalized pedagogical decisions 

[21][22][23]. 
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Machine learning approaches have already shown considerable promise in this domain. Researchers have reported 

accurate classification of students’ engagement levels using behavioral data, and strong correlations between 

model-predicted engagement and academic outcomes (e.g. course assessment scores) [24]. Models can effectively 

distinguish engaged vs. disengaged students, allowing instructors to focus attention on those most in need of 

intervention. A recent systematic review noted a surge in studies applying ML to predict student performance and 

engagement, underscoring the growing interest and confidence in these techniques. At the same time, challenges 

remain regarding data quality, generalizability, and the interpretability of complex ML models in educational 

contexts. This research work addresses both the theoretical underpinnings of student motivation and engagement 

and the practical application of ML models to predict them in higher education, with an emphasis on computer 

science and engineering education contexts (though the concepts generalize across disciplines) [25][26]. 

 

2. THEORETICAL FOUNDATIONS OF STUDENT ENGAGEMENT AND MOTIVATION 

 

2.1 Student Engagement in Higher Education 

Student engagement refers to the degree of attention, interest, curiosity, and involvement that students exhibit in 

the learning process. It is now understood as a multidimensional construct encompassing behavioral, emotional, 

and cognitive components. Behavioral engagement involves students’ participation in academic activities and 

effort expended (e.g. attending classes, turning in assignments, contributing to discussions) [27][28]. Emotional 

engagement refers to affective responses to learning – such as interest, enjoyment, or a sense of belonging – and 

attitudes towards school or subject matter. Cognitive engagement denotes the investment in learning and 

willingness to exert mental effort to comprehend complex ideas or master skills. These facets often overlap and 

interact. Figure 1 depicts the relationship among the three core dimensions of engagement, which together 

contribute to a student’s overall engagement level [29][30]. 

Figure 1: Key dimensions of student engagement and their overlap. 

High levels of engagement are generally associated with positive educational outcomes. Engaged students tend to 

spend more time on task, persist through challenges, and use deeper learning strategies, leading to better 

understanding and performance. Empirical studies have shown that measures of engagement (such as time spent 

in coursework or interactive participation) correlate with higher course grades and lower likelihood of dropping 

out. For example, a recent study found that highly engaged students achieved better assessment results than those 

with lower engagement [31][32]. Conversely, low engagement often manifests as poor attendance, minimal 

assignment completion, or superficial interaction – factors that are strong predictors of academic difficulties and 

attrition. Indeed, lack of student engagement has been identified as an antecedent to course failure and student 

dropout in online and face-to-face settings. Early signs of disengagement (e.g. prolonged inactivity in an online 

course) can thus serve as crucial warning signals for instructors [33][34]. 

Importantly, student engagement is context-dependent and can fluctuate over time. Environmental factors such as 

course design, teaching methods, and peer interaction influence how students engage. For instance, collaborative 

and interactive learning activities can foster greater behavioral and emotional engagement than passive lecture 

formats. During the COVID-19 pandemic, sudden shifts to online learning highlighted how lack of interaction 

with instructors and peers can undermine engagement, leading to reduced motivation and increased withdrawals 

[35][36][37]. Researchers emphasize that engagement is not solely an individual student trait but also an outcome 

of the learning environment and teaching practices. According to recent frameworks, engagement can be viewed 

along a continuum from the person-oriented perspective (engagement arising from individual student’s 

disposition) to a context-oriented perspective (engagement as a product of the learning context over time). This 

perspective reminds us that improving student engagement often requires both supporting students’ skills and 

motivation and creating more engaging learning environments [38]. 

From a theoretical standpoint, student engagement has been called an “organizing framework” that ties together 

diverse influences on learning. It is both a mediator and an outcome: engagement mediates between student 

characteristics (or interventions) and learning results, and it is itself an outcome that educators seek to improve. 
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This central role of engagement in learning has made it a focal point for educational interventions and for 

predictive modeling, as discussed in later sections. Figure 2 illustrates the commonly observed positive correlation 

between student engagement and academic performance, highlighting why engagement is such a critical target 

for prediction and improvement efforts. This scatter plot (with a fitted trend line) shows a hypothetical positive 

correlation between students’ engagement level (e.g. percentage of course activities completed) and their final 

course grade. Consistent with empirical research, more engaged students tend to achieve higher academic 

performance. Early identification of low-engaged students (lower left area) can prompt interventions to improve 

their outcomes [39][40][41][42]. 
 

Figure 2: Relationship between engagement and academic performance. 

2.2 Student Motivation in Higher Education 

Student motivation broadly refers to the internal processes that initiate, sustain, and direct learning activities. In 

higher education, motivation influences whether students want to learn and how much effort and persistence they 

will dedicate to their studies. Educational psychologists distinguish between intrinsic motivation – engaging in 

learning out of genuine interest or enjoyment – and extrinsic motivation – engagement driven by external rewards 

or requirements (such as grades, credits, or praise) [43][44]. A student with high intrinsic motivation in a computer 

science course, for example, might spend extra hours experimenting with code out of curiosity, whereas an 

extrinsically motivated student might complete exercises primarily to earn a good grade. Some students may also 

experience amotivation, a state of lacking intent or incentive to learn, often accompanied by feelings that tasks 

are irrelevant or beyond one’s control [45]. 

Academic motivation is grounded in several theoretical frameworks. One influential view is the Self- 

Determination Theory (SDT), which posits that students are more intrinsically motivated when their basic 

psychological needs for autonomy, competence, and relatedness are satisfied. In a supportive learning 

environment where students feel a sense of control (autonomy), feel capable of mastering material (competence), 

and feel connected to others (relatedness), they are likely to develop stronger intrinsic motivation to engage in 

learning tasks [46][47]. Conversely, environments that undermine these needs (e.g. highly controlling instruction, 

excessive fear of failure, or social isolation) can diminish intrinsic motivation and lead to more superficial 

engagement. Other relevant constructs include self-efficacy (belief in one’s capabilities to learn or perform) and 

goal orientation (whether a student is focused on mastering content versus just performing well or avoiding 

failure). These factors can modulate motivation levels and the quality of engagement. For instance, a student with 

high self-efficacy and a mastery goal orientation is likely to exhibit resilient, deep engagement in learning, even 

when faced with challenges [48]. 

Understanding what drives student motivation is crucial because motivation energizes and directs engagement. A 

motivated student is more likely to actively participate, persist longer, and employ effective learning strategies 

[49]. As one study highlighted, understanding the drivers of academic motivation is essential for developing 

effective educational strategies. Research has shown clear links between motivation and academic outcomes: 

students with higher intrinsic motivation often achieve better learning outcomes and report greater satisfaction, 

whereas students motivated purely by external factors may disengage once those factors are removed. 

Furthermore, motivation and engagement are deeply intertwined – motivation can be seen as a precursor to 

engagement (students must want to engage), and conversely, engaging successfully in learning can reinforce 

motivation (through experiences of enjoyment or accomplishment) [50][51]. 

In the context of higher education, especially in computing and engineering disciplines, maintaining student 

motivation can be challenging. Coursework is often rigorous and abstract, which may dampen the enthusiasm of 

students who do not immediately see the relevance or who encounter repeated failures. Educators thus strive to 

create motivating conditions: for example, relating course material to real-world applications (to increase 

perceived value), providing timely feedback and achievable challenges (to build competence), and fostering a 

supportive community (to satisfy relatedness). The rise of technology-mediated learning has introduced new 
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opportunities and challenges for motivation. On one hand, gamification elements and interactive simulations can 

boost motivation by making learning more engaging. On the other hand, the relative anonymity and autonomy of 

online learning require students to be more self-motivated, which not all learners are prepared for. These 

considerations underscore why predicting and supporting motivation is as important as addressing engagement in 

modern educational settings [52][53]. 

Researchers have begun applying machine learning to understand and predict student motivation. Notably, 

because motivation is a latent psychological trait, direct measurement is often done via surveys or psychometric 

scales (e.g. rating one’s interest or effort). Recent work has explored whether other data sources can serve as 

proxies for motivation – for example, analyzing students’ behavioral patterns or personal traits. A novel study by 

Apampa et al. [3] leveraged personality traits as predictors of academic motivation. By collecting students’ Big 

Five personality profiles, they trained ML models to predict levels of intrinsic motivation, extrinsic motivation, 

and amotivation. Interestingly, they found that certain personality factors (like conscientiousness and openness) 

were significant predictors of higher motivation, whereas neuroticism correlated with amotivation. Such findings 

align with intuition – students who are organized and open to experience tend to be more self-driven learners – 

and demonstrate how psychological features can be incorporated into predictive models [54][55]. While this line 

of research is still emerging, it holds promise for identifying students who may be at risk of low motivation (for 

instance, those whose personality or prior feedback suggests they might feel less competent or autonomous in a 

given course). 

2.3 Linking Motivation and Engagement 

Motivation and engagement are distinct but deeply connected constructs in the learning process. Motivation can 

be viewed as a leading indicator or underlying cause of engagement: a student who is highly motivated 

(particularly intrinsically) is far more likely to exhibit strong engagement behaviors [56]. Conversely, patterns of 

engagement can affect motivation – for example, a student who engages deeply and succeeds may become more 

motivated through increased confidence and interest, whereas chronic disengagement and poor performance can 

erode motivation. The dynamic interplay between these factors is depicted in Figure 3, which provides a 

conceptual model: personal factors feed into motivation, which in turn drives engagement behaviors, leading to 

academic outcomes; meanwhile, the learning environment (instructional context) also directly influences 

engagement [57]. 

Figure 3: Relationship between student motivation and engagement in context. 

Theoretical frameworks support this linkage. As noted, Self-Determination Theory suggests that when students 

feel autonomous, competent, and related (all of which bolster intrinsic motivation), they are more likely to engage 

wholeheartedly in learning tasks. In practical terms, a student who finds a subject personally interesting and 

valuable (intrinsic motivation) will typically pay closer attention, put forth more effort, and persist longer – classic 

manifestations of engagement [58]. Empirical research affirms this connection. For example, students who report 

higher motivation often show greater time spent on learning tasks and more active participation in class. In one 

longitudinal study, motivation at the start of a course predicted subsequent engagement patterns, which then 

predicted final grades. This suggests a causal chain: motivation → engagement → performance, although the 

relationships are reciprocally reinforcing rather than strictly one-way [59]. 

On the other hand, engagement experiences can loop back to influence motivation. When students engage and see 

progress or enjoy the learning process, it can enhance their self-efficacy and interest, fueling further motivation 

(a positive feedback cycle) [60]. Conversely, if students are unengaged and fall behind, they may feel less 
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competent or autonomous, which can diminish their motivation to try – a negative feedback cycle. Educators thus 

face a critical task: breaking negative loops and fostering positive ones. Effective teaching strategies often target 

both motivation and engagement simultaneously. For instance, introducing real-world projects in a computing 

course can increase situational interest (boosting motivation) and also require active involvement (increasing 

engagement), ideally leading to a virtuous cycle of deeper learning [61]. 

Because of this intertwining, it can sometimes be hard to disentangle whether an intervention should be labeled 

as “motivational” or “engagement-focused” – most successful educational interventions address both. For 

example, providing students with choices in assignments can increase their intrinsic motivation (by supporting 

autonomy) and also lead to greater engagement in doing the chosen work. Similarly, timely and constructive 

feedback can bolster a student’s motivation (by affirming competence and guiding improvement) and concurrently 

encourage sustained engagement with the material [62][63][64]. 

This synergy is reflected in data-driven educational research as well. Features indicative of engagement (like 

frequency of forum posts or quiz attempts) are often correlated with underlying motivational states. Modern 

learning analytics and ML models sometimes use engagement behaviors as proxies for motivation, given that 

motivation itself is not directly observable. However, researchers are also exploring direct modeling of motivation. 

The aforementioned study by Apampa et al. [3] combined personality and motivation surveys to train models that 

predict motivational orientations. Interestingly, by predicting who is likely to be intrinsically or extrinsically 

motivated, one can indirectly anticipate how those students might engage; for instance, extrinsically motivated 

students might engage primarily when grades are at stake, whereas intrinsically motivated ones may engage more 

consistently. In practice, a comprehensive predictive system might include both motivation and engagement 

indicators to get a full picture of student learning health [65][66]. 

 

3. Data Sources and Feature Engineering for Prediction 

Machine learning models are only as good as the data fed into them. In the context of predicting student motivation 

and engagement, a rich array of data sources can be utilized. Key data types include students’ online learning 

interaction logs, academic records, demographic information, and even psychological measures [67][68]. This 

section discusses common features and indicators extracted from these sources, and how they serve as proxies 

for engagement or motivation in predictive modeling. Table 1 provides an overview of major feature categories 

frequently used in the literature, along with their prevalence in recent studies. 

3.1 Behavioral and Academic Data 

By far the most widely used features for predicting engagement are behavioral indicators from Learning 

Management Systems (LMS) and other educational platforms. These digital trace data capture students’ day-to- 

day interactions with course materials and activities. In recent years, over 90% of studies on engagement 

prediction have leveraged LMS log file data [69][70]. Such behavioral features include: number of logins, 

frequency of content views, time spent on various pages or resources, number of forum posts or comments made, 

assignment submission timestamps, quiz attempt counts, video watch duration, and so on. These metrics reflect 

the quantity and pattern of a student’s participation, and thus serve as observable signs of engagement level. For 

example, a student who consistently logs in daily, spends significant time reading course content, and participates 

in discussion forums is likely more engaged than a student who rarely logs in and skims or skips content [71]. 

Academic performance data are another important source. Assessment results and grades (e.g. quiz scores, 

assignment grades, GPA) are sometimes used as features to predict engagement or as related targets to co-predict. 

About 41.8% of studies incorporate academic performance variables (such as prior or mid-term scores) as inputs 

for predicting engagement or success [72]. The rationale is that performance and engagement are linked; past 

grades can contextualize a student’s engagement behavior (e.g. a high-performing student may disengage if bored 

or already comfortable, whereas a low-performing student may disengage due to frustration). In some cases, 

academic scores are even used to derive engagement labels – for instance, defining “engaged” students as those 

performing above a certain threshold and training classifiers to predict that label. However, more often 

performance is a parallel outcome predicted alongside engagement (since ultimately educators care about both). 

It is worth noting that academic background attributes (like previous coursework, high school grades, etc.) have 

seen more limited use – only about 11.4% of studies utilize such data, perhaps due to availability or a focus on 

within-course behaviors [73][74]. 

Other behavioral data beyond the LMS can also be relevant. In traditional classrooms, one might include 

attendance records, participation in labs or group projects, and even co-curricular involvement. Some studies have 

begun to use sensor or clicker data from physical classrooms to gauge attention and participation, though these 

are less common [75]. A notable domain-specific example is in medical education: El-Beshbishi et al. [2] analyzed 

student engagement in a medical course by tracking interactions with course materials (frequency of viewing 

content, completing activities) in the LMS, alongside their assessment scores. They then applied nine ML 

algorithms to classify students’ engagement level [76][77]. Such approaches highlight that behavioral features 

can span both online and offline (or hybrid) environments, capturing how students allocate time and effort. In 

Benabbes et al. [4], study of an e-learning environment, the authors considered a variety of log-based features – 

for instance, the total number of forum posts and the total time spent on the platform were used to model 

engagement levels [78]. These features intuitively represent how actively a learner is involved in course 

communications and materials. Figure 4 illustrates how these student data sources flow into feature extraction in 
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a typical pipeline. Data sources (student information and interactions) are collected from systems such as the 

LMS, academic records, and surveys. Relevant features are extracted and preprocessed (e.g. counts of clicks, time 

spent, quiz scores, personality trait scores). A machine learning model (trained on historical data) then analyzes 

these features to predict a student’s engagement level or motivation state. The predictions can trigger interventions 

or feedback, allowing instructors or systems to support students (e.g. contacting disengaged students or providing 

motivational resources). 

Figure 4: Generic pipeline for predicting student engagement/motivation using machine learning. 

In addition to raw activity counts, researchers often engineer more sophisticated features from behavioral logs 

[79]. Examples include regularity metrics (e.g. variance in login intervals, to distinguish steady workers from 

crammers), sequence patterns (the order in which a student accesses materials, which can indicate strategic 

learning), or network measures in forums (like centrality of a student in discussion threads). These derived features 

can provide deeper insight into engagement quality, not just quantity. For instance, a student who always accesses 

the lecture notes before attempting quizzes might be more cognitively engaged in effective study strategies than 

one who does so in reverse. Some studies have also incorporated text analysis of discussion posts or messages to 

gauge engagement [80]. For example, analyzing the sentiment or emotion in forum posts can reflect emotional 

engagement or frustration. Benabbes et al. [4] used a BiLSTM (bidirectional long short-term memory) neural 

network with FastText embeddings to detect emotions in students’ forum posts, incorporating those as part of an 

engagement prediction model. This kind of NLP feature adds a qualitative aspect to the engagement profile (e.g. 

a student expressing confusion or enthusiasm in posts) [81][82][83]. 

Table 1 summarizes the major feature categories used and their prevalence in recent predictive modeling studies. 

Behavioral LMS log features dominate, followed by academic performance metrics; demographic and especially 

psychological features are comparatively rare in current literature. 

 

Table 1: Major Feature Categories for Predicting Student Engagement/Motivation 

Feature 

Category 
Description and Examples Usage in Studies 

 

Behavioral 

(LMS Logs) 

Click-stream and activity data from online platforms. Examples: 

number of logins, pages viewed, time on task, forum posts 

made, videos watched, assessments attempted. Indicates 

participation level and study habits. 

 

Very high (≈92% of 

studies use LMS log data). 

 

Academic 

Performance 

Course grades and scores on assessments. Examples: quiz/exam 

scores, assignment grades, overall course grade, GPA. 

Sometimes prior academic history. Provides context on 

achievement and can serve as a target or feature. 

High (≈41.8% of studies 

include performance 

metrics). 

 

Demographic 

Background information about students. Examples: age, gender, 

prior education, socioeconomic status. Can influence 

engagement patterns (though often indirectly). 

Moderate (≈36.7% of 

studies include some 

demographic attributes). 

Academic 

Background 

Prior academic records and related info. Examples: previous 

semester GPA, entrance exam scores, academic major, etc. Used 

to gauge preparedness or baseline ability. 

Limited (≈11.4% of 

studies). 

 

Psychological 

Psychometric and affective measures. Examples: personality 

traits (Big Five scores), motivation/self-efficacy survey 

responses, learning style inventories, emotional states. Provide 

insight into internal drivers of engagement. 

Rare (≈1.3% of studies) – 

underutilized due to data 

collection challenges. 

 

In higher education contexts, especially with large classes, demographic data are sometimes available and can be 

considered. Demographics alone should not be used to draw causal conclusions, but they can help identify patterns 

or disparities in engagement. For example, some studies have noted differences in online engagement behaviors 
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across age groups or between traditional and non-traditional students, or investigated how first-generation college 

students engage relative to others. In predictive models, demographic features (like age or gender) have shown 

only modest incremental benefit, and their inclusion raises considerations of fairness and bias. If used, it is often 

in aggregate analyses or to ensure that interventions are equitable across groups [84][85]. 

Academic background features (such as prior GPA, prerequisite course grades, etc.) can improve model accuracy 

by accounting for student preparedness or ability. A student’s past academic performance may correlate with both 

motivation and engagement in a new course [86]. For instance, a high-performing student entering a course might 

have strong study skills (leading to high engagement) or conversely might become complacent (leading to lower 

engagement if the course is too easy) [87][88]. Including such features can help models adjust predictions – some 

researchers found that using prior academic data helped identify at-risk students more accurately. However, not 

all studies have access to this data, and some focus on behaviors within a course as the primary indicators [89]. 

3.2 Personal, Psychological and Other Data 

In contrast to the abundant clickstream and grade data, psychological and personal data are much less commonly 

used in ML models for engagement/motivation – but they represent a promising frontier [90]. As shown in Table 

1, only about 1% of studies incorporated psychological attributes like personality or motivation questionnaires. 

One reason is that such data often require administering surveys or tests, which is not always feasible at scale or 

in real time. Nonetheless, a few notable works have demonstrated the value of these features. The study by 

Apampa et al. [3] is a prime example: it collected students’ Big Five personality trait scores and used them to 

predict their intrinsic and extrinsic motivation levels. The ML models in that work effectively mapped personality 

profiles to motivation outcomes, achieving high accuracy in identifying students’ motivational orientations. This 

suggests that with the right data, we can directly predict motivation, not just infer it from behavior. Similarly, 

researchers have looked at survey-based engagement scales (where students self-report their engagement or 

disengagement) and tried to predict those from LMS data, essentially training models to approximate survey 

results without continuously surveying students. This approach can help validate whether the behavioral metrics 

truly align with the internal state of engagement. 

Other personal data that have been explored include student attitudes and dispositions (e.g. self-regulated learning 

skills, interest in subject, or satisfaction ratings). For instance, one study might use an entrance survey measuring 

a student’s initial interest in the course topic as a feature to predict how their engagement will trend. In general, 

open-response or Likert-scale survey data can be quantified and included in models, though few post-2023 studies 

have published results on doing so at scale. An exception is when using public large-scale datasets like PISA or 

national studies: for example, one research group used data from a global student survey to predict self-efficacy 

(a motivational construct) using ML, finding moderate success with algorithms like XGBoost. However, such 

analyses are more correlational and not yet common in course-specific early-warning systems [92][93]. 

One underutilized but potentially rich source of data is textual and linguistic data from students (outside of forum 

emotions already mentioned). For example, analyzing reflective essays or feedback that students write could yield 

features about their mindset or motivation. Topic modeling or sentiment analysis on course feedback might 

indicate motivation levels (e.g. a student writing about how they value the course versus expressing apathy). As 

natural language processing (NLP) techniques advance, we may see more incorporation of these kinds of 

qualitative data into engagement/motivation models [94]. 

It’s also worth noting the rise of multi-modal data for engagement detection, though most examples to date are in 

controlled research settings. These include using video of students (face and gaze tracking to detect attention), 

audio (voice tone in class discussions), or even physiological sensors (heart rate, EEG) to measure engagement or 

affective states. For instance, computer vision techniques have been used to analyze facial expressions and infer 

when students are bored or disengaged. While such approaches are at the frontier and raise privacy concerns, they 

illustrate the breadth of data that could inform engagement predictions. A 2023 engagement detection tutorial 

noted that combining facial emotion recognition with deep learning models allowed real-time prediction of learner 

engagement with reasonable accuracy. In the coming years, we might see research that fuses these sensor-derived 

features with traditional LMS data to improve prediction robustness, especially in hybrid learning scenarios 

[95][96]. 

 

4. Machine Learning Models and Techniques for Prediction 

Researchers have experimented with a variety of machine learning algorithms to predict student engagement 

levels and motivation, ranging from interpretable classical models to more complex ensemble and deep learning 

methods. This section reviews the landscape of ML techniques applied, discusses model performance reported in 

recent studies, and addresses how models are evaluated. We organize the discussion into supervised learning 

approaches (classification and regression), deep learning and hybrid methods, and note common evaluation 

metrics. Figure 4 later in this section provides a comparative illustration of prediction accuracy achieved by 

different model types in an example scenario [97][98]. 

4.1 Supervised Learning Approaches 

Supervised classification has been the predominant approach in engagement prediction research. In supervised 

learning, models are trained on historical student data with known labels (e.g. engagement level, often categorized 

as “low/medium/high” or “engaged vs not engaged”) or target values (e.g. a motivation score). Classification 

models aim to predict discrete classes such as “student is disengaged” or “student is highly motivated” based on 
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input features, whereas regression models predict a continuous value (e.g. a motivation scale rating or percentage 

of activities completed) [99]. 

According to a recent systematic review [100][101], 88.6% of relevant papers employed classification methods 

to predict student engagement or performance. This high prevalence is due to many formulations of the problem 

being naturally classification: for example, identifying which students are “at-risk” (disengaged) vs “on-track” 

(engaged), or classifying motivation level (perhaps using a threshold on a motivation scale). Only about 12.7% of 

studies used pure regression approaches, and these were typically cases predicting a numeric outcome like final 

exam score (which is more a performance prediction than engagement) or a continuous engagement index. In 

some cases, researchers converted what could be a regression problem into classification by binning the outcome 

(e.g. defining engagement categories). Clustering (unsupervised learning) has also been explored to detect patterns 

of engagement, but usually as a supplement to classification; for instance, clustering students by behavior to define 

engagement categories, then using classification to predict those categories. 

Common classification algorithms used include Decision Trees (DT), Random Forests (RF) and other ensemble 

trees, Support Vector Machines (SVM), Naïve Bayes (NB), k-Nearest Neighbors (KNN), and Logistic Regression 

(LR). These algorithms have been popular due to their relative interpretability and effectiveness on tabular 

educational data. A meta-analysis of recent studies showed that decision trees, random forests, and SVM were 

among the most frequently employed algorithms (each appearing in roughly 40–45% of studies). For example, a 

study might train a decision tree to classify students into “low” or “high” engagement based on features like 

number of clicks, time online, and assignments missed. Decision trees are intuitive for educators to understand – 

they produce rules like “IF forum posts < 5 and total hours online < 2 THEN disengaged” – which is a desirable 

property. Random forests (an ensemble of decision trees) often yield higher accuracy by averaging many trees, 

though at the cost of some interpretability. SVMs have also been applied with success, particularly when the data 

is high-dimensional or when a clear margin between classes exists in the feature space [101]. 

In terms of performance, many studies report classification accuracies in the range of ~80–95% for identifying 

engaged vs disengaged students or for predicting course success using engagement data. For instance, Benabbes 

et al. [4] found that a decision tree model achieved about 98% accuracy (AUC 0.97) in classifying students’ 

engagement level in an online course. This exceptionally high accuracy was likely in a controlled dataset with 

clearly separable groups (indeed, they clustered students into distinct engagement profiles before classification). 

Another study by El-Beshbishi et al. [2] compared nine classifiers on a medical course dataset and reported that 

Logistic Regression performed best with 95% accuracy in predicting student engagement levels. These figures 

suggest that, at least in some contexts, student engagement (as defined by the study) can be predicted with very 

high correctness by ML models. It’s worth noting that such results can depend on how the engagement “label” 

was determined – for example, if the label itself is derived from the same behavioral metrics, a model can appear 

extremely accurate by essentially learning a threshold. In El-Beshbishi et al. [2] case, they defined engagement 

levels based on participation in activities, and indeed found that the frequency of logins and content views was 

strongly related to engagement, which makes those features highly predictive [102][103]. 

When multiple classes or continuous values are involved, performance can be more modest. Some studies attempt 

to predict a numeric engagement score (e.g., a self-reported engagement survey averaged to a 0–100 scale) using 

regression. The accuracy of such regression models might be reported in terms of RMSE or correlation; for 

example, a model might achieve an $R^2$ of 0.5 in predicting a survey engagement score – indicating moderate 

success. However, given engagement’s complexity, many opt to simplify it into categories for prediction [104]. 

Multi-class classification is used when engagement is categorized into more than two levels (e.g. 

low/medium/high engagement). An example is the UCI “Student Performance” dataset (from Kalboard 360 LMS) 

that some researchers used, which labels student performance/engagement as Low (L), Medium (M), High (H). In 

one investigation, logistic regression and other classifiers were trained on such a dataset; they needed to handle a 

three-class classification. Techniques like one-vs-rest or softmax logistic regression can do this directly. Kurniadi 

et al. [11] specifically looked at a regularized logistic regression to predict multi-class student performance 

categories and found it effective. They emphasize addressing class imbalance in such multi-class contexts (since 

often the “High” engagement group might be much smaller than the “Low” or “Medium”). In general, multi-class 

engagement classification can be more challenging, and researchers sometimes report precision/recall for each 

class to show, for example, that High-engagement students are predicted with 90% precision but Low-engagement 

with only 75%, etc [105]. 

Figure 5 provides a hypothetical comparison of several popular ML algorithms’ accuracy in predicting student 

engagement on an example dataset. (These values are illustrative; actual performance varies by context.) As 

shown, decision tree and random forest models often perform strongly, with ensemble methods typically a few 

points more accurate than single models. Simpler models like Naïve Bayes may lag slightly in accuracy but can 

still be in a useful range. What specific model works best has differed across studies – there is no single winner 

for all contexts. For instance, while El-Beshbishi et al. [2] found logistic regression to be top in their case, other 

studies have found decision trees or boosting models to outperform. A benchmark from one review indicated that 

ensemble methods generally outperform individual classifiers in educational predictions, echoing a common 

theme in ML [106]. 
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Figure 5: Comparison of classification accuracy for different ML models predicting student engagement 

Beyond accuracy, other evaluation metrics are crucial in educational contexts. Models are often evaluated on 

precision, recall, F1-score, and AUC (Area under ROC Curve), especially when dealing with imbalanced classes 

(e.g. far fewer disengaged students than engaged). Commonly reported metrics in recent studies include precision 

and recall in the 0.8–0.95 range for the majority class and somewhat lower for the minority class. For example, 

the medical course study reported precision = 100% and recall = 88.4% for the positive class (engaged) when 

using the best model, indicating it was very precise in identifying engaged students but missed some (recall ~88%). 

Such detailed metrics are important if an intervention is to be based on the predictions – one might prefer a model 

with slightly lower accuracy overall if it ensures higher recall of at-risk (disengaged) students, to not miss those 

who need help [107]. 

It’s also worth noting that class imbalance is a common issue; often only a small fraction of students are labeled 

as “disengaged” or “at-risk” in a given dataset. Researchers have used techniques like SMOTE (Synthetic 

Minority Over-sampling Technique) to balance training data. Rozi et al. [7] specifically explored resampling 

methods for imbalanced educational data and found that applying SMOTE significantly improved model accuracy 

for minority classes. This suggests that careful handling of class imbalance is essential to avoid models that simply 

predict the majority class (e.g. labeling everyone as engaged and achieving high accuracy because most were 

engaged, but failing to identify the truly disengaged ones). Many studies thus report metrics like F1 or AUC which 

are more informative under imbalance than raw accuracy. According to one review, accuracy and F1-score are 

the most common metrics, used in 75% and 57% of studies respectively, followed by precision and recall [108]. 

4.2 Deep Learning and Advanced Models 

While classic ML algorithms have dominated, there is a growing trend of applying deep learning techniques and 

advanced models in this domain, particularly as datasets become larger and more complex (e.g., MOOCs with 

tens of thousands of students, or multimodal data). Deep learning can capture non-linear relationships and 

temporal patterns that might be present in engagement data (for instance, sequences of actions over time) [109].. 

One area where deep models excel is in analyzing sequential or time-series data of student interactions. For 

example, recurrent neural networks (RNNs) and their variants (like LSTM and GRU) have been used to model 

the sequence of student activities and predict future engagement states or even grades. Another application is 

using Convolutional Neural Networks (CNNs)) or other deep architectures for specialized data types. For instance, 

if we have clickstream data represented as an image or matrix (students × activities), a CNN might detect patterns 

of engagement. More concretely, CNNs have been used for visual data in engagement detection: some works feed 

video frames of students’ faces into CNNs to classify engaged vs not engaged. While that is more an affective 

computing approach, it intersects with our topic when combined with other data [110]. 

Deep reinforcement learning (DRL) has also made an entry in student performance/engagement prediction. 

Bagunaid et al. [8] proposed a DRL-based early warning system for student performance. In their approach, a 

deep RL model learned to trigger alerts for at-risk students in a smart education setting. Although their focus was 

on performance, engagement data was part of the input, and the system essentially “learned” optimal policies for 

when to warn about disengagement/performance issues. This is an advanced use-case, but it demonstrates the 

expanding toolkit beyond standard supervised learning [111]. DRL could be particularly useful for prescriptive 

analytics – not just predicting engagement, but also learning what interventions to apply to improve engagement 

(treating it as a sequential decision-making problem). 

One cannot overlook ensemble and hybrid methods under advanced models. Ensemble methods like Gradient 

Boosted Trees (e.g. XGBoost, LightGBM) have gained popularity for their strong performance on structured data. 

In educational data mining competitions, boosted tree models often rank near the top. These models can handle 
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nonlinear interactions and typically yield higher accuracy than single models. For example, in El-Beshbishi et al. 

[2], in addition to Logistic Regression being best, they also tested a Gradient Boosted Tree which was among the 

top performers (though slightly below LR in that case). Another advanced technique is stacking (ensemble of 

ensembles), which was used by some researchers to combine predictions from multiple base learners. Manzali et 

al. [9] explored a hybrid model combining Random Forest and Naïve Bayes for student performance prediction, 

noting that this ensemble improved predictive accuracy over either model alone. The rationale is to capture 

complementary strengths: for instance, a random forest might capture complex interactions, while a Naïve Bayes 

brings probabilistic simplicity that could generalize better in some cases. They found the RF+NB hybrid achieved 

better performance than either individually. This exemplifies the general trend that ensembles generally 

outperform single models in educational data prediction [112]. 

With deep learning, a challenge is interpretability. Educators and stakeholders often prefer simpler models that 

provide understandable rules or feature importances. There is thus interest in Explainable AI (XAI) techniques 

applied to educational ML. For example, researchers have begun using SHAP (SHapley Additive exPlanations) 

values or rule extraction from tree ensembles to explain why a model predicted a student as disengaged. Chong et 

al. [1] noted that the lack of consensus on engagement levels and definitions hampers the use of explainable AI – 

i.e., it’s hard to build interpretable models when even the construct is not uniformly defined. Despite that, having 

interpretable models is crucial for trust in academic settings. For deep models, one might use techniques like 

attention mechanisms to highlight which time steps or features contributed most to an engagement prediction 

[113]. 

In terms of performance, deep and advanced models have had mixed results depending on context. In some studies 

with enough data, deep learning outperforms classical methods. For instance, a neural network model might 

slightly outperform logistic regression in predicting course completion based on clickstream (perhaps capturing 

nonlinear effects of feature combinations). However, many educational datasets are moderate in size (hundreds 

or a few thousand students), where deep learning does not always significantly outperform well-tuned classical 

models, and sometimes performs worse if data is limited. Chen et al. [5] observed that ensemble methods generally 

outperform single models in terms of accuracy, but they did not note a clear dominance of deep learning over 

ensembles of trees in current literature. This suggests that for structured tabular data (typical in LMS logs), tree 

ensembles remain extremely competitive. Deep learning shines more when handling unstructured data (text, 

images) or sequential patterns [114]. 

As an example, one 2024 study applied an LSTM to predict student engagement weekly in a MOOC and achieved 

an F1-score slightly higher than a baseline random forest, but the improvement was modest and came at the cost 

of complexity. On the other hand, for analyzing discussion forum text to infer engagement, a deep learning NLP 

model (e.g. Transformers) could uncover nuanced indicators (like expressing boredom or excitement) that simple 

keyword approaches might miss. 

To evaluate advanced models, researchers use the same metrics as before (accuracy, F1, AUC, etc.). It is common 

to see cross-validation used for model training given the often limited data, and hyperparameter tuning via grid 

search or Bayesian optimization to get the best out of each model. Reporting of results usually includes a 

comparison of multiple models (as in Figure 4, albeit hypothetical, such comparisons are the norm in papers to 

demonstrate improvement) [115]. 

4.3 Model Evaluation and Performance Metrics 

Evaluating the performance of ML models in predicting student engagement and motivation involves several 

standard metrics and considerations unique to educational settings. As noted, accuracy, precision, recall, F1- 

score, and AUC are commonly reported. However, it is crucial to interpret these metrics in the educational context. 

A model with slightly lower overall accuracy but higher recall of disengaged students might be preferable if the 

goal is to catch all students who need help (even at the cost of some false alarms). On the other hand, too many 

false positives (low precision) could burden instructors with unnecessary interventions. Therefore, researchers 

often seek a balance (F1-score) or consider domain needs (e.g., maximizing recall for at-risk identification, while 

maintaining acceptable precision) [116]. 

It is also common to use cross-validation or separate training/validation/test splits to ensure models generalize 

beyond the specific cohort. Some studies explicitly test models across different courses or semesters (to check 

generalizability). For instance, a model trained on last year’s class is tested on this year’s class data to see if it still 

accurately predicts engagement – an important step if the model is to be deployed in practice. Issues like concept 

drift (where the meaning of engagement indicators might change over time or different instructional contexts) are 

a challenge. Recent work reviews approaches to handle non-stationary data streams in educational settings. While 

not the focus of this paper, it’s worth noting that maintaining model performance as courses evolve or as teaching 

methods change is an active area of research. 

In the studies reviewed, many models achieved strong metrics on retrospective data. For example, classification 

AUCs above 0.90 are commonly reported, indicating the model can discriminate engaged vs disengaged students 

very well. The true test, however, is deploying these models live and seeing if the predictions hold and can usefully 

guide interventions. Some institutions have begun pilot programs integrating predictive models into dashboards 

for instructors, often focusing on predicting course dropout or failure (which correlates with disengagement). 

These early warning systems, if well-calibrated, have shown potential to improve student outcomes by enabling 

proactive support [117]. 
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From an academic standpoint, Table 2 in the next section will enumerate a few representative research works, 

including their algorithms and results, to concretize the discussion. Before that, we conclude Section 4 by 

reinforcing that numerous ML techniques – from decision trees to deep neural networks – have proven effective 

in modeling student engagement and motivation. The specific choice depends on data characteristics and the needs 

for interpretability. As the field moves forward, we anticipate more hybrid models (combining, say, deep learning 

for feature extraction from unstructured data with interpretable models for the final prediction) and a continued 

emphasis on transparent algorithms that educators can trust. 

 

5. Practical Applications and Discussion 

Predictive models of student motivation and engagement are most valuable when their insights are translated into 

actions that improve student learning. In this section, we discuss how the outputs of the machine learning 

approaches described above can be applied in educational practice. We focus on three main areas: early warning 

and intervention systems, personalized and adaptive learning, and a discussion of challenges (such as ethical 

considerations and the need for alignment with pedagogy) along with future research directions. Throughout, we 

emphasize that the goal of these models is not merely prediction for its own sake, but to enable more responsive, 

supportive, and effective teaching and learning strategies [118]. 

5.1 Early Warning Systems and Targeted Interventions 

One of the clearest applications of engagement/motivation prediction is in Early Warning Systems (EWS) for at- 

risk students. These are systems that alert instructors, advisors, or students themselves when a learner is predicted 

to be disengaged or poorly motivated, so that timely support can be provided. Many institutions are implementing 

learning analytics dashboards that incorporate predictive models to flag students who may need help. The research 

presented in earlier sections provides the backbone for such systems: by monitoring LMS logs and other indicators 

in real time, a trained model can classify whether a student’s engagement level is low (relative to successful 

patterns) even after a few weeks of classes. If the model’s prediction crosses a risk threshold, the system can 

trigger an alert or recommendation [119]. 

Studies suggest that early identification of disengagement can significantly improve student outcomes. For 

instance, if a model predicts by week 3 that a student is likely to disengage (based on low login frequency, few 

interactions, or other features), an instructor can reach out to that student personally, inquire about challenges, and 

encourage or guide them before it is too late in the semester. Chong et al. [1] noted that through prediction models, 

instructors are “enabled to recognize disengaged students early and foster their needs towards learning”. This 

might involve offering additional tutoring, clarifying misconceptions, or simply motivating the student with 

encouragement and emphasizing the relevance of the material. In practice, some universities have adopted systems 

where instructors receive a list of students “at risk of failing or dropping” each week, computed via predictive 

analytics; these lists often align closely with those students showing signs of disengagement (missing activities, 

etc.) [120]. 

There is evidence that such interventions can make a difference. A review of 38 learning analytics dashboard 

studies found medium-to-large effects on student participation after dashboards were introduced – implying that 

when students and instructors are given feedback on engagement, it can prompt increased participation. For 

example, Kaliisa et al. [10] reported that certain dashboard interventions led to improved student engagement in 

some studies, though they also cautioned about methodological issues in others. The key is that simply predicting 

is not enough; closing the loop with action is essential. If an algorithm predicts a student is disengaging but no 

one responds to that information, it does not benefit the student. Therefore, early warning systems must be 

integrated with workflow: advisors might schedule a meeting with the student, or the system might send the 

student a gentle nudge email like “We noticed you haven’t logged in much this week; remember that consistent 

practice is important. Can we help you get back on track?”. 

Another aspect is prioritization. In large classes, instructors can’t always closely monitor everyone. A good 

predictive system can focus the instructor’s attention on a manageable subset of students who are most likely in 

need of help (the precision aspect). For instance, rather than manually scanning hundreds of students’ activity 

logs, an instructor might check the top 5–10 students flagged by the model as having low engagement and reach 

out to them. Even if the model isn’t perfect, this directed approach is far more efficient than unguided attempts. 

In El-Beshbishi et al. [2] deployment, they found that using RapidMiner to classify students as engaged or not 

allowed accurate identification of non-engaged students, which could then be targeted [119][120]. 

5.2 Personalized and Adaptive Learning 

Beyond reactive interventions, engagement and motivation predictions can feed into personalized and adaptive 

learning systems that proactively adjust the learning experience to each student’s needs. The idea is to use the 

model’s ongoing assessment of a student’s engagement/motivation to tailor content, pace, or support, thereby 

keeping the student more engaged and motivated. 

For instance, an intelligent tutoring system (ITS) or adaptive e-learning platform might monitor a student’s 

interaction. If the model predicts the student’s engagement is dropping (perhaps they started skipping optional 

exercises, or their quiz performance is deteriorating alongside reduced activity), the system could respond by 

altering the learning path. It might present a motivational message, introduce a more interactive element (like a 

short educational game or simulation) to rekindle interest, or adjust difficulty if the student appears frustrated. 

This aligns with the concept of adaptive engagement strategies. Research in this area often leverages 
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reinforcement learning: the system “learns” which actions (e.g., showing a hint, giving encouragement, presenting 

a challenge problem) best increase a given student’s engagement metrics. For example, a deep reinforcement 

learning model might decide to show a struggling student a simplified problem to build confidence (thus boosting 

motivation through a sense of competence) [114][115]. 

Personalization can also mean recommending different content based on motivation profiles. A student predicted 

to be highly intrinsically motivated might be given enrichment activities to further feed their curiosity (since 

they’ll likely engage deeply with them), whereas a student with low motivation might be given more scaffolded, 

gamified tasks to provide immediate extrinsic incentives and gradually cultivate interest. Another application is 

forming adaptive groups or peer mentoring. If some students are predicted to be disengaged, the system might 

pair them with highly engaged peers for group work, under the hypothesis that peer influence could increase their 

engagement. There are studies on adaptive collaborative learning support where group composition or prompts 

are adjusted based on engagement levels to ensure balanced participation. 

Recommender systems for learning resources can use engagement as part of the utility function. An AI tutor might 

say, “students with similar profiles to you found this supplemental video engaging.” This merges collaborative 

filtering with engagement prediction to ensure recommendations are not only relevant to the learning objective 

but also likely to spark the student’s interest. Recent advances in explainable recommendations (e.g., “because 

you spent a lot of time on topic X, you might enjoy this advanced reading”) tie into keeping the student motivated 

by autonomy and relevance [117]. 

Adaptive systems need continuous input from the predictive models – essentially closing a feedback loop: the 

model predicts low engagement, the system adapts content, which hopefully improves engagement, which then is 

observed by the model, and so on. There is a strong parallel here with learning companion or affective computing 

systems that attempt to detect a student’s affective state (boredom, confusion, flow) and respond appropriately. 

Engagement prediction is a form of that (engagement often correlates with affective states like interest or 

confusion). In terms of results, some adaptive platforms have reported improved learning gains when 

incorporating engagement-aware adjustments. For instance, an adaptive reading system that monitored student 

engagement (via eye-tracking and comprehension quiz results) and adjusted reading difficulty accordingly led to 

higher overall comprehension scores than a non-adaptive version. Though that example goes beyond just ML 

prediction (it includes hardware sensors), it underscores the potential: by keeping students in an optimal zone of 

engagement (not too bored, not too frustrated), adaptive systems can improve learning. 

5.3 Challenges and Future Directions 

While the use of ML models to predict and enhance student motivation and engagement is promising, several 

challenges must be addressed to fully realize their benefits. We outline some key issues and future research 

directions: 

Data Privacy and Ethics: Educational data, especially when it includes sensitive information like psychological 

traits or demographics, must be handled with strict privacy safeguards. There is a fine line between helpful 

monitoring and a “big brother” effect. Students (and faculty) may justifiably worry about how their data is used, 

who can see the predictions, and whether mistakes could unfairly label them. Ensuring transparency and obtaining 

informed consent are crucial when deploying these models institution-wide. Moreover, any automated 

intervention should ideally involve a human in the loop for high-stakes decisions. Future research may explore 

privacy-preserving modeling techniques (like federated learning, where models train across institutions without 

sharing raw data) to alleviate privacy concerns while still leveraging broad data. 

Bias and Fairness: ML models can inadvertently perpetuate or even amplify biases present in training data. If 

historically certain groups of students had lower engagement (perhaps due to extrinsic factors like work 

commitments or a non-inclusive curriculum), a naive model might simply learn to predict disengagement for those 

groups, leading to a self-fulfilling prophecy (they receive more alerts, possibly feel stigmatized, and remain 

disengaged). Ensuring fairness means the models should be tested for bias across groups (gender, ethnicity, etc.) 

and perhaps incorporate bias mitigation strategies. For example, one could use balanced training sets or add 

fairness constraints so that the false positive/negative rates are similar across groups. Additionally, engaging with 

the root causes of disengagement in different groups – something an algorithm alone can’t do – is important. As 

a trivial example, if commuter students appear less engaged because of schedule constraints, the solution might 

be structural (flexible deadlines or online resources), not just flagging them as at-risk [108]. 

Model Interpretability: As mentioned earlier, a significant challenge is that many powerful models (neural 

networks, ensembles) are black boxes. Yet, educators often want to know why the model predicts a student is 

disengaged, to take appropriate action. Efforts in explainable AI need to be applied here, providing human- 

readable rules or feature importance. Chong et al. [1] highlighted that the lack of consensus on how to define or 

quantify engagement makes it harder to have clear explanations. Future work could involve developing standard 

engagement indices or levels (perhaps akin to standardized tests for engagement) that models can align with, 

making outputs more interpretable [121]. 

Cold Start and Generalizability: A practical issue is that predictions are difficult for new students or new courses 

where no historical data exists. A model trained on past offerings of a course might not directly apply to a brand 

new course (different content, structure) or a brand new student population (e.g., if a university admits a 

significantly different cohort one year). Future research may focus on transfer learning – adapting models to new 
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courses by transferring knowledge from similar courses. Also, incorporating domain knowledge (e.g., known 

pedagogical factors that affect engagement) could help models generalize better beyond their training data [102]. 

Multi-modal and Multi-dimensional Engagement: So far, most predictive models focus on quantitative log data 

and perhaps some survey results. But engagement is multi-faceted and complex. Integrating multi-modal data 

(text from discussion forums, sentiment from student feedback, video-based attention tracking in live classes, etc.) 

could provide a more holistic view of engagement. For example, analyzing qualitative feedback or reflection 

essays with NLP might reveal motivational shifts that raw click data cannot. A future direction is to combine such 

data in a coherent model – perhaps using deep learning to fuse different feature types (vision, text, numerical) – 

to improve predictive accuracy and depth of understanding. This is technically feasible but again raises 

privacy/acceptance issues that must be carefully navigated [103]. 

Integration with Theory: Another challenge, as noted by Gašević et al. [12], is that learning analytics must become 

more rigorous in adopting educational theory. Predictive models should ideally be informed by theories of 

motivation (like SDT) and engagement, not just purely data-driven correlations. This can guide feature selection 

(e.g., include features that correspond to autonomy, competence, relatedness needs) and interpretation of results. 

Future research might blend ML with educational modeling – for instance, using cognitive or motivational models 

(perhaps Bayesian Knowledge Tracing or similar) in conjunction with ML to better predict and support student 

engagement. By incorporating theory, models can also suggest why a student is disengaged: is it a motivation 

issue (they don’t see value), a self-regulation issue (poor time management), or a social integration issue (feeling 

isolated)? Addressing those root causes requires more than numbers; it needs qualitative insight and theoretical 

frameworks [104]. 

Continuous Improvement and Feedback Effects: When predictive systems are deployed, they can change the very 

behavior they measure (students might engage more once they know they are being monitored or after receiving 

an intervention). This feedback loop means models may need continuous recalibration. Also, measuring the 

impact of these systems requires careful experimental or quasi-experimental studies. Some early studies reported 

improvements in course grades and retention when using predictive alerts, but others found no effect or even 

negative effects if not implemented well. It’s an ongoing research direction to determine the best practices for 

using predictions to actually drive positive behavior change. For instance, how to word alert messages to be 

motivating rather than discouraging? What is the optimal timing for interventions (immediately after a dip in 

engagement vs periodic summaries) [105]? 

The future directions point toward more human-centric and theory-driven approaches: explainable and fair 

models, integrated with pedagogical interventions, continually refined through feedback, and evaluated for actual 

impact on learning and retention. If these challenges are met, predicting and improving student motivation and 

engagement through machine learning could become a standard, valuable component of higher education, 

especially in large or online classes where traditional personal monitoring by instructors is difficult. As Pooja et. 

al [6] notes in an analysis of AI in education, we are at the cusp of an era where intelligent systems can transform 

learning by making it more personalized and responsive. The research work surveyed here provides a solid 

foundation, and the coming years will likely see these methods mature and integrate seamlessly into educational 

practice. Table 2 highlights a few representative studies, their context, methods, and key findings. 

Table 2: Selected Recent Research Works on Predicting Student Engagement and Motivation 

Study 

(Year) 
Focus & Context Data & Features ML Methods Key Results 

 

 

 

 

Apampa 

et al. [3] 

Predicted   academic 

motivation (intrinsic, 

extrinsic, amotivation) 

among  university 

students (UK/Nigeria). 

Focus on   higher 

education   computer 

science/business 

students. 

 

 

Personality traits 

(Big Five survey), 

demographic  info; 

Motivation 

questionnaire  as 

labels (AMS). 

 

 

Compared 

regression models, 

decision trees, and 

neural networks to 

map personality → 

motivation. 

Models accurately predicted 

motivation levels (high R²). 

Found Conscientiousness & 

Openness positively predicted 

intrinsic/extrinsic motivation, 

while Neuroticism correlated with 

amotivation. Demonstrated ML 

can identify students who may 

need support to improve 

motivation. 

 

 

 

 

Benabbes 

et al. [4] 

 

Predicted engagement 

level of e-learning 

students in online 

courses (Morocco). 

Aimed to detect and 

track disengaged 

learners in real time. 

LMS interaction 

data (e.g. number of 

forum posts, time 

spent online). 

Extracted text 

sentiment from 

forum posts 

(emotion via 

BiLSTM). Clustered 

students into 

Multi-step: 

unsupervised 

clustering to define 

engagement levels; 

then supervised 

classification. 

Tested several 

classifiers (DT, 

SVM, etc.). 

Achieved ~98% accuracy with a 

Decision Tree in classifying 

students’ engagement level. 

Noted most learners were 

“observers” and revealed a 

nonlinear correlation between 

engagement and success 

(moderate engagement linked to 

performance up to a point). 

Demonstrated importance of 
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Study 

(Year) 
Focus & Context Data & Features ML Methods Key Results 

  engagement groups 

for labels. 

 combining behavioral and 

emotional features. 

 

 

 

 

 

El- 

Beshbishi 

et al. [2] 

 

 

 

Assessed medical 

student engagement in 

a first-year course and 

predicted its impact on 

performance (Egypt). 

Implemented an early 

warning setup in a 

basic science course. 

 

 

LMS activity data 

(frequency of 

content views, 

activity completion) 

and assessment 

scores. Labeled 

students by 

measured 

engagement level in 

course activities. 

 

 

Trained and 

evaluated 9 

classifiers (Naïve 

Bayes, Logistic 

Regression, 

Decision Tree, 

Random Forest, 

SVM, Gradient 

Boosted Tree, etc.) 

using RapidMiner. 

Logistic Regression performed 

best – 95% accuracy, precision 

~100%, recall ~88% for engaged 

class. Highly engaged students 

scored significantly better on 

exams than low-engagement 

peers. Validated that login 

frequency (“number of logins”) 

strongly correlates with 

engagement. The system 

accurately classified students as 

engaged vs. non-engaged, 

enabling timely instructor 

interventions. 

 

6. CONCLUSION 

Our comprehensive analysis shows that these models are not ends in themselves, but catalysts for action. Early 

warning systems can alert instructors to students who might otherwise “fall through the cracks,” enabling 

proactive mentoring and support. The convergence of machine learning and learning analytics heralds a new era 

of data-informed teaching and learning. By objectively and continually assessing how students engage and what 

drives them, we can move toward more responsive education systems that cater to individual needs without 

sacrificing scalability. Machine learning models, when used as supportive tools, have the potential to amplify 

educators’ ability to foster these qualities in students. The research synthesized in this paper demonstrates 

substantial progress post-2023 in model accuracy and application breadth. With continued refinement and ethical 

vigilance, predicting and enhancing student motivation and engagement through machine learning will become 

an integral component of effective higher education practice, leading to more students not only succeeding in their 

studies but finding genuine fulfillment in the learning process. 
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