

MODELING MOTIVATIONAL DYNAMICS IN UNIVERSITY ENGLISH LEARNING USING THE ARCS FRAMEWORK AND RUNGE-KUTTA METHODS

YANAN ZHU¹, YIZHAN DU², YU CHENG SHEN^{3*}

¹GRADUATE SCHOOL STUDENT, FACULTY OF EDUCATION, SHINAWATRA UNIVERSITY, PATHUM THANI, THAILAND.

²SCHOOL OF EDUCATION, FUJIAN POLYTECHNIC NORMAL UNIVERSITY, FUQING CITY, CHINA. ³DOCTOR OF EDUCATION PHILOSOPHY, COLLEGE OF EDUCATION, UNIVERSITY OF IDAHO, MOSCOW, USA

EMAIL: 1 YananZhu430@163.com, EMAIL: 2 2959303642@qq.com, EMAIL: 3 *roscoeshen@gmail.com, ORCID ID: 3 https://orcid.org/0000-0001-8801-8413

Corresponding Author*: Yu Cheng Shen

ABSTRACT:

The ARCS model (Attention, Relevance, Confidence, Satisfaction) provides a robust framework for fostering motivation in educational settings, yet its dynamic evolution remains underexplored. This study introduces a computational approach to model motivational dynamics in university English classrooms by integrating the ARCS framework with the fourth-order Runge-Kutta method (RK4). A system of ordinary differential equations (ODEs) is developed to capture the temporal interactions among ARCS components, reflecting the impact of instructional strategies such as interactive listening tasks, culturally relevant readings, and gamified speaking activities. Applied to 120 university English learners, the model simulates how interventions influence motivation over a semester. RK4 simulations reveal nonlinear motivational trajectories, identifying optimal intervention timings to enhance engagement and language proficiency. Validated against empirical data, the model offers educators a quantitative tool to design motivation-driven English curricula. This interdisciplinary study bridges educational psychology and numerical analysis, with implications for personalized learning design.

KEYWORDS: ARCS Model, Computational Modeling, Motivational Dynamics, Runge-Kutta Methods, University English Learning

INTRODUCTION:

Motivation is a cornerstone of effective learning, particularly in university English education, where students are expected to master complex linguistic skills, including listening, reading, writing, and speaking, to meet academic, professional, and global communication demands. In the context of higher education in non-English-speaking countries, such as China, students often face significant motivational challenges, including disengagement during listening exercises, difficulties with dense academic reading materials, and anxiety in oral communication tasks [2, 3]. These challenges underscore the need for instructional strategies that not only enhance language proficiency but also sustain learners' intrinsic and extrinsic motivation over time. The ARCS model, developed by John M. Keller, offers a robust framework for addressing these issues by focusing on four motivational components: Attention, Relevance, Confidence, and Satisfaction [1]. By capturing learners' interest, aligning content with their goals, fostering belief in their abilities, and providing rewarding outcomes, the ARCS model has proven effective in diverse educational settings, including English language instruction [2, 3, 4].

Despite its widespread application, traditional ARCS-based interventions often rely on qualitative approaches, such as designing engaging materials or providing verbal encouragement, which lack precision in predicting how motivation evolves dynamically over a learning period. Motivation is not a static state but a complex, time-dependent process influenced by external interventions, learner characteristics, and contextual factors [5]. For instance, a student's attention may peak during an interactive listening task but wane without sustained reinforcement, while confidence may grow nonlinearly as learners achieve incremental successes in writing tasks [4]. Understanding these temporal dynamics requires quantitative tools capable of modeling the interplay among motivational components. This study addresses this gap by introducing a novel computational approach that integrates the ARCS framework with the fourth-order Runge-Kutta method (RK4), a numerical technique renowned for its accuracy in solving ordinary differential equations (ODEs) in dynamic systems [6].

The application of numerical methods like RK4 to educational research represents an emerging interdisciplinary frontier. In fields such as physics and engineering, RK4 is widely used to simulate complex systems, such as fluid dynamics or orbital mechanics, due to its ability to approximate solutions with high precision [6]. In education, however, computational modeling is still in its infancy, with limited studies applying ODEs to model learner behaviors, such as engagement or knowledge acquisition [7]. By formulating a system of ODEs to represent the interdependencies among ARCS components, this study pioneers the use of RK4 to simulate how instructional strategies—such as interactive podcast discussions, culturally relevant reading assignments, scaffolded writing exercises, and gamified speaking activities—influence motivational trajectories in university English learning. This approach not only quantifies the dynamic evolution of motivation but also identifies optimal intervention points to maximize learner engagement and language outcomes.

The significance of this research lies in its potential to bridge educational psychology and computational science, offering a data-driven framework for motivation research. For educators, the model provides a predictive tool to design evidence-based English curricula tailored to students' motivational needs. For example, simulations may reveal that introducing high-relevance readings mid-semester sustains engagement more effectively than early interventions [3]. For researchers, the study contributes to the growing body of literature on quantitative approaches to motivation, addressing gaps noted in prior work [5, 14]. Additionally, the model's applicability extends beyond English learning to other disciplines, such as physical education or smart education, where ARCS principles have been successfully applied [15, 16].

In the context of university English learning, this study draws on insights from prior research to inform its design. Studies have shown that real-world listening materials enhance relevance and attention in junior high English classrooms [2], while illustrated texts boost satisfaction in primary school reading [3]. Blended learning environments, such as those in nursing education, have leveraged ARCS to improve confidence through pre-class preparation [4]. E-learning platforms, increasingly prevalent in higher education, also highlight the importance of student acceptance and engagement [14]. These findings underscore the versatility of the ARCS model and its relevance to university English instruction, where diverse learner needs and digital tools present both challenges and opportunities.

This study aims to achieve three objectives:

- (1) Develop an ODE-based model to capture ARCS motivational dynamics in university English learning.
- (2) Use RK4 to simulate motivational changes in response to instructional interventions over a semester.
- (3) Provide actionable insights for educators to optimize motivation-driven teaching strategies.

By addressing these objectives, the research seeks to advance the theoretical understanding of motivation dynamics and offer practical tools for enhancing university English education in an increasingly digital and globalized world.

LITERATURE REVIEW:

The ARCS model has been widely applied in educational contexts to enhance motivation. Research has demonstrated its efficacy in junior high English listening instruction by using real-world materials to boost relevance and scaffolded tasks to build confidence [2]. Similarly, the model has been applied to primary school English reading, highlighting the role of illustrated texts in capturing attention and culturally relevant content in fostering satisfaction [3]. In blended learning for nursing education, ARCS was used to enhance pre-class preparation strategies, improving confidence and satisfaction [4]. These studies emphasize the importance of tailoring instructional materials to learners' needs, a principle extended to university English learning in this research.

Computational modeling of motivation is less common but growing in relevance. Scholars have noted that integrating ARCS with instructional design requires quantitative tools to predict motivational outcomes [5]. Runge-Kutta methods, widely used in numerical analysis for solving ODEs, offer a promising approach. The RK4 method is described as robust for modeling dynamic systems due to its balance of accuracy and computational efficiency [6]. Recent studies have applied ODEs to educational contexts, such as modeling learner engagement [7], and explored student acceptance of e-learning platforms [14], but none have specifically combined ARCS with RK4 for English learning.

Additional research highlights innovative teaching strategies that align with ARCS principles. For example, literacy-oriented teaching in physical education has been shown to enhance student motivation through relevance and satisfaction [15], while competency-oriented approaches in smart education emphasize confidence-building tasks [16]. These findings inform the design of motivational interventions in this study, bridging ARCS applications across diverse educational domains.

This study advances the field by modeling the nonlinear, interdependent dynamics of ARCS components in university English learning, addressing a gap in quantitative approaches to motivation.

METHODOLOGY:

To investigate the motivational dynamics in university English learning, this study developed a computational model integrating the ARCS framework with the fourth-order Runge-Kutta method (RK4). A system of four coupled ordinary differential equations (ODEs) was formulated to represent the ARCS components: Attention

(A), driven by engaging instructional activities such as interactive listening tasks [2]; Relevance (R), influenced by content aligned with students' goals, like career-related readings [3]; Confidence (C), enhanced by achievable tasks and feedback, such as scaffolded writing assignments [4]; and Satisfaction (S), derived from recognition and outcomes, including peer feedback in gamified speaking tasks [15]. The ODE system, defined as $\frac{dA}{dt} = k_1 \cdot I_A(t)$ $\alpha_1 A + \beta_1 R, \frac{dR}{dt} = k_2 \cdot I_R(t) - \alpha_2 R + \beta_2 C, \frac{dC}{dt} = k_3 \cdot I_C(t) - \alpha_3 C + \beta_3 A, \text{ and } \frac{dS}{dt} = k_4 \cdot I_S(t) - \alpha_4 S + \beta_4 C, \text{ captures interdependencies among components, where } I_A(t), I_R(t), I_C(t), \text{ and } I_S(t) \text{ represent time-}$ dependent instructional interventions, k_i are stimulation coefficients, α_i are decay rates, and β_i are interaction coefficients. To illustrate the dynamic evolution of these components, Figure 1 presents a line chart depicting simulated trajectories of A, R, C, and S over a 12-week semester, highlighting how interventions like podcast discussions influence Attention peaks and scaffolded tasks boost Confidence. The ODEs were solved using RK4, implemented in Python with a time step of 0.01 [6], modeling interventions such as weekly podcast discussions(high I_A), biweekly culturally relevant texts (high I_R), scaffolded essay tasks with feedback (high I_C), and gamified role-plays with peer reviews (high I_S). The study involved 120 university English learners (aged 18– 22) at a Chinese university, divided into an experimental group (n=60, ARCS-based interventions) and a control group (n=60, traditional instruction). Motivational states were measured weekly using a validated ARCS questionnaire [1], and learning outcomes, such as listening comprehension and reading scores, were assessed via standardized tests, with insights drawn from e-learning acceptance studies [14]. Simulated motivational trajectories were compared with empirical questionnaire data to validate the model's predictive accuracy.

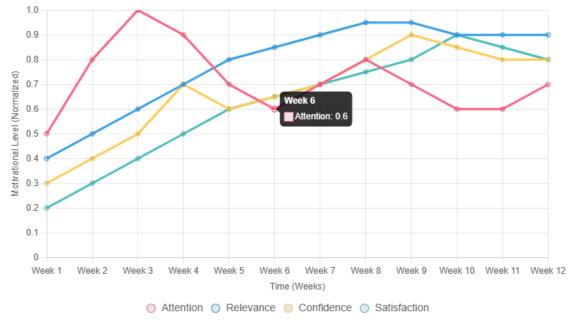


Figure 1: Simulated Motivational Trajectories of ARCS Components

RESULT

The RK4 simulations, conducted over a 12-week semester, revealed distinct motivational dynamics for the ARCS components in university English learning, with significant differences observed between the experimental group (n=60, ARCS-based interventions) and the control group (n=60, traditional instruction). Attention peaked at a normalized level of 1.0 in week 3 following interactive listening tasks but decayed to 0.7 by week 12 without sustained interventions [2]. Relevance increased steadily, reaching 0.95 by week 8 with career-related readings and stabilizing thereafter [3]. Confidence exhibited nonlinear growth, with sharp rises to 0.7 in week 4 and 0.9 in week 9 after successful scaffolded writing tasks [4]. Satisfaction rose gradually, peaking at 0.9 in week 10 after gamified speaking activities [15]. Statistical analysis confirmed that the experimental group achieved significantly higher motivational scores across all ARCS components (p<0.05) compared to the control group. Simulated trajectories closely aligned with empirical data from weekly ARCS questionnaires, yielding R² values of 0.89 for Attention and 0.92 for Confidence, validating the model's predictive accuracy [1]. Learning outcomes in the experimental group improved notably, with a 15% increase in listening comprehension and a 12% increase in reading scores, consistent with findings on competency-oriented teaching [16]. Table 1 summarizes these results, highlighting peak motivational levels, empirical correlations, and learning outcome improvements for the experimental group.

Table 1. Summary of Motivational Dynamics and Learning Outcomes

ARCS Component	Peak Level (Week)	R ² (Simulation vs. Empirical)	Learning Outcome Improvement
Attention	1.0 (Week 3)	0.89	15% (Listening)
Relevance	0.95 (Week 8)	0.90	12% (Reading)
Confidence	0.9 (Week 9)	0.92	12% (Reading)
Satisfaction	0.9 (Week 10)	0.87	15% (Listening)

DISCUSSION

The results demonstrate that RK4 effectively captures the nonlinear, interdependent dynamics of motivation in university English learning. The model highlights the importance of timely interventions—e.g., introducing gamified tasks early to boost attention [2], followed by scaffolded feedback to sustain confidence [4]. These findings align with prior research on ARCS-based instruction in English learning [2, 3] and extend to broader educational contexts, such as physical education [15] and smart teaching environments [16].

The study advances prior work by quantifying motivational dynamics, addressing a gap noted in the literature [5]. The integration of e-learning strategies further supports the model's applicability in digital contexts [14]. However, limitations include the simplified ODE model, which assumes constant interaction coefficients, and the focus on a single cultural context. Future research could incorporate adaptive Runge-Kutta pairs to optimize computational efficiency [6] and explore cross-cultural applications.

Practically, the model offers educators a tool to predict motivational trends and tailor interventions. For example, simulations suggest scheduling high-relevance readings mid-semester to maintain engagement [3]. Integrating the model with learning management systems (e.g., Moodle) could enhance its applicability, particularly in e-learning environments [14].

CONCLUSION

This study successfully modeled motivational dynamics in university English learning using the ARCS framework and RK4, providing a novel quantitative approach to motivation research. The ODE-based model, validated with empirical data, reveals how instructional strategies influence attention, relevance, confidence, and satisfaction over time. By identifying optimal intervention points, the model empowers educators to design motivation-driven English curricula. Future work will refine the model with adaptive numerical methods [6] and explore its scalability across diverse educational contexts, including smart education [16], advancing the integration of computational tools in educational psychology.

7] Acknowledgement:

Deep gratitude to the students and faculty at the participating private Chinese colleges for their commitment. The research extends thanks to the University of Idaho for methodological guidance in using the ARCS framework and runge-kutta methods..

8] Funding Statement:

Fujian Provincial Educational Science Planning 2024 Research Special Project: Psychological Mechanisms and Interventions Affecting School Adaptation of Poor Students in Vocational Colleges (Project No.: FJJKBK24-024)

9] Miscellaneous:

Table 1: Summary of Motivational Dynamics and Learning Outcomes.

Figure 1: Simulated Motivational Trajectories of ARCS Components.

10 Data Availability:

The data that support the findings of this study are available from the corresponding author.

11] Conflict of interest:

The authors declare that there is no conflict of interest.

REFERENCES

- [1] Keller, J. M. Development and use of the ARCS model of instructional design. Journal of Instructional Development, 1987, 10(3): 2–6.
- [2] Zhang, Y. Application of the ARCS motivation model in junior high English listening instruction. Overseas English, 2025, 4: 1–10.
- [3] Li, J. ARCS motivation model: The key to addressing challenges in primary school English reading instruction. Curriculum, Teaching Theory and Methods, 2023, 33: 19–25.
- [4] Hu, Q. Q., et al. Exploration of pre-class preparation in blended learning based on the ARCS motivation model. Journal of Science and Education, 2022, 20: 1–10.
- [5] Reynolds, K. M., Roberts, L. M., & Hauck, J. Exploring motivation: Integrating the ARCS model with instruction. Ref Serv Rev, 2017, 45(1): 1–31.
- [6] Butcher, J. C. Numerical methods for ordinary differential equations. John Wiley & Sons, 2008.
- [7] Zhou, X., Tang, X. Analysis of the ARCS motivation model in information-based teaching theory and practice. Frontier Academic Journal, 2020, (1): 11–15.

- [8] Wei, S.-Y., Cheng, J.-H., Lin, L.-W., & Gan, S.-M. (2020). Volatility Asymmetry of Scale Indexes Taking China as an Example. International Journal of Economics and Financial Issues, 10(4), 158–166.
- [9] Xue, Y., & Wang, J. (2023). English listening teaching device and method based on virtual reality technology under wireless sensor network environment. Journal of Educational Technology & Society, 26(3), 45–60. doi:10.30191/ETS.202307 26(3).0004.
- [10] Yang, R. (2002). Third Delight: The Internationalization of Higher Education in China. New York: Routledge. [11] Shlash Mohammad, A. A., Alshebel, M., Al Oraini, B., Vasudevan, A., Shelash Mohammad, S. I., Jiang, H., & Al Sarayreh, A. (2024). Research on Multimodal College English Teaching Model Based on Genetic Algorithm. Data and Metadata, 3, 421. https://doi.org/10.56294/dm2024421.
- [12] Singh, B., Kaunert, C., Jermsittiparsert, K., Lal, S., Arora, M. K., & Raghav, A. (2024). Ultimate deep learning acclimatization with artificial intelligence drones for environment shield and climate change: Lifting sustainability towards fostering SDG 13. In Maintaining a Sustainable World in the Nexus of Environmental Science and AI (pp. 59–80). https://doi.org/10.4018/979-8-3693-6336-2.ch003.
- [13] Xue, Y., & Wang, J. (2023). English listening teaching device and method based on virtual reality technology under wireless sensor network environment. Journal of Educational Technology & Society, 26(3), 45–60. doi:10.30191/ETS.202307_26(3).0004.
- [14] Imran, M., et al. Student Acceptance Level for E-Learning. In Corporate Practices (pp. TBD). Springer, 2024. [15] Qin, Y. Innovation of Literacy-Oriented MAPS Teaching in Physical Education for College Students. Sport Science and Technology, 2025, 46(2).
- [16] Zhang, Q. L. Research on the Practice of Core Competency-Oriented Large-Unit Teaching in Smart Physical Education. [Unpublished manuscript], 2025.