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Abstract 

Reliable spectrum sensing is critical for cognitive radio networks to ensure efficient utilization of 

wireless resources and to protect primary users, particularly in dynamic maritime environments 

where channel conditions vary due to mobility, fading, and interference. Existing spectrum sensing 

techniques, including TFCFN, STFT-RADN, CNN-LSTM, and DBN-FOA, often suffer from 

limited adaptability to non-stationary channels, reduced detection accuracy, and suboptimal 

threshold selection, which can result in high false alarms or missed detections. To overcome these 

limitations, this work introduces a dynamic thresholding mechanism for cyclostationary spectrum 

sensing using artificial neural networks under time-variant environmental conditions. The proposed 

framework integrates Temporal Spectrum Variation Modeling (TSVM) via TSVANet, which 

combines ANN-based local spectral feature extraction with a Multi-Head Temporal Self-Attention 

(MHTSA) module to capture both local and long-term temporal dependencies, and Adaptive 

Learning Rate Optimization (ALRO) via Social Spider–Krill Hybrid (SKH), which dynamically 

tunes learning parameters for robust convergence under non-stationary data streams. Experimental 

evaluations demonstrate that the proposed method achieves 99.39% accuracy, 98.32% precision, and 

99.09% sensitivity, outperforming existing approaches. The framework enhances spectrum sensing 

reliability, adaptability, and robustness, enabling efficient cognitive radio operation in complex 

maritime scenarios. 

Keywords: Cyclostationary Spectrum Sensing, Temporal Spectrum Variation Modeling (TSVM), 

TSVANet, ALRO, SKH 

 

1. INTRODUCTION 

 

Spectrum sensing is a fundamental operation in cognitive radio networks, enabling the identification of available 

frequency bands without interfering with licensed or primary users [1][2]. With the rapid growth of wireless 

communication systems and the increasing demand for bandwidth, efficient spectrum utilization has become 

critical [3]. Cognitive radio networks rely on accurate detection of spectral occupancy to dynamically access 

underutilized channels, improving communication efficiency, reducing congestion, and supporting diverse 

societal applications, including maritime, urban, and industrial wireless communications [4][5]. Effective 

spectrum sensing ensures reliable communication, minimizes service disruption, and safeguards critical 

transmissions in dynamic and time-varying environments [6][7]. 

Conventional spectrum sensing techniques, such as energy detection, matched filtering, and cyclostationary 

feature detection, have been widely explored [8][9]. More recent approaches, including TFCFN, STFT-RADN, 

CNN-LSTM, and DBN-FOA, have attempted to enhance detection performance under challenging conditions. 

Despite these advancements, existing methods exhibit significant limitations [10]. Many rely on fixed thresholds 

or single-feature representations, making them highly sensitive to noise, multipath fading, and varying channel 

conditions. Several approaches struggle to capture long-term temporal dependencies or adapt to dynamic 

environments, resulting in reduced detection accuracy, higher false alarm rates, and unreliable primary user 

identification [11][12]. 

These challenges underscore the importance of developing more robust and adaptive spectrum sensing 

mechanisms that can maintain high reliability even under non-stationary channel conditions [13][14]. Addressing 

these issues is essential for efficient spectrum management, enhanced communication quality, and improved 

utilization of scarce wireless resources [15][16][17]. 

The current study focuses on designing and evaluating a framework for cyclostationary spectrum sensing that 

accounts for dynamic environmental conditions and time-varying channels. It emphasizes accurate feature 

extraction, preprocessing, and adaptive processing to ensure reliable detection of spectrum occupancy in practical 

communication scenarios. 

The major contribution of the work includes: 

mailto:d_susan@ece.sastra.edu


TPM Vol. 32, No. S7, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

284 
 

  

• To design a robust dynamic thresholding mechanism for cyclostationary spectrum sensing capable of 

operating under time-variant and non-stationary environmental conditions. 

• To develop a Temporal Spectrum Variation Modeling (TSVM) framework via TSVANet, combining 

ANN-based local spectral feature extraction with Multi-Head Temporal Self-Attention (MHTSA) to capture both 

local and long-term temporal dependencies in spectral data. 

• To implement an Adaptive Learning Rate Optimization (ALRO) strategy using a Social Spider–Krill 

Hybrid (SKH), ensuring stable convergence and robust learning under varying channel conditions. 

The organization of this work: The literature review using the current methodology is found in Section 2. The 

system model, comprising the framework and key elements, is presented in Section 3. The result and comparison 

analysis are shown in Section 4. Finally, the work comes to a close in the section 5 with the conclusion. 

 

2. LITERATURE REVIEW 

 

In 2024, Xi et al. [18]proposed a Time-Frequency Cross Fusion Network (TFCFN) that integrated GRU-based 

temporal modeling, FFT-based frequency extraction, and CNN-based local feature learning with cross-attention 

fusion. Evaluations under Gaussian and non-Gaussian noise using GGD showed improved detection ability, 

robustness, and reduced complexity compared with baseline methods.In 2024, Wang et al. [19]developed a 

spectrum sensing method based on Short-Time Fourier Transform (STFT) and Residual Attention Dense Network 

(RADN). By combining residual and dense connections with attention modules, the model enhanced feature 

extraction and classification of time–frequency spectrograms, achieving superior detection performance under 

low SNR conditions across multiple modulation schemes.In 2025, Wang et al. [20] introduced a hybrid CNN-

LSTM model with multi-head self-attention for cooperative spectrum sensing in multi-user cognitive radio 

systems. CNN extracted spatial features, LSTM captured temporal dependencies, and attention improved 

adaptability. Results demonstrated reduced sensing errors and higher accuracy across different user configurations 

compared with conventional deep learning models.In 2025, Hameed et al. [21] presented a hybrid spectrum 

sensing technique combining Kernel Least Mean Square (KLMS) filtering and PyramidNet, optimized with 

Harmonic Elk Herd Optimization (HEHO). Using cyclic spectrum features and average fusion, the method 

achieved high detection probability, energy efficiency, and throughput, while minimizing false alarms and 

detection time in CR networks.In 2021, Reddyand Siva[22] proposed a Deep Belief Network (DBN) optimized 

by the Fruit Fly Optimization Algorithm (FOA) to overcome ANN limitations in cooperative spectrum sensing. 

FOA tuned DBN parameters such as learning rate, weight decay, penalty factor, and hidden units. The framework 

demonstrated improved accuracy, lower false alarms, and reduced detection loss. 

 

3. SYSTEM MODEL 

 

The proposed system operates within a Maritime Cognitive Radio Network, where spectrum sensing is performed 

under time-variant channel conditions. Initially, signals are captured and processed using cyclostationary feature 

analysis to generate representative datasets. The preprocessing stage extracts relevant features through ACS, 

transforms them into time-frequency maps via STFT, and enhances signal quality using Z-score normalization 

and wavelet denoising. 

Subsequently, Temporal Spectrum Variation Modeling (TSVM) via TSVANet captures both local spectral patterns 

and long-term temporal dependencies using ANN-based feature extraction combined with a Multi-Head Temporal 

Self-Attention (MHTSA) module. Environment-Aware Neural Thresholding (EANT) then refines features 

through CNNs, models temporal dependencies via GRUs, and generates dynamic thresholds for adaptive decision 

making.To ensure robust learning under non-stationary conditions, Adaptive Learning Rate Optimization (ALRO) 

via a Social Spider–Krill Hybrid (SKH) dynamically adjusts network parameters. Finally, the system performs 

spectrum sensing by comparing processed features against adaptive thresholds to determine spectrum occupancy, 

enabling reliable detection of primary user activity in varying maritime environments.The general architecture of 

the system model is represented in Figure 1.  
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Figure 1:Architecture of the System Model 

 

3.1Maritime Cognitive Radio Network 

The marine two-way radio system that can send and receive messages is used in this model to depict a PU. The 

fusion center serves as the network's primary node for signal processing and decision-making, and it might be 

situated on an island or the shore. Unlicensed ships are examples of movable maritime assets that are commonly 

used as cognitive nodes, or SUs. Every vessel is outfitted with cognitive radio operations devices that are designed 

to scan the radio environment on a regular basis and discover spectrum resources that PUs isn’t using. The fusion 

center makes a worldwide judgement on spectrum availability after combining the cognitive node's sensing 

findings. The SUs is then informed of these decision outcomes. Additionally, satellite links offer an alternate route 

for communication to the fusion center in cases where boats are located far from shore and cannot reach it directly. 

3.1.1 Spectrum Sensing 

Cognitive radio nodes with sensing capabilities actively scan the radio frequency spectrum using antennas. 

Through statistical analysis of the signals received, these nodes are able to determine the occupancy status of the 

frequency bands assigned to PUs. The following is how Eq. (1) represents the SS process mathematically as a 

binary detection problem: 

a(t) = {
m(t)H0

S(t) + m(t),   H1
}                           (1) 

In this model, a(t)represents the received signal. Within the signal that has been received, the signal component 

is specified as S(t) = h × x(t), where x(t) is the transmitted signal and h is the channel gain. m(t) represents the 

white Gaussian additive noise (AWGN). The PU is either present or absent, according to the theories H0 and H1, 

respectively. The detection strategy is to compare the detection statistic ξ with a threshold ζ. The probabilities of 

detection (PA) and false alarm (PFB) are defined as follows in Eq. (2) and Eq. (3): 

PA = Pr[ ξ ≥ ξ |H1] = Pr[H1|H2]                (2) 

PFB = Pr[ξ ≥ ξ|GH0] = Pr[H1|H0]               (3) 

3.1.2 Channel Model 

At a distance T from the transmitting antenna, the received signal power Pr in free space equals are shown in Eq. 

(4) 

Pr = (
λ

4πT
)
2

GrPtGt          (4) 
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Where, Pt is the transmitting power. The Gt and Gr are the relative gains of the receiving and transmitting 

antennas. For the wavelength, the 𝜆. 

The multi-path effects brought on by sea surface reflection have an impact on the received signal strength in 

marine contexts. Direct, specular, and diffuse reflections are all included in the reflection. Diffuse reflection 

signals are typically regarded as random signals because of their limited correlation with transmitting signals. 

Consequently, direct and specular reflection signals make up the majority of the received signal, and their power 

written as in Eq. (5) 

Pr = (
λ

4πT
)
2

PtGrGt |1 + ∑ ρτρ
jφiN

t=1 |
2

         (5) 

where the ith reflection path's specular reflection coefficient is denoted by ρi. The phase difference between the 

direct and reflected paths is represented by the symbol φi. The number of reflection spots that are effective is 

denoted by N. The multi-path channel gain h (dB) of any path from transmitter to receiver, ignoring the 

transmitting and receiving antenna strengths, can be written as in Eq. (6) 

h = 10log10
Pt

Pr
= 101g(

4πRf

3×108

2

|1+∑ ρ
1e|φi|

N
t=1

)     (6) 

Here, f stands for radio frequency. 

3.1.3 Cyclostationary Feature Analysis and Dataset Generation 

The PU of a maritime cognitive wireless communication system is usually a marine voice intercom system that 

uses frequency modulation (FM) as its primary method. Because of this, the signals show second-order 

cyclostationarity, which makes cyclostationary analysis a useful detection method. With second-order 

cyclostationarity, the transmitting signal 𝑠(𝑡) is the following Fourier series expansion of its periodic 

Autocorrelation Function (ACF) as Eq. (7): 

Rs(t, τ) = ∑ Rs
α(τ)e2πjαt∞

α=−∞                 (7) 

in which the autocorrelation interval Rs
α (τ) is defined as Eq. (8): 

Rs
α(τ) = limT→∞

1

T
s (t +

τ

2
) s∗ (t −

τ

2
) e−2πjαtdt     (8) 

where τ is the time delay related to ACF. The T and α denotes period and cycle frequency, respectively. Using the 

Wiener relation, the CPS can be defined as Eq. (9): 

Ss
α(f) = ∫ Rs

α(τ)e−j2πfτ
∞

−∞
dτ              (9) 

According to the formula given in Eq. (1), the received signal CPS is represented by Eq. (10): 

Sr
α(f) = {

Sn
α(f)         H0

Ss
α(f) + Sn

α(f)H1
                                       (10) 

Where, Sr
α(f) and Sn

α(f) represent the CPS of the received signal and AWGN, respectively. The Ss
α(f) indicates the 

CPS of the PU signal component. As n(t) is not a cyclisation process, its CPS equals zero at α = 0. For the 

received signal 𝑟(𝑡), its periodic ACF is computed by Eq. (11) 

Rr
α(τ) = limT→∞

1

T
∫ u (t +

τ

2
) μ∗ (t −

τ

2
) dt                              (11) 

Where, u(t) = r(t)e−jπαt.  The results of cross-spectral analysis are defined as Eq. (12) 

Sr
α(f) = lim

∆t→∞
lim
  T→∞

1

T

1

∆t
∫ RT (t, f +

α

2
) RT

∗ (t, f −
α

2
)

∆t

2

−
∆t

2

dt                  (12) 

Where, RT(t, f) = ∫ r(u)e−j2πfudu
t+
T0
2

t−
T0
2

. However, Sr
α(f) cannot be used directly as an estimate of the cyclic 

spectral density due to its large variance. A smoothing approach is required to provide a more precise 

approximation. The FFT Accumulation Method (FAM) is employed in this work to smooth the CPS, so attaining 

a satisfactory balance between cycle leakage, computational efficiency, and cycle aliasing. The FAM algorithm 

performs better than other methods (including the periodogram technique, the indirect method, and the SSCA 

algorithm) in terms of computing efficiency, real-time capabilities, and resilience when the signal-to-noise ratio 

is low. Derive the CPS estimate by discretizing the incoming signal r(t) to be r(n) as Eq. (13). 

Sr
α0+q∆α(nL, f) =

1

P
∑

1

Np
RT (rL, f −

α

2
) e−j2πr

q

PP−1
r=0           (13) 

where the P signifies the number of blocks that r(n) is divided into, and 𝑁𝑃 denotes the total number of points in 

each block. The value of L is 
Np

4
, and 𝑞=−

P

2
, −

P

2
+ 1,… ,

P

2
− 1, and RT(n, f) = ∑ w(k)r(n −

Np

2
−1

n=−
Np

2

k) e−j2πf(n−k)Ts . Where, Ts denotes the sampling period, and ω(k) is a kaiser window with a width of Tω = NpTs. 

The Np and p are calculated by Eq. (14) and (15). 

Np = 2 |log2 (
fs

dv
− 1) + 1|              (14) 

P = 2 |log2 (
fs

Ldα
− 1) + 1|                 (15) 

Where,fs is the sampling frequency, and dv is the desired frequency resolution, and dα =
1

dt
 is the desired cycle 

frequency resolution. 

3.2 Preprocessing Stage 
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The preprocessing stage plays a crucial role in preparing the raw received signal for reliable spectrum sensing 

under time-varying environmental conditions. Wireless signals are often corrupted by noise, multipath fading, and 

mobility-induced distortions, which can severely degrade detection accuracy if left unaddressed. To mitigate these 

challenges, preprocessing transforms the raw RF input into a more structured and noise-resilient representation. 

This is achieved by extracting cyclostationary features, converting the signal into a time–frequency domain, and 

applying normalization and denoising techniques. The resulting feature set provides a stable and discriminative 

input representation for subsequent analysis. 

3.2.1 Cyclostationary Feature Extraction (ACS) 

Cyclostationary analysis exploits the periodic statistical properties inherent in modulated communication signals, 

which remain distinct even in the presence of additive white Gaussian noise (AWGN). Unlike noise, which 

exhibits stationary characteristics, communication signals often demonstrate periodicity in their autocorrelation 

function due to carrier frequency, symbol rate, or cyclic prefixes in modulation schemes. This property allows 

cyclostationary feature extraction to serve as a robust preprocessing step for spectrum sensing. 

Let r(t) denote the received signal in the time domain. The autocorrelation function of r(t)is expressed as Eq. 

(16): 

Rr(t, τ) = 𝔼[r(t)r
∗(t + τ)]                                             (16) 

Where,τ represents the time lag and (⋅)∗ denotes the complex conjugate. For a cyclostationary process, Rr(t, τ) is 

periodic in t with period T0. This periodicity enables the representation of Rr(t, τ) in terms of Fourier series 

coefficients, known as cyclic autocorrelation functions (CAF). The CAF at a cyclic frequency α is given by Eq. 

(17). 

Rr
α(τ) = lim

T→∞

1

T
∫ Rr(t, τ)e

−j2παt
T

2

−
T

2

dt                                       (17) 

The CAF highlights spectral correlation at cyclic frequencies α, which are absent in stationary noise, thereby 

enabling discrimination between noise and legitimate communication signals. The spectral correlation function 

(SCF), obtained as the Fourier transform of the CAF with respect to the lag variable τ, is expressed as Eq. (18). 

Sr
α(f) = lim

T→∞

1

T
∫ Rr

α(τ)e−j2πfτ
∞

−∞
dτ                                          (18) 

Where,f denotes the spectral frequency. Peaks in Sr
α(f) correspond to cyclic features induced by modulation, 

providing a robust set of discriminative features for subsequent processing stages. The output is denoted as Eq. 

(19): 

ℱACS = {Sr
α(f)|α ∈ A, f ∈ ℝ}                                             (19) 

Where,Adenotes the set of considered cyclic frequencies. The feature set ℱACS serves as the input to the time–

frequency transformation stage. 

3.2.2 Short-Time Fourier Transform (STFT) 

The cyclostationary feature set ℱACS provides a frequency-dependent representation of the signal’s periodic 

statistical properties. However, under time-varying channel conditions, such as those caused by user mobility or 

multipath fading, the statistical structure of the received signal evolve over time. To capture this temporal 

variability, a joint time–frequency analysis is required. The Short-Time Fourier Transform (STFT) is employed to 

obtain a localized spectral representation, thereby extending the cyclostationary analysis into the time–frequency 

domain. 

Let x(t) denote the input signal to this stage, where x(t) ∈ ℱACS. The STFT of x(t) with respect to a window 

function w(t) is defined as Eq. (20): 

X(t, f) = ∫ x(τ)w(τ − t)e−j2πfτ
∞

−∞
dτ                                      (20) 

Where,w(τ − t) is a sliding analysis window centered at time t, and f denotes the frequency variable. The choice 

of w(t) governs the trade-off between temporal and spectral resolution, with narrower windows providing finer 

time resolution and wider windows enhancing frequency resolution.The squared magnitude of the STFT yields 

the spectrogram, expressed as Eq. (21). 

𝒫(t, f) = |X(t, f)|2                                                     (21) 

Which provides a two-dimensional energy distribution over the joint time–frequency plane. This spectrogram 

captures the evolution of the signal’s cyclostationary characteristics across time, thereby enabling resilience to 

dynamic environmental variations. 

For subsequent processing, the time–frequency representation obtained from the STFT is denoted as Eq. (22): 

ℱSTFT = {𝒫(t, f)|t ∈ ℝ, f ∈ ℝ}                                       (22) 

This representation not only preserves the cyclic features extracted in the previous stage but also enriches them 

with temporal dynamics, ensuring robustness against mobility-induced spectral fluctuations. The feature set ℱSTFT 

is next subjected to normalization and denoising to further enhance its reliability. 

3.2.3 Normalization (Z-score Normalization) 

The time–frequency representation ℱSTFT obtained from the previous stage encapsulates both the spectral and 

temporal dynamics of the received signal. However, the raw spectrogram values often span a wide range due to 

variations in signal power, environmental interference, and channel fluctuations. Such variability introduce bias 

during subsequent learning and decision-making, where higher-energy components could dominate feature 

representation. To mitigate this issue, Z-score normalization is applied to scale the features into a standardized 

range with zero mean and unit variance. 
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Let 𝒫(t, f) denote the energy at time t and frequency f. The Z-score normalized feature value is expressed as Eq. 

(23): 

𝒫̂(t, f) =
𝒫(t,f)−μ𝒫

σ𝒫
                                                     (23) 

Where,μ𝒫 represents the mean of all spectrogram values and σ𝒫 represents the standard deviation. This 

transformation ensures that each feature contributes equally to subsequent processing by eliminating scale 

disparities. 

The normalization process is particularly crucial under time-variant environmental conditions, where received 

signal strengths fluctuate due to fading and mobility. By centering the features around zero and rescaling according 

to the distribution spread, Z-score normalization enhances numerical stability and prevents skewed learning 

dynamics in downstream models.The output is denoted as Eq. (24): 

ℱNorm = {𝒫̂(t, f)|(t, f) ∈ ℱSTFT}                                          (24) 

which represents the standardized time–frequency feature set. This normalized representation serves as the input 

to the denoising stage, where residual channel-induced distortions are further suppressed. 

3.2.4 Denoising (Wavelet Denoising) 

Although normalization alleviates variations in feature magnitudes, the time–frequency representation ℱNorm 

remains susceptible to distortions introduced by multipath fading, Doppler shifts, and background interference. 

These artifacts manifest as irregular fluctuations or spurious energy concentrations in the spectrogram, potentially 

masking the true cyclostationary patterns of the underlying signal. To address this issue, wavelet-based denoising 

is employed as the final stage of preprocessing. 

Wavelet denoising exploits the ability of wavelet transforms to provide localized time–frequency analysis with 

adaptive resolution. The normalized spectrogram 𝒫̂(t, f) is first decomposed into approximation and detail 

coefficients through a discrete wavelet transform (DWT). Let𝒫̂(t, f)
DWT
→  {Aj, Dj}j=1

J
, where Aj and Dj denote the 

approximation and detail coefficients at decomposition level j, and Jsignifies the maximum number of levels. 

Noise components typically dominate the high-frequency detail coefficients, whereas the essential spectral 

features of the signal are concentrated within the approximation coefficients. 

A thresholding operation is then applied to the detail coefficients to suppress noise. This process can be expressed 

as Eq. (25): 

D̃j(k) = {
0, |Dj(k)| < λj,

Dj(k), |Dj(k)| ≥ λj.
                                           (25) 

Where,λj denotes the threshold at level j, and k indexes the coefficients. After thresholding, the denoised 

spectrogram is reconstructed by performing the inverse discrete wavelet transform (IDWT), which is defined as 

Eq. (26): 

𝒫̃(t, f) = IDWT ({Aj, D̃j}j=1
J
)                                            (26) 

The reconstructed spectrogram 𝒫̃(t, f) retains the essential cyclostationary and temporal-spectral features while 

significantly reducing interference and fading artifacts. The final denoised output of the preprocessing stage is 

denoted as Eq. (27): 

ℱDenoised = {𝒫̃(t, f)|(t, f) ∈ ℱNorm}                                      (27) 

This refined feature set provides a robust, noise-suppressed, and well-structured representation of the received 

signal, serving as the foundation for subsequent learning and dynamic thresholding mechanisms. 

3.3. Temporal Spectrum Variation Modeling (TSVM) via TSVANet (Temporal Spectrum Variation 

Attention Network) 

While the preprocessing stage refines the received signal into a noise-suppressed and normalized time–frequency 

representation, effective spectrum sensing under time-varying environments further requires modeling the 

temporal dynamics introduced by Doppler shifts, user mobility, and channel fluctuations. Static spectral analysis 

alone is insufficient, as the spectrum occupancy patterns evolve over time and demand a framework capable of 

capturing both local spectral dependencies and long-term temporal variations. 

To address this challenge, a novel architecture termed Temporal Spectrum Variation Attention Network 

(TSVANet) is introduced. TSVANet integrates a feedforward artificial neural network (ANN) with a temporal 

attention mechanism, thereby combining the strengths of local feature extraction and global dependency 

modeling. The ANN component captures fine-grained spectral correlations in the preprocessed features, while the 

attention layer selectively emphasizes relevant temporal contexts, enabling the system to remain robust under 

mobility-induced spectrum variability. The joint representation produced by TSVANet forms the basis for dynamic 

threshold adaptation in subsequent decision-making. Figure 2 depicts the architecture of the proposed TSVANet. 
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Figure 2: Architecture of the Proposed TSVANet 

3.3.1 ANN-based Local Spectral Feature Extraction 

The input to the modeling stage is the denoised and normalized time–frequency feature set, denoted as ℱDenoised
. Although this representation is well-structured and noise-suppressed, it remains high-dimensional and exhibits 

complex local correlations across frequency bins. To reduce dimensionality and extract discriminative local 

spectral patterns, a feedforward artificial neural network (ANN) is employed as the first component of TSVANet. 

Let X ∈ ℝTF×FB represent the preprocessed time–frequency matrix, where TF denotes the number of time frames 

and FB denotes the number of frequency bins. Each row vector xt ∈ ℝ
FBcorresponds to the spectral distribution 

at time index t. The ANN projects these spectral vectors into a lower-dimensional embedding space through a 

sequence of fully connected transformations followed by nonlinear activations. Formally, the hidden 

representation at layer l is expressed as Eq. (28). 

ht
(l) = σna(W(l)ht

(l−1) + b(l)),   l = 1,2, … , L   (28) 

Where,W(l)and b(l) denote the weight matrix and bias vector at layer l, σna(∙) represents a nonlinear activation 

function such as ReLU, and ht
(0) = xt. The final output embedding at time index t after L layers is given byzt =

ht
(L)

. 

This transformation produces a compact feature vector zt ∈ ℝ
d, where d ≪ FB, encapsulating the most 

informative local spectral dependencies present at time t. The set of embeddings over all time frames forms the 

local spectral representation, which is defined as Eq. (29): 

ℋANN = {zt|t = 1,2, … , TL}                                               (29) 

The representation ℋANN serves as the intermediate feature space in TSVANet, preserving local spectral structures 

while significantly reducing redundancy. This output forms the input to the subsequent attention mechanism, 

which models long-term temporal dependencies across the sequence of embeddings. 
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3.3.2 Attention Module: Multi-Head Temporal Self-Attention (MHTSA) 

The input to the attention module is the sequence of local spectral embeddings produced by the ANN, denoted by 

ℋANN = {zt|t = 1,2, … , TL} with zt ∈ ℝ
d. For compactness, stack these embeddings into a matrix Z ∈ ℝTL×d, 

where each row corresponds to a time-indexed embedding. To enable the attention mechanism to exploit temporal 

ordering, a positional encoding𝕡t ∈ ℝ
d is added to each embedding. Using a sinusoidal scheme, the positional 

encoding is defined component-wise as Eq. (30). 

𝕡t,2i = sin (t/10000
2i

d),   𝕡t,2i+1 = cos (t/10000
2i

d)   (30) 

Here, i = 0, … . ,
d

2
− 1, and the position-augmented input becomesZ̃ = Z + ℙ, where ℙ collects {𝕡t}.  

Multi-Head Temporal Self-Attention (MHTSA) projects Z̃ into query, key and value space and computes multiple 

parallel attention heads to model diverse temporal relationships. Let ahdenote the number of attention heads and 

dk the dimensionality of each head such thatd = ah ∙ dk. The per-head linear projections are written as Eq. (31). 

Qi = Z̃WQ
(i)

,   Ki = Z̃WK
(i)

,     Vi = Z̃WV
(i)

,    i = 1, … . , ah   (31) 

Where, WQ
(i),WK

(i),WV
(i) ∈ ℝd×dk . Each head computes scaled dot-product attention across all time frames as Eq. 

(32): 

headi = softmax (
QiKi

⊺

√dk
) Vi                                             (32) 

Yielding headi ∈ ℝ
TL×dk . The outputs of the ah heads are concatenated and linearly projected to produce the 

multi-head output as ℍMH = Concat(head1, … , headah)WO, with WO ∈ ℝ
(ahdk)×d. To promote stable 

optimization and preserve the original local embeddings, a residual connection and layer normalization are applied 

as ℍ̃ = LayerNorm(Z + ℍMH). 
To further refine temporal representations and introduce position-wise nonlinearity, a position-wise feed-forward 

network (FFN) is applied to each time row of ℍ̃, which is defined as Eq. (33): 

FFN(x) = ReLU(xW1 + b1)W2 + b2                                     (33) 

The FFN output is combined with a second residual connection and layer normalization to produce the final 

temporally refined matrix, which is mathematically represented as Eq. (34): 

ℍattn = LayerNorm (ℍ̃ + FFN(ℍ̃))                                    (34) 

Each rowaht
Attn of ℍattn represents the embedding at time t that has been adaptively informed by the entire 

temporal context. In set notation, the attention-refined representation is denoted as Eq. (35). 

ℋAttn = {aht
Attn|t = 1,… . , TL},   ℍattn ∈ ℝ

TL×d   (35) 

The MHTSA formulation allows each time-indexed embedding to attend selectively to all other time frames, 

thereby capturing long-term dependencies induced by Doppler shifts and user mobility. Multiple heads enable the 

module to specialize across different temporal scales (for example, slowly varying frequency drift and rapid fading 

events). Dropout on attention weights, weight decay and layer normalization mitigate overfitting and promote 

numerical stability during training. Optionally, relative positional encodings replace absolute encodings when 

shift-invariant temporal relations (time-lag patterns caused by motion) are to be emphasized. The output ℋAttn 

therefore provides a temporally refined spectro-temporal representation suitable for downstream dynamic-

thresholding and decision layers. 

The integration of local spectral embeddings from the ANN and long-range temporal dependencies captured 

through Multi-Head Temporal Self-Attention results in a unified high-level spectro-temporal representation. The 

refined embedding sequence ℋAttn = {aht
Attn}t=1

TL  encapsulates both short-term spectral characteristics and 

mobility-induced temporal variations. To obtain a compact and discriminative representation, temporal pooling is 

applied across the sequence dimension. Specifically, global average pooling aggregates information over time as 

Eq. (36). 

ℱTSVM =
1

TF
∑ ℋAttn
TL
t=1                                                  (36) 

Where,ℱTSVM ∈ ℝ
d denotes the final feature vector summarizing the temporal spectrum variation. For improved 

robustness, alternative pooling operators such as max-pooling or attention-weighted pooling can be employed, 

but average pooling is adopted for its balance between stability and representational compactness. 

The resulting vector ℱTSVM is denoted as the Temporal Spectrum Variation Modeling representation (TSVM 

representation), which serves as the high-level spectro-temporal descriptor of the received signal under time-

varying environments. This representation forms the input to the subsequent dynamic thresholding mechanism, 

ensuring that the detection process is guided not only by instantaneous spectral signatures but also by temporally 

informed contextual dependencies. 

3.4 Environment-Aware Neural Thresholding (EANT) 

Accurate spectrum sensing under time-varying wireless environments requires thresholds that adapt dynamically 

to changing propagation conditions such as mobility-induced Doppler shifts, multipath fading, and unpredictable 

interference. Traditional fixed-threshold approaches fail to maintain reliable detection performance under such 

variability, leading to increased false alarms or missed detections. To overcome this limitation, the Environment-

Aware Neural Thresholding (EANT) module is introduced. In this stage, the high-level spectro-temporal features 

ℱTSVM, obtained from TSVANet, are mapped into adaptive detection thresholds through a hybrid CNN–GRU 
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framework. The CNN component captures localized feature variations associated with frequency-selective fading 

and bursty interference, while the GRU models temporal dependencies, ensuring that thresholding decisions 

remain consistent across sequential time instants. The output of this stage is a set of dynamic thresholds {θt}t=1
TL , 

which serve as environment-aware decision boundaries for reliable primary user detection in non-stationary 

spectrum conditions. 

3.4.1 CNN-based Local Feature Refinement 

The spectro-temporal representation ℱTSVM obtained from TSVANet is first passed through a convolutional neural 

network (CNN) to refine localized structural features. While ℱTSVM encodes both spectral and temporal dynamics, 

it remains sensitive to short-term distortions introduced by fading, interference spikes, and frequency-selective 

effects. CNNs are particularly effective in capturing such localized variations due to their ability to apply shared 

convolutional kernels across the input representation, thereby enhancing robustness to small-scale spectral 

distortions. 

Formally, given the input ℱTSVM ∈ ℝ
TL×d, where TL denotes the temporal length and dsignifies the spectral 

feature dimension, the CNN applies a set of convolutional filtersW(c) ∈ ℝ𝓀×d, with kernel size 𝓀, to extract 

localized patterns. The convolutional operation is expressed as Eq. (37). 

zt
(c) = σna(∑ W(c) ∙𝓀−1

i=0 ℱTSVM[t + i] + b
(c))                              (37) 

Where,zt
(c)

 denotes the convolutional feature at time t, b(c)represents the bias term, and σna(∙) represents a 

nonlinear activation function such as ReLU. The convolutional responses across all filters are aggregated into a 

feature map as ZCNN = fCNN(ℱTSVM), where ZCNN ∈ ℝ
TL×d′encodes enhanced local representations with d′being 

the new feature dimension determined by the number of filters. 

Through this process, the CNN acts as a localized feature extractor that emphasizes short-term frequency-

dependent characteristics while suppressing irrelevant noise artifacts. The refined representation ZCNN forms the 

input to the subsequent recurrent modeling stage, where long-term temporal dependencies are addressed. 

3.4.2 GRU-based Temporal Dependency Modeling 

While the CNN module enhances local spectral patterns, reliable spectrum sensing in dynamic wireless 

environments requires capturing long-term dependencies across sequential time instants. Multipath fading, 

Doppler shifts, and intermittent interference often introduce temporal correlations that cannot be adequately 

modeled using convolutional operations alone. To address this challenge, the refined features ZCNN are passed into 

a Gated Recurrent Unit (GRU) network, which is specifically designed to model sequential dependencies while 

mitigating the vanishing gradient problem associated with traditional recurrent architectures. 

Formally, letZCNN = {z1, z2, … . , zTL}, where zts ∈ d
′ denotes the CNN-enhanced feature at time step ts. The GRU 

computes a hidden state sequence {h1, h2, … . , hTL} by iteratively updating its memory as Eq. (38): 

hts = (1 − upts)⨀hts−1 + upts⨀hts̃                                     (38) 

Where,  

rets = σ(Wrezts + Urehts−1 + bre), 

upts = σ(Wupzts + Urehts−1 + bup), 

hts̃ = tan h(Whzts + Uh(rets⨀hts−1) + bh) 
Where, rets and upts represent the reset and update gates respectively, ⊙ denotes element-wise multiplication, 

and htssignifies the hidden state capturing the temporal context at step ts.The GRU output is then represented as 

Eq. (39). 

ℍGRU = fGRU(ZCNN)                                                   (39) 

Where, ℍGRU ∈ ℝ
TL×d′′  captures temporally-aware spectral representations with dimension d′′. 

By integrating memory dynamics through gated updates, the GRU ensures that spectrum sensing thresholds adapt 

smoothly to gradual variations in wireless conditions while remaining responsive to sudden temporal changes. 

This temporally contextualized representation serves as the basis for learning dynamic thresholds in the 

subsequent environment-aware mapping stage. 

3.4.3 Dynamic Threshold Generation 

The temporally contextualized representation ℍGRU serves as the input for dynamic threshold generation, enabling 

environment-aware spectrum sensing decisions. Unlike static thresholding approaches that apply a fixed decision 

boundary regardless of propagation variations, the proposed mechanism learns adaptive thresholds that 

continuously evolve with the underlying wireless conditions. This ensures robustness against fading, Doppler-

induced spectral shifts, and interference fluctuations.To map ℍGRU into dynamic decision thresholds, a fully 

connected projection layer is applied as Eq. (40): 

θt = fFC(hts) = Wθhts + bθ                                            (40) 

Where,θt ∈ ℝ denotes the adaptive threshold at time step ts, Wθ and bθ signifies trainable parameters, and hts is 

the GRU hidden state at that time step. The complete set of thresholds over a time horizon Th is expressed asΘ =

{θ1, θ2, … , θTh}. 

The generated thresholds Θ dynamically adjust to both slow and fast temporal variations, thereby improving the 

reliability of primary user (PU) detection under non-stationary conditions. The CNN-GRU synergy ensures that 

localized spectral distortions and long-term temporal dependencies are jointly captured before thresholding, 



TPM Vol. 32, No. S7, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

292 
 

  

resulting in thresholds that are sensitive to environmental dynamics while maintaining stability across fluctuating 

spectrum states. 

The final output of this stage, denoted as ΘEANT, represents the environment-aware adaptive threshold sequence 

that forms the decision boundary for subsequent spectrum sensing as ΘEANT = gEANT(ℱTSVM). 
Here, gEANT(∙) denotes the mapping function implemented by the CNN–GRU hybrid network, translating spectro-

temporal features into dynamic thresholds. These thresholds directly feed into the decision-making stage, where 

they determine spectrum occupancy based on the presence or absence of primary user signals. 

3.5 Adaptive Learning Rate Optimization (ALRO) via Social Spider–Krill Hybrid (SKH) 

Neural network training for spectrum sensing is challenged by non-stationary wireless conditions, where fading, 

Doppler shifts, and interference continuously alter input distributions. Fixed learning rate schedules used in 

standard optimizers (Adam, RMSprop) often result in instability or premature convergence. To overcome this, an 

adaptive scheme termed Adaptive Learning Rate Optimization using Social Spider–Krill Hybrid (ALRO-SKH) is 

introduced. 

ALRO-SKH integrates Social Spider Optimization (SSO) for global exploration with the Krill Herd Algorithm 

(KHA) for local exploitation, enabling dynamic adjustment of learning rates and hyperparameters. This hybrid 

outer-loop guides gradient-based inner-loop updates, ensuring both adaptability and stability under time-varying 

environments. By incorporating synthetic and real-world signals during training, ALRO-SKH maintains robust 

convergence and enhances generalization across diverse channel conditions. 

The resulting optimization mechanism ensures reliable learning dynamics and prepares the framework for final 

decision-making based on adaptive thresholds. 

Dynamics of ALRO-SKH 

The input to the adaptive optimization stage is denoted as ΘEANT, representing the parameter set generated from 

the Environment-Aware Neural Thresholding module. The objective of ALRO-SKH is to iteratively refine these 

parameters through a hybrid optimization strategy that balances global exploration with local exploitation while 

adapting the learning rate to the dynamic spectrum environment. 

In the first stage, Social Spider Optimization (SSO) models the cooperative behavior of spiders in a communal 

web, where individuals share vibrations to update their positions in the solution space. Each candidate solution θ𝒾
𝓉 

at iteration 𝓉 is updated according to Eq. (41): 

θ𝒾
𝓉+1 = θ𝒾

𝓉 + Ε ∙ 𝒱𝒾
𝓉 + Α ∙ (θbest

𝓉 − θ𝒾
𝓉)                                   (41) 

Where,𝒱𝒾
𝓉 represents the vibration-induced movement influenced by neighboring solutions, θbest

𝓉  denotes the 

best-performing parameter set at iteration 𝓉, andΕ, Α are weighting coefficients controlling exploration and 

attraction. This process enhances global search capability, preventing premature convergence to suboptimal 

solutions. 

In the second stage, Krill Herd Algorithm (KHA) refines the exploration by modeling the herding dynamics of 

krill. Each solution is updated based on induced motion, foraging activity, and random diffusion as Eq. (42): 

θ𝒾
𝓉+1 = θ𝒾

𝓉 +ℳ𝒾
𝓉 + ℱ𝒾

𝓉 + 𝒟𝒾
𝓉                                             (42) 

Where,ℳ𝒾
𝓉  corresponds to the motion induced by the local density of solutions, ℱ𝒾

𝓉  represents foraging 

adjustments guided by the global best position, and 𝒟𝒾
𝓉 captures stochastic perturbations that prevent stagnation. 

KHA thus enhances exploitation by locally optimizing around promising regions discovered by SSO. 

The hybridization in ALRO-SKH is achieved by adaptively weighting both strategies during each iteration, which 

is defined as Eq. (43): 

ΘALRO
𝓉+1 =⋋∙ θSSO

𝓉+1 + (1 −⋋) ∙ θKHA
𝓉+1                                        (43) 

Where,⋋∈ [0,1] dynamically balances exploration and exploitation according to the stability of the training 

process. When high variability is detected in the spectral environment, ⋋ is increased to emphasize global search, 

whereas in stable conditions, it decreases to promote local refinement. 

The updated parameters ΘALRO
𝓉+1  are used to adapt the learning rate η𝓉 within the gradient-based update rule as Eq. 

(44): 

Θ𝓉+1 = Θ𝓉 − η𝓉∇𝔏(Θ𝓉), η𝓉 = 𝒻𝓂(ΘALRO
𝓉 )                                (44) 

Where, 𝔏(Θ𝓉)denotes the loss function associated with spectrum sensing accuracy, and 𝒻𝓂(⋅) represents the 

adaptive mapping from the hybrid optimizer to the learning rate. 

Through this two-level optimization scheme, the network achieves stable convergence under non-stationary data 

streams while preserving adaptability to unseen channel conditions. The final output of this stage, denoted as 

ΘALRO, represents the adaptively optimized parameter set that feeds into the final decision-making stage. 

3.6 Decision and Spectrum Sensing 

The final stage of the proposed framework translates the adaptively optimized parameters ΘALRO into actionable 

spectrum availability decisions. At this stage, the artificial neural network, trained and optimized through the 

preceding modules, produces dynamic thresholds that are sensitive to time-varying propagation conditions such 

as mobility, fading, and interference. These thresholds, denoted as τdyn, evolve adaptively according to the 

spectral and temporal context provided by the processed feature set. 

The decision mechanism operates by comparing the incoming feature representation ℱTSVM, which encodes high-

level spectro-temporal dynamics, against the learned adaptive threshold τdyn. The decision rule is expressed as 

Eq. (45): 
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𝔇 = {
1, if ∥ ℱTSVM ∥≥ τdyn   (Signal Present, Occupied)

0, if ∥ ℱTSVM ∥< τdyn     (Signal Absent, Free)
                 (45) 

Where,𝔇 ∈ {0,1} denotes the final binary outcome of the spectrum sensing process. By leveraging adaptive 

thresholds instead of fixed ones, the system avoids the common pitfalls of conventional energy detection, where 

noise uncertainty or channel variability often leads to false alarms or missed detections. 

This decision-making mechanism ensures that primary user activity is detected with high reliability, even under 

hostile and non-stationary channel conditions. The adaptive nature of the framework allows it to balance detection 

probability and false-alarm rate dynamically, thereby supporting efficient spectrum utilization while safeguarding 

primary user transmissions. 

With this final stage, the proposed architecture completes its pipeline, offering a robust and intelligent spectrum 

sensing paradigm capable of sustained operation in real-world cognitive radio environments. 

 

7. RESULT AND DISCUSSION 

 

This section presents the experimental validation of the proposed framework, highlighting its effectiveness under 

dynamic spectrum environments. The evaluation includes implementation details and parameter settings, followed 

by a comparative performance analysis with existing spectrum sensing techniques. Results demonstrate 

improvements in adaptability, detection accuracy, and robustness against non-stationary channel conditions. 

7.1 Experimental Setup 

The proposed framework has been implemented in Python, using standard deep learning and signal processing 

libraries. For comparison, several existing techniques have been considered, including TFCFN [18], STFT-RADN 

[19], CNN-LSTM [20], and DBN-FOA [22]. Both synthetic datasets and real-world spectrum traces have been 

employed to evaluate performance under varying conditions. 

The assessment has been conducted using key metrics such as Accuracy, Precision, Sensitivity, Specificity, F1 

Score, Negative Predictive Value (NPV), Matthews Correlation Coefficient (MCC), False Positive Rate (FPR), 

and False Negative Rate (FNR), ensuring a comprehensive evaluation of detection effectiveness and robustness. 

7.2 Performance Analysis Between the Proposed and Existing Techniques 

The proposed approach has demonstrated superior performance across all evaluation metrics when compared with 

state-of-the-art methods, as presented in Table 1 and graphically shown in Figure 3. In terms of Accuracy, the 

proposed framework has achieved 99.39%, outperforming TFCFN [18] (97.64%), STFT-RADN [19] (95.34%), 

CNN-LSTM [20] (94.94%), and DBN-FOA [22] (96.24%). This notable improvement in accuracy can be 

attributed to the incorporation of the Temporal Spectrum Variation Modeling (TSVM) via TSVANet, which 

effectively captures both local spectral patterns and long-term dependencies through the combination of ANN-

based feature extraction and the Multi-Head Temporal Self-Attention (MHTSA) mechanism. By modeling 

Doppler-induced variations more comprehensively, the system has maintained stability even under dynamic 

channel conditions, thus reducing misclassification errors. 

When evaluated on F1 Score, the proposed model has reached 98.32%, surpassing TFCFN [18] (97.24%), STFT-

RADN [19] (94.94%), CNN-LSTM [20] (94.64%), and DBN-FOA [22] (96.04%). The higher F1 Score reflects 

the balance achieved between precision and sensitivity, which is further strengthened by the Adaptive Learning 

Rate Optimization (ALRO-SKH) mechanism. The hybrid integration of Social Spider Optimization and Krill Herd 

Algorithm dynamically adjusts the learning process, ensuring stable convergence under non-stationary data 

streams and enhancing the generalization ability of the network. 

 

Table 1: Performance comparison of the proposed method with existing spectrum sensing techniques 

Method 
Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1 Score 

(%) 
NPV (%) 

MCC 

(%) 
FPR (%) FNR (%) 

Proposed 99.39 98.32 99.09 99.3 98.32 98.39 99.26 1.84 1.75 

 

TFCFN 

[18] 

97.64 96.54 97.54 97.94 97.24 97.69 97.39 2.2 2.1 

STFT-

RADN 

[19] 

95.34 94.44 94.89 95.24 94.94 95.24 95.74 4.9 5.1 

CNN-

LSTM 

[20] 

94.94 94.04 94.74 95.14 94.64 95.09 95.39 5 5.2 

DBN-

FOA [22] 
96.24 95.34 95.94 96.44 96.04 96.29 96.24 3.7 3.4 
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Other metrics also confirm the robustness of the proposed method. For example, Sensitivity (99.09%) and 

Specificity (99.3%) indicate that the framework has reliably detected primary user activity while minimizing false 

alarms. Likewise, the MCC value of 99.26% highlights strong correlation across all predicted outcomes, 

exceeding the best performance among existing methods. Furthermore, the proposed method has consistently 

produced lower FPR (1.84%) and FNR (1.75%), establishing its reliability under adverse spectrum environments. 

  

 
Figure 3:Comparison Analysis of the Proposed Method with Existing Techniques 

Overall, the improvements across multiple metrics demonstrate the effectiveness of combining TSVM-based 

feature modeling with ALRO-SKH optimization, which collectively enhance adaptability, robustness, and 

spectrum detection accuracy under varying wireless conditions. 

 

5. CONCLUSION 

 

This work has presented a dynamic thresholding framework for cyclostationary spectrum sensing using artificial 

neural networks under time-variant maritime environments. The system incorporated preprocessing, Temporal 

Spectrum Variation Modeling via TSVANet, Environment-Aware Neural Thresholding, and Adaptive Learning 

Rate Optimization through a Social Spider–Krill Hybrid. The framework has been implemented in Python, and 

experimental results have demonstrated high performance, achieving Accuracy of 99.39%, F1-Score of 98.32%, 

and MCC of 99.26%. The proposed approach has significantly enhanced spectrum sensing reliability, adaptability, 

and robustness against non-stationary channel conditions. Future work could explore real-time deployment on 

embedded platforms, integration with cognitive radio networks at larger scales, and extension to multi-band or 

multi-user spectrum scenarios.  
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