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ABSTRACT: 

Introduction: This paper presents the development of a fuzzy inference system to assess groundwater 

quality using data from 2012-2021 from the national water information system (SINA). The 

objective was to create a simplified semaphore based on fuzzy logic, classifying groundwater into 

CONAGUA’s three traditional categories (green, yellow, red) while incorporating a degree of 

membership for each condition. Methodology: CONAGUA classifies water quality using 14 crisp 

variables, but we employed eight fuzzy variables as inputs to a Mamdani inference system. Results: 

Our fuzzy system achieved 84% similarity with CONAGUA’s classification while providing an 

intraclass distribution for each semaphore color. A robustness evaluation using 2021 data showed 

comparable classification distribution (67% green, 62% yellow, and 49% red). The system 

effectively classifies gradual quality using key indicators: conductivity, hardness, total dissolved 

solids (TDS), and metal levels, aligning with CONAGUA’s classical semaphore. Conclusion: 

Despite the existence of a superficial water semaphore, we propose using the groundwater 

semaphore instead. The superficial classification does not consider metals, yet preliminary 

multidisciplinary findings indicate metal presence in the Tampamachoco Lagoon. Therefore, the 

groundwater semaphore could be a suitable tool for assessing Tampamachoco Lagoon’s water 

quality in future studies. 

 

KEYWORDS: Fuzzy logic, Fuzzy Inference System, groundwater, water quality, lagoon, open 
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INTRODUCTION 

  

It was concluded by Arcega et al. and Ruiz et al. that human activities rather than environmental changes are the 

primary source of superficial and underground water pollution in lagoons in the Mexican Gulf. Industries are 

another primary source of pollution based on the levels of metals found in the lagoon's sediments higher than the 

recommended limits [1], [2],[3]. A standard metric should be used to compare the condition of different aquifers 

in Mexico and understand the relevance of these results. However, the water quality assessment is a complex 

nonlinear process because quality is a measurement that depends on many aspects, such as the environment of the 

aquifer and the chemical reaction between the lagoon water and its surrounding. It also depends on analyses of 

the qualitative and quantitative data reported by the researchers and the study areas. Even though, several proposed 

metrics and index methods are used for the water quality assessment [4].  

 

In Mexico, Comisión Nacional del Agua (CONAGUA) and Secretaría de Medio Ambiente y Recursos Naturales 

(SEMARNAT) have established a national network to measure the quality of water (RENAMECA), which is 

responsible for measuring 5,000 sites across the country and started reporting in 2012. This program considers 

surface water, divided into lotic water bodies like streams and rivers and lentic water bodies like dams and 
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estuaries. It also studies groundwater bodies by measuring the quality of 2049 water samples taken directly from 

the water sources without processing and comparing the results with the drinking water references. A quality 

semaphore for groundwater was determined by the 14 parameters considered. In contrast, the semaphore 

developed for surface water considers 8 parameters for coastal zones and 12 for lotic and lentic ecosystems [5]. 

After ten years of the sensor net being in use, CONAGUA presents the statistics and geographic information maps 

of the quality of water and an evaluation of the sites based on three groups of the proposed semaphore, 

corresponding to the bodies that meet the established standards, bodies that partially meet the criteria and those 

that do not satisfy it [6][7][8].The following criteria of the semaphore describe the water quality. The class is red 

if any of the eight parameters associated with metals, fecal coliforms, and fluorides fails to comply with the 

standards. Water bodies with alkalinity, hardness, and Total Dissolved Solids levels (TDS) associated with 

agricultural risks and salinization or with iron and manganese levels that exceed the standard thresholds are 

classified as yellow. Finally, if all 14 parameters are under the safe threshold, they are labeled as green. It has 

been observed that assessing water quality is a task that requires resources such as time, domain knowledge, and 

specialized tools to get samples of the study area. In some cases, it is hard to perform due to the location of water 

bodies because of lack of information and inaccuracy of measurements. 

However, there is a need to assess water quality during research on natural environments to measure the 

anthropogenic impact on nature and explore the relationship between the components found in water bodies and 

the water quality. So, the data analysis of this information collected over ten years could be used as a reference to 

explore deeper and understand the ecological health of the lagoons [5]. 

Recently, with the increased availability of open data sources, the rising environmental problems have been 

extensively studied by adopting fuzzy set theories. In general, transforming the partial crisp data to fuzzy 

information helps to develop a fair judgment by inferring based on previous knowledge and has been adopted for 

spatial analysis of water quality parameters [9], such as in Abidi et al. work[10] the scare samples set]were 

converted into fuzzy membership and produced dry and wet seasons maps. 

Fuzzy Inference Systems (FIS) incorporate the knowledge of experts into systems, absorbing the complexity of 

ambiguity, and it deals with uncertainty to make decisions about a phenomenon. Another approach is a 

combination of neural networks with fuzzy logic named ANFIS system [11],[12], which could be trained with 

information of several data of the same place, but in this specific case where the site's measurements are integrated 

into a single mean without reported standard deviation is not enough information. 

Fuzzy logic proves to be an excellent tool for generating approximations with certain levels of imprecision and 

helps to decrease ambiguity. The structure of a fuzzy system is simple to explain and represent. Therefore, we 

developed a system that would be easy to interpret and maintain, allowing researchers to evaluate water quality 

with tolerance or imprecision for promoting a deeper analysis of the semaphore results. Our fuzzy system was 

designed to evaluate groundwater quality and minimize the resources and time needed to perform this type of 

analysis. So, a system was implemented to approximate the semaphore data reported by CONAGUA, which 

classifies the water quality into three classes: green, yellow, and red, proposed by CONAGUA, but it includes a 

distribution inside the three main groups. 

 

METHODOLOGY: 

 

The process to develop the FIS started by gathering data related to Mexican water bodies, being our objective was 

to understand this type of natural environment. 

We put our efforts into searching data through public databases and organizations that focus on studying water 

bodies. CONAGUA made available datasets containing the data collected as part of a study of groundwater bodies 

nationwide from 2012 to 2021. 

We explored the data provided by CONAGUA to find patterns that would help us analyze groundwater bodies' 

quality. Then, it was required to clean and preprocess the datasets previously to perform a statistical analysis of 

the dataset. As part of this cleaning process, missing values were removed, and the data types of the parameters 

were changed to a suitable type for calculations. 

Exploratory and statistical analysis was applied to the Groundwater quality 2012-2021 and 2021 datasets, and 

descriptive statistics of the numerical parameters were computed. The original analysis was focused on the 

parameters included in the datasets; however, it looked for the main contributors to the performance of the 

semaphore. After finishing the analysis, we could better understand the interactions between the 14 parameters 

and better select the FIS inputs. 

Since 2012-2021 dataset was not available for each year but instead was averaged for the period, it was compared 

with the available last year's information. To accomplish this, we applied adversarial validation on the combined 

dataset. The process consists of the following steps: 1) Combine both datasets. 2)Add labels to identify the period 

they belong to, 0 for the 2012-2021 and 1 for the 2021 dataset. 3) Trained a simple classifier to infer the target 

class and 4) Infer the target class for the validation dataset and evaluate the model. 

Then, the data was split into train, test, and validation datasets. Finally, a decision tree classifier was trained and 

evaluated. The classifier parameters were n estimators: 100, min sample split: 2, min sample leaf: 1, max features: 

sqrt, bootstrap: True and random state: 300. Because of the unbalanced classes associated to the semaphore and 

the size of the datasets, the adversarial validation process was combined with under-sampling for the large classes 
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and over-sampling for the smallest class as a strategy to balance the target class. Finally, cross-validation to test 

the model's performance was done. 

The design phase of the fuzzy inference system (FIS) consisted of selecting the input parameters and defining  

the output. Then FIS type was selected, and the membership functions were proposed based on the data 

distributions and looking for consistency in the membership grades associated with each measured value of all 

possible values of the universe. 

The dictionary of rules and fuzzy terms was built according to the knowledge of experts and the work reported by 

CONAGUA. Consequently, the groundwater quality fuzzy semaphore was implemented to inference the results. 

Finally, an evaluation of the inference results associated with the semaphore classes was performed and compared, 

based on classical metrics used in automatic classification. 

 

(a)  Data 

The groundwater quality datasets were created by Comisión Nacional del Agua (CONAGUA) as part of a program 

that included 665 groundwater bodies and 14 parameters: Fluorides, Fecal Coliforms, Arsenic, Nitrate-Nitrogen, 

Cadmium, Chromium, Mercury, Lead, Alkalinity, Conductivity, Hardness, Total dissolved solids (TDS), 

Manganese and Iron. CONAGUA provides two available public datasets. The first one is the groundwater quality 

from 2012 to 2021 which contains the mean value of the measurements in the considered period and the semaphore 

class, including 2197 instances, and the second one is the Groundwater quality recorded in 2021, with 665 

instances. 

Both datasets include a class identification associated with the semaphore's color to classify a water body's quality. 

The quality of groundwater measured by CONAGUA follows national and international standards such as the 

National Waters Law and the Ecologic Equilibrium and Environment Protection Law [5]. A group of parameters 

determines the semaphore classes. If any of the parameters in the group exceeds the permitted levels, it affects the 

water body quality, and a label is assigned. The clustering is defined as follows: Green label: All 14 parameters 

lie within the permitted levels. Yellow label: either of these parameters surpasses the permitted levels, Alkalinity, 

Conductivity, Total dissolved solids (TDS), Manganese and Iron. 

Red: either of these parameters surpasses the permitted levels, Fluorides, Fecal Coliforms, Nitrate-Nitrogen, 

Arsenic, Cadmium, Chromium, Mercury, and Lead. 

Both datasets were converted to CSV format to process them using the Python library Pandas v1.5.3 for data 

manipulation the resulted data set sample is presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. A sample of the transformed groundwater dataset 2012-2021 

 

(b) Data Analysis 

Before any statistical analysis of the datasets, it is necessary to clean them and prepare the format used to represent 

the data; In this case, some variables included nominal values containing less than and greater than symbols (i.e., 

400>, 0.01<) instead of the float data expected. After casting the data type from string to float, rows with missing 

values were removed from the 2012-2021 and 2021 datasets having 129 and 361 rows removed, and 6% and 54% 

reduction, respectively. A statistical characterization was done to obtain each parameter's minimum, maximum, 

mean, standard deviation, and error from the 2012-2021 dataset. The analysis was repeated for the 2021 dataset 

and the distribution characteristics. 

 

(c) Fuzzy Inference System Design 

A system with two Fuzzy inference subsystems was proposed. The primary FIS was designed to assess 

groundwater quality, looking to reduce the number of features. This FIS has four input parameters: Conductivity, 

Total Dissolved Solids (TDS), Hardness, and Metals level. The secondary FIS measures the levels of metals in 

groundwater; the result is an input to the primary subsystem. The proposed FIS for metals levels reduces the 

complexity and number of rules needed for the Groundwater Quality FIS. 
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Figure 2. Membership functions (MFs) of the four input variables of the FIS for groundwater quality 

 

Sigmoid and Gaussian membership functions (MF) were proposed for Conductivity, TDS, and Hardness. For the 

Metals levels, two trapezoidal functions were proposed. Figure 2 presents the four input variables of the 

Groundwater quality FIS. 

The knowledge of expertise is summarized in the criterium of the thresholds for each variable and the primary 

interaction between them (Figure 3) So, the dictionary is provided to the Mamdani FIS, which contains 28 rules 

that define the system. Each rule evaluates the Antecedents (input variables) and finds an effect according to the 

rules generating a fuzzified response. 

 

Figure 3. (a) FIS for metals levels. (b) FIS to assess Groundwater quality. 

 

Trapezoidal functions were proposed for the Metals level FIS, and the membership functions are displayed in 

Figure 4. We considered Arsenic, Cadmium, Chromium, Mercury, and Lead as input in the system. Also, these 

five metals were considered by CONAGUA to impact the groundwater quality and modify the semaphore class 

to red if any of these parameters exceeded the acceptable level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Memberships functions (MFs) of the five input variables of the FIS for metals concentration. 
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(d) FIS input selection 

The Pearson correlation matrix was used to select the principal variables because this coefficient captured the 

linear correlation among pair of variables. It was observed that Conductivity, TDS, and Hardness have a high 

correlation compared to the relationship between the rest of the parameters used by CONAGUA to assess 

groundwater quality. Therefore, these indicators proved to have a positive relationship. The correlation 

coefficients matrix is shown in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Correlation matrix. Groundwater 2012-2021 dataset 

 

According to the Environmental Protection Agency (EPA), increasing amounts of TDS results in increased 

conductivity of water bodies. Figure 6 shows that the positive relation between TDS, Hardness, and Conductivity 

is visible, demonstrating the positive correlation of levels among the three parameters. 

 

Figure 6. Relationship between Hardness, Conductivity and Total Dissolved Solids (TDS). 

 

It is relevant to point out that in the study conducted by CONAGUA, if any of the following indicators: Alkalinity, 

Conductivity, TDS, Manganese, and Iron, exceed the acceptable levels, the water body would be directly classified 

as yellow[5]. 

                                                                                             

(e) Membership Functions 

The integrity of the membership function values associated with each variable along the range of the universe was 

tested and adjusted, so the sum of all membership degrees for each value of the four input values of the FIS, is 

always one as shown in (1) considering that each element only could belong from 0 to 100% to each function. 

 

𝛍𝐢,𝐣(𝐱𝐣) =  ∑ 𝐌𝐅𝐢(𝐱𝐣)
𝐍
𝐢=𝟏 = 𝟏                                    (1) 

 

                𝑴𝑭𝒊(𝒙𝒋) is the 𝒊 membership function of N generated for each input fuzzy variable. 

                𝒙𝒋 ∈ 𝑿 is the value of each input variable 𝒋 in its universe. 

                𝒋 is each of the four input fuzzy variables. 

                𝝁𝒊,𝒋(𝒙𝒋) is the sum of the grades of membership associated to each the value 𝒙 
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(f) Inference Rules 

The inferences rules for the FIS were defined by the observations obtained as part of the data analysis, domain 

knowledge of the water quality indices, and the work developed by CONAGUA. Twenty-eight inference rules 

were defined for the FIS rules dictionary. Usually, the number of rules in a FIS is expressed by an exponential 

formula (2). This formula is as follows: 

 

𝐫 =  𝐍𝐢                                           (2) 

              Where 𝑵 is the number of fuzzy variables considered in the input. 

                𝒓 is the number of possible rules. 

               𝒊 is the number of membership functions are associated to the linguistic terms. 

 

If the five metal parameters were used directly in the main FIS, 32,768 rules would have been needed. So, in this 

proposal, the Groundwater quality FIS required a maximum of 1024 rules, and the second FIS required 25 rules. 

After analyzing the results, the number of rules was reduced and finally was set to 28. Some rules examples are 

presented in Table 1. 

 

Table 1 Example of the Inference rules defined in the FIS. 

 

If Conductivity is Excellent and TDS is Good and Hardness is Soft and Metals Concentration is 

acceptable, then Quality is Green 

If Conductivity is Good and TDS is Good and Hardness is Soft and Metals Concentration is 

Acceptable, then Quality is Green 

If Conductivity is Acceptable and TDS is Poor and Hardness is Hard and Metals Concentration is 

acceptable, then Quality is Yellow 

If Conductivity is Acceptable and TDS is Unacceptable and Hardness is Hard and Metals 

Concentration is Unacceptable, then Quality is Red. 

If Conductivity is Excellent and TDS is Fair and Hardness is Very Hard and Metals Concentration is 

Unacceptable, then Quality is Red. 

 

(g)  FIS output 

The output of the FIS is a value between 0 and 1 representing the quality of water. The system uses the centroid 

method as defuzzification. Each value between 0 and 1 has a membership value for each of the membership 

functions of the output variable as shown in Figure 7. We associated the output crisp value with one of the three 

semaphore classes, using the maximum membership value on the three possible fuzzy classes as the criterium. 

 

Figure 7. Membership functions of the FIS output variable. The output is a crisp value in the range of 0.0-1.0 that 

represents the quality of groundwater. The output variable emulates the water quality semaphore implemented by 

CONAGUA, with 3 classes: green, yellow and red. 

 

CONAGUA provides the standards to assess the quality of groundwater bodies in Mexico. In Table 2, we observe 

the 14 parameters considered, the standards thresholds, and the semaphore class associated in case the parameters 

exceed the acceptable levels. So, the dictionary of rules, the membership functions for each input parameter as 

well as the output of the FIS design were guided by the CONAGUA standards. 
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Table. 2  Groundwater quality standards proposed by CONAGUA as part of their study to assess groundwater 

quality, including the three semaphore classes [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(h) Defuzzification 

The FIS uses the Centroid as a defuzzification method, so the fuzzy variables turn in crisp values. The Centroid 

method calculates the center of the area under the curve of the output membership function (MF) obtained with 

the Mamdani inference method. 

 

(i) FIS implementation 

We used MATLAB® version R2022b and the Fuzzy Logic Toolbox to design the system. Then it was migrated 

to a Python™ version to be deployed as a Web service or a portable online system. In this case, the FIS was built 

using the library ScikitFuzzy v0.4.2s, Python 3.10.9, and NumPy 1.22.4. In Figure 8 is presented an inference 

result with the FIS using a chosen data point from the 2012-2021 dataset. The input values used for this simulation 

were: 641 (Conductivity), 410.24 (TDS), 219.714 (Hardness), and 0.77 (Metals level). For this selected point, the 

quality was 0.1522, so it is mapped to the “Red” class of the semaphore. The vertical dashed line in the figure 

marks the intersection with the membership associated with the output variable, so the crisp output value obtained 

is the maximum of the membership grades at that point: 0.1522. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. FIS inference example using the data point (641,410.24,219.71,0.77) from the 2012-2021 dataset. 

 

(j) FIS testing 

The 2012-2021 and 2021 datasets were used to test the FIS. The first part of the testing was to fetch the data to 

the Metals FIS to obtain the output “Metals level”, one of the inputs to the Groundwater quality FIS. Once the 

Metals level parameter was obtained, we fetched the four inputs to the FIS (conductivity, TDS, hardness, and 

Metals level). The inference and defuzzification of the Groundwater quality FIS were evaluated with the dataset. 

Finally, outputs were mapped to one of the three semaphore classes based on each output’s membership value. 

So, fuzzy semaphore and a crisp semaphore were compared. 

 

 

Parameter Ranges Semaphore 

Acceptable Unacceptable 

Conductivity C<=250 

Excellent 

250<C<=750 

Good 

750<C<=2000 

Acceptable 

2000<C<=3000 

Poor 

Cond>3000 

Unacceptable 

Yellow 

Hardness H<=60 

Soft 

60<H<=120 

Relatively 

soft 

120<H<=500 

Hard 

H>500 

Very hard 

Yellow 

TDS TDS<=1000 

Good 

1000<TDS<=2000 2000<TDS<=10000 

Poor 

TDS>10000 

Unacceptable 

Yellow 

Arsenic As<=0.01 

Excellent 

0.01<As<=0.025 

Good 

As>0.025 

Unacceptable 

Red 

Cadmium Cd<= 0.003 

Excellent 

0.003<Cd<=0.005 

Good 

Cd>0.005 

Unacceptable 

Red 

Chromium Cr<=0.05 

Excellent 

Cr>0.05 

Unacceptable 

Red 

Mercury Hg<=0.006 

Excellent 

Hg>0.006 

Unacceptable 

Red 

Lead Pb<=0.01 

Excellent 

Pb>0.01 

Unacceptable 

Red 
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(k) FIS Evaluation 

 

Then a confusion matrix was used as a metric to evaluate the similarities of the proposed system with the crisp 

CONAGUA semaphore as a reference. In the confusion matrix, the actual classes reported by CONAGUA and 

the obtained classes by the FIS are compared with each other to analyze the performance of the FIS using both 

datasets. 

Because the 2012-2021 dataset was used to construct the FIS, then the 2021 dataset was used to evaluate it. Metrics 

computed to evaluate the FIS were accuracy, precision, recall, and F1 score. To calculate each score, we separately 

considered the semaphore labels obtained for the 2012-2021 and 2021 datasets. 

 

RESULTS: 

 

To analyze the data distribution visually, we plotted the histograms for each parameter for both datasets, 

Groundwater quality 2012-2021 and 2021 (Figure 9 and Figure10). The histograms show a positive-skewed 

distribution for the TDS, conductivity, and Hardness; therefore, an exponential distribution would be better to 

approximate these parameters.  

On the other hand, metals such as Cadmium, Lead, Arsenic, Mercury, and Chromium do not have significant 

variation. Descriptive statistics are presented in Table 3. 

If just the 2021 dataset is considered, the distribution characteristics are summarized in Table 4, and the histograms 

shown in Figure 10. The 2012-2021 dataset results were summarized in a confusion matrix presenting the classes 

assigned by the proposed FIS (Figure 11A) compared with the classes included in the dataset defined by 

CONAGUA. 

 

 

Table 3 Descriptive statistics of the features considered in Groundwater dataset for 2012-2021. 

 

Parameter Min Max Mean Standard 

deviation 

Standard 

error 

Kurtosis Skewness 

TDS 7.68e+01 3148.80 6.13e+02 4.92e+02 2.82e+01 4.97 2.02 

Conductivity 1.20e+02 4920.00 9.58e+02 7.69e+02 4.41e+01 4.97 2.02 

Hardness 1.99e+01 1637.86 2.81e+02 2.28e+02 1.30e+01 10.08 2.52 

Cadmium 2.90e-03 0.00 2.90e-03 4.01e-05 2.30e-06 304.00 17.43 

Lead 4.90e-03 0.02 5.09e-03 1.89e-03 1.08e-04 126.71 11.03 

Arsenic 9.00e-03 0.31 1.92e-02 2.92e-02 1.67e-03 42.09 5.60 

Mercury 4.90e-04 0.001 5.07e-04 9.25e-05 5.31e-06 49.81 6.63 

Chromium 4.90e-03 4.25 2.42e-02 2.44e-01 1.39e-02 300.50 17.28 
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Figure 9. Parameters distribution. 2012-2021 Groundwater Quality dataset 

 

The 2012-2021 dataset results were summarized in a confusion matrix presenting the classes assigned by the 

proposed FIS (Figure 11A) compared with the classes included in the dataset defined by CONAGUA. CONAGUA 

classified 2197 groundwater bodies all over Mexico. After the data cleaning process, 6% of rows were removed 

from the 2012-2021 dataset leaving information about 2068 water bodies left. Out of the 2068 water bodies 

registered in the 2012-2021 dataset, 888 were classified as Green, 802 as Red, and 378 as Yellow by CONAGUA. 

On the other hand, for the 2021 dataset, the FIS classified 918 water bodies as Green, 598 as Red, and 552 as 

Yellow. 

 

Figure 10. Parameters distribution of the 2021 Groundwater dataset 

Table 4 Descriptive statistics of the parameters of Groundwater quality 2021 dataset.  

 

Parameter Min Max Mean Standard 

deviation 

Standard 

error 

Kurtosis Skewness 

TDS 2.49e+01 12880 7.01e+02 8.09e+02 1.77e+01 53.20 5.72 

Conductivity 2.77e+01 16100 1.07e+03 1.10e+03 2.41e+01 35.49 4.50 

Hardness 1.99e+01 5828.68 3.38e+02 3.71e+02 8.16e+00 36.55 4.27 

Cadmium 2.90e-03 0.15 3.02e-03 3.57e-03 7.85e-05 1576.02 38.42 

Lead 4.90e-03 0.08 6.65e-03 7.10e-03 1.56e-04 36.53 5.48 

Arsenic 9.00e-03 0.41 2.12e-02 3.42e-02 7.52e-04 42.07 5.62 

Mercury 4.90e-04 0.02 5.18e-04 4.46e-04 9.82e-06 1627.45 38.46 

Chromium 4.90e-03 2.14 9.44e-03 7.60e-02 1.67e-03 704.93 26.34 
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The total number of groundwater bodies labeled by the FIS is 2068, accounting for 94% of the 2012- 2021 dataset. 

And the Groundwater quality FIS inferred the classes presented in Figure 12, reporting a percentage of the same 

labeled groundwater bodies: 75% Green, 69% Yellow, and 67% Red. The results obtained by the FIS using the 

Groundwater Quality 2021 dataset are shown in the confusion matrix in Figure 11B, presenting the CONAGUA 

semaphore and the FIS classes. 

 
 

Figure 11. Confusion Matrix of the FIS and CONAGUA classes of Groundwater quality. A) 2012-2021, B) 2021 

dataset. 

 

As for the 2021 dataset, CONAGUA classified 665 groundwater bodies. After removing the rows with missing 

values, we ended up with 304 water bodies representing 46% of the 665 water bodies; 128 were classified as 

Green, 52 as Yellow, and 124 as Red by CONAGUA. 

 

Figure 12. Semaphore classes. Groundwater Quality 2012-2021 dataset. 

 

The FIS inferred the classes shown in Fig. 13, reporting 131 as Green, 88 as Yellow, and 85 water bodies as Red. 

The percentage of the same labeled water bodies per class is 67% Green, 62% Yellow, and 49% Red. 

 

 

 

 

 

 

 

 

 

Figure 13. Semaphore classes. Groundwater Quality 2021 dataset 

 

This result shows differences mainly in the red and yellow classes, so the fuzzy values were analyzed. The 

distribution of the FIS output for the 2012-2021 and 2021 datasets is shown in Figure 14. The FIS output named 

“Quality” is in the range of 0 to 1. The semaphore class colors the membership grade values of the output variable. 

One first observation is that the 2012-2021 data represents the average values of 9 years. Nevertheless, the 

distribution of the semaphore classes is like the 2021 dataset. 

Therefore, we can tell that the behavior of groundwater bodies in 2021 is not far from the general behavior as is 

reported in the adversarial evaluation. 
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Figure 14. FIS output values colored by their corresponding semaphore class 

 

Finally, the comparison of the dataset in the fuzzy semaphore shows a slightly difference in the internal 

distribution into the semaphore that is not possible to observe in the crisp version proposed by CONAGUA. 

 

For our study, the weighted F1 better approximates how well the FIS performed, given that this metric considers 

both the precision, the recall, and the imbalance of the semaphore classes. In Table 5, the results are presented for 

both datasets classification. 

 

Table 5 Scores of the metrics used to evaluate the FIS semaphore with controversial evaluation. 

 

Metric 2012-2021 Scores 2021 scores 

Accuracy 0.71 0.59 

Precision 0.75 0.63 

Recall 0.71 0.59 

F1 0.72 0.60 

 

DISCUSSION 

 

The Mexican states with better groundwater quality evaluation are associated with more green assignments to 

their water bodies classified by CONAGUA. They are Sonora (136), Guanajuato (132), and Durango (109); the 

FIS semaphore obtained the same states as follows Guanajuato (157), Sonora (131), Durango (114). On the other 

hand, states with more red water bodies identified by CONAGUA are Durango (241), Guanajuato (109), and 

Coahuila (77). Similarly, the results obtained by the FIS semaphore are Durango (195), Guanajuato (79), and 

Coahuila (50). 

Lastly, the top states with yellow water bodies classified by CONAGUA are Sonora (44), Yucatan (42), and 

Coahuila (31). In contrast, the FIS semaphore obtained the following: Yucatan (82), Sonora (68), and Tamaulipas 

(56). The FIS obtained similar results in all three classes, accounting for the top 3 states per class. 

Over the years, several indices have been developed to assess surface and groundwater quality. These works 

define the critical parameters concerning water quality and provide a partial solution in water assessments [13]. 

Some of the worldwide representatives are the National Sanitation Foundation Water Quality Index (NSFWQI), 

the Canadian Council of Ministers of the environment water quality index (CCMEWQI), the Oregon Water 

Quality Index (OWQI), and the Weight Arithmetic Water Quality Index (WAWQI). All these indexes include 

TDS, Hardness, Alkalinity, Biochemical Oxygen Demand (BOD), and Dissolved Oxygen (DO) as the usual 

parameters to calculate the water quality. The parameters' selection differences are related to the water's final use. 

CONAGUA uses worldwide information such as guidelines for drinking water quality[14], agriculture water 
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quality, and other countries regulations as Bolivia, Chile, Spain, New Zealand, Canada, Malaysia[15]. 

Nevertheless, the final Mexican thresholds are defined by Mexican regulations, considering information from the 

Federal Laws in the section: National Applied Disposition in the matter of water [6], Health Secretary [7] and the 

Urban Development and Ecology Secretary [8]. Hence, it is the reference of this study. An updated norm NOM-

001-SEMARNAT-2021 has been identified, but it was not considered in this model proposal because data were 

classified with the previous version. However, if required, the system could be upgraded with new values in a 

future version. 

This work pretends to generate a methodology for implementing the fuzzy inference system based on the available 

national information. One of the first steps is to understand the data provided by the datasets and gather all the 

information associated with the problem. Then preprocessing the information and finally designing and 

implementing the system. The results supported by the computed scores show a good performance of the Proposed 

FIS for 2012-2021. However, the performance was drastically reduced, evaluating only the 2021 dataset. 

The reduction of the measurement available, the presence of missing values, and changes in the distribution of the 

data measured in 2021 could explain the poor performance. Nonetheless, the distribution of the semaphore classes 

is similar, and the extensive adversarial test proves no difference. However, the overall performance of the 

classifier used for adversarial validation is 0.6132, which means that the distribution of both datasets is somehow 

different but not significant enough for the classifier to distinguish them furthermore. 

Similar to Sajib et al. [16], the relevance of heavy metal measurements is confirmed in the search for 

understanding the relationship between Groundwater and its context. The semaphore is observed to be highly 

affected by existing geology, quality of recharge, degree of chemical weathering, level of Groundwater, and some 

surface elements. The result of the complex interaction between these processes is reflected in the metrics 

considered [10], [17]. As others author reported, it is observed that the quality of Groundwater is subjected to the 

interaction between geological and hydrological processes. 

 

CONCLUSION: 

 

A FIS to assess the Groundwater quality was proposed using a reduced number of parameters from the 

CONAGUA semaphore. A similar semaphore was implemented using the FIS results to classify groundwater 

bodies. However, the FIS uses 8 of the 14 original variables, and five of those eight variables were grouped in a 

new indicator named Metals level, which monitors the non-allowed metal levels. The advantage of using two FIS 

in parallel is that the number of combinations in the final evaluation is considerably reduced. If all variables were 

used, there would be 1024 rules according to the exponential formula used to calculate the total number of rules. 

The number of rules used is 28, which represents only 3% of the total number of rules. The parameters with the 

highest correlation are Conductivity, TDS, and Hardness. These parameters have a positive correlation higher 

than 0.80 and were selected as inputs in the principal subsystem. On the other hand, Cadmium, Chromium, and 

Mercury present the highest skewness and kurtosis; therefore, we can tell that the dataset contains several outliers 

representing extreme values for these parameters. Even ANFIS could be included in each site to define the water 

quality in an intelligent sensor net. In this case, FIS was selected because of the database information structure.  

The classification was not the primary goal of this paper; even though the FIS managed to correctly classify above 

50% of data points for each semaphore class, the FIS can improve its performance by fine-tuning the chosen 

inputs and increasing the dictionary of rules. The main goals were to follow the standard thresholds provided by 

CONAGUA and give a degree of membership in the classes to analyze the distribution inside each one and find 

a methodology to prepare and define the rules. 

This work is doing into a multidisciplinary project about multidimensional health of Tampamachoco Lagoon. 

Although there is a superficial water semaphore, we consider using the groundwater semaphore instead because 

the superficial does not consider metals as an indicator of water quality due to the preliminary results of the 

multidisciplinary team; Because Metals are presented in the Lagoon then the groundwater semaphore could be 

suitable for evaluating the Tampamachoco Lagoon water quality using the proposed model in future work. 

 

Acknowledgement:  

Special thanks to the FRESA group, whose work is focused on the analysis of the risk factors involved in the 

environmental health assessment of coastal bodies with different degrees of contamination, supported by the grant 

number 20243987. Their insights and recommendations have been invaluable in shaping our proposal and 

fostering our interest in the field of multivariable automatic analysis in this topic. 

 

 Author contributions: 

All authors contributed to the study conception and design. Inference System implementation was done by Ulises 

Montoya Canales. Material preparation, data collection and analysis were performed by Ulises Montoya Canales, 

Pilar Gomez Miranda and Laura Ivoone Garay Jiménez. The first draft of the manuscript was written by Ulises 

Montoya Canales, Laura Ivoone Garay Jiménez and Blanca Tovar Corona, and it was revised by Ana Judith 

Marmolejo Rodriguez and Pilar Gomez Miranda. All authors commented on previous versions of the manuscript. 

All authors read and approved the final manuscript. 

 



TPM Vol. 32, No. S6, 2025  Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

1559 

  

Data Availability statement: 

The data that support the findings of this study are available from Sistema Nacional de Información del Agua 

(SINA) acceded on https://www.gob.mx/conagua/es/articulos/indicadores-de-calidad-del-

agua?idiom=es#:~:text=Los%20Indicadores%20subterr%C3%A1neos%20son%2014,Cond_elec)%2C%20Dure

za%20Total%20(Dur_Tot 

 

Conflict of interest: "The authors declare that there is no conflict of interest". 

 

Funding Statement:  

This work has been supported by the project “Multidimensional models of temporal series associated to the 

anthropic contamination in marine organisms consumed by humans and its effect on their overall health”, SIP 

20211164, 20220701, 20230872 funded by Instituto Politécnico Nacional of Mexico within 2021–2023.  

 

REFERENCES: 

 

[1] Arcega-Cabrera F, Garza-Perez R, Noreña-Barroso E, Oceguera-Vargas I, Impacts of Geochemical and 

Environmental Factors on Seasonal Variation of Heavy Metals in a Coastal Lagoon Yucatan, Mexico. Bull 

Environ Contam Toxicol, 2015, 58– 65. https://doi.org/10.1007/s00128-014-1416-1 

[2] Ruiz-Fernandez AC, Rangel-Garcia M, Perez-Bernal LH, Lopez-Mendoza PG, Gracia A,Schwing P, 

Hollander D, Paez-Osuna F, Cadorso-Mohedano JG, Cuellar-Martinez T, Sanchez-Cabeza JA, Mercury in 

sediment cores from the southern Gulf of Mexico: Preindustrial levels and temporal enrichment trends. Marine 

Pollution Bulletin, 2019, 149. doi:https://doi.org/10.1016/j.marpolbul.2019.110498 

[3] Martínez ML, Silva R, Lithgow D, Mendoza E, Flores P, Martínez R, Cruz C, Human impact on coastal 

resilience along the coast of Veracruz, Mexico. In: Martinez, M.L.; Taramelli, A., and Silva, R. (eds.), Coastal 

Resilience: Exploring the Many Challenges from Different Viewpoints. Journal of Coastal Research, 2017, 

Special Issue 77: 143–153. https://doi.org/10.2112/SI77-015.1 

[4] Chidiac SE, A comprehensive review of water quality indices (WQIs): history, models, attempts and 

perspectives. Reviews in Environmental Science and Bio/Technology, 2023, 22:349-395. 634 

https://doi.org/10.1007/s11157-023-09650-7 

[5] CONAGUA, Water Quality (in spanish), 2022.  Consulted on 

https://www.gob.mx/cms/uploads/attachment/file/925192/Generalidades_Indicadores_de_calidad_del_agua.pdf.  

Accessed  march 2023. Updated version 2024. 

[6] CONAGUA, Federal Rights Law. Provisions applicable to national waters, 2015, 

https://www.gob.mx/conagua/acciones-y-programas/situacion-de-los-recursos-hidricos Accessed 20 February 

2023 (in spanish) 

[7] Secretaría de Salud, Monitoring of primary contact water in seawater from beaches and freshwater bodies (in 

Spanish), 2015, https://www.gob.mx/cofepris/documentos/manual-operativo-monitoreo-de-agua-de-contacto-

primario-en-el-agua-de-mar-de-playas-y-cuerpos-de-agua-dulce Accessed 17 February 2024 

[8] Secretaría de Desarrollo Urbano y Ecología (SEDUE), AGREEMENT establishing the Mexican Ecological 

Water Quality Criteria CE-CCA-001/89. Diario Oficial de la Federación,1989. 

https://www.dof.gob.mx/nota_detalle.php?codigo=4837548&fecha=13/12/1989#gsc.tab=0 

Accessed 2 march 2024 

[9] Chidambaram S, Prasanna MV, Ventramanan S, Nepolian M, Pradeep K, Banajarani P, Thivya C, Thilagavathi 

R, Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on 

fuzzy logic technique. Environmental Research, 2022, 204. https://doi.org/10.1016/j.envres.2021.111729 

[10]ABIDI, Jamila Hammami, et al. Evaluation of groundwater quality indices using multi-criteria decision-

making techniques and a fuzzy logic model in an irrigated area. Groundwater for Sustainable Development, 2024, 

vol. 25, p. 101122. https://doi.org/10.1016/j.gsd.2024.101122Get rights and content 

[11] Shwetank, SJ, Suhas, Jitendra KC, Hybridization of ANFIS and fuzzy logic for groundwater quality 

assessment. Groundwater or Sustainable Development, 2022, 18. doi:https://doi.org/10.1016/j.gsd.2022.100777 

[12] Jha MK, Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water 

quality index. Water Research, 2020, 179. doi:https://doi.org/10.1016/j.watres.2020.115867 

[13] Vigueras-Velázquez, M. E., Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Vázquez-Burgos, J. L., & 

Tello-Ballinas, J. A. Weighted fuzzy inference system for water quality management of Chirostoma estor estor 

culture, Aquaculture Reports, 2020, 18, 100487. https://doi.org/10.1016/j.aqrep.2020.100487  

[14] OMS, Guidelines for Drinking-water Quality., 2008, 1. https://apps.who.int/iris/handle/10665/42852 

Accesed 20 march 2024. 

[15] FAO, Water quality for agriculture. FAO Irrigation and Drainage, 

1994. https://www.fao.org/3/t0234e/T0234E00.htm#TOC, Accessed 23 september 2024 

[16] SAJIB, Abdul Majed, et al. Developing a novel tool for assessing the groundwater incorporating water quality 

index and machine learning approach. Groundwater for Sustainable Development, 2023, vol. 23, p. 101049. 

[17] PATEL, Neha; BHATT, Darshana. Insights of ground water quality assessment methods–A review. Materials 

Today: Proceedings, 2024. https://doi.org/10.1016/j.matpr.2024.04.045 

https://doi.org/10.1007/s00128-014-1416-1
https://doi.org/10.1007/s11157-023-09650-7
https://doi.org/10.1016/j.envres.2021.111729
https://doi.org/10.1016/j.gsd.2024.101122
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S2352801X24000456&orderBeanReset=true
https://apps.who.int/iris/handle/10665/42852%20Accesed%2020%20march%202024
https://apps.who.int/iris/handle/10665/42852%20Accesed%2020%20march%202024
https://doi.org/10.1016/j.matpr.2024.04.045

