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ABSTRACT:

Introduction: This paper presents the development of a fuzzy inference system to assess groundwater
quality using data from 2012-2021 from the national water information system (SINA). The
objective was to create a simplified semaphore based on fuzzy logic, classifying groundwater into
CONAGUA'’s three traditional categories (green, yellow, red) while incorporating a degree of
membership for each condition. Methodology: CONAGUA classifies water quality using 14 crisp
variables, but we employed eight fuzzy variables as inputs to a Mamdani inference system. Results:
Our fuzzy system achieved 84% similarity with CONAGUA’s classification while providing an
intraclass distribution for each semaphore color. A robustness evaluation using 2021 data showed
comparable classification distribution (67% green, 62% yellow, and 49% red). The system
effectively classifies gradual quality using key indicators: conductivity, hardness, total dissolved
solids (TDS), and metal levels, aligning with CONAGUA'’s classical semaphore. Conclusion:
Despite the existence of a superficial water semaphore, we propose using the groundwater
semaphore instead. The superficial classification does not consider metals, yet preliminary
multidisciplinary findings indicate metal presence in the Tampamachoco Lagoon. Therefore, the
groundwater semaphore could be a suitable tool for assessing Tampamachoco Lagoon’s water
quality in future studies.

KEYWORDS: Fuzzy logic, Fuzzy Inference System, groundwater, water quality, lagoon, open
access database, water quality semaphore

INTRODUCTION

It was concluded by Arcega et al. and Ruiz et al. that human activities rather than environmental changes are the
primary source of superficial and underground water pollution in lagoons in the Mexican Gulf. Industries are
another primary source of pollution based on the levels of metals found in the lagoon's sediments higher than the
recommended limits [1], [2],[3]. A standard metric should be used to compare the condition of different aquifers
in Mexico and understand the relevance of these results. However, the water quality assessment is a complex
nonlinear process because quality is a measurement that depends on many aspects, such as the environment of the
aquifer and the chemical reaction between the lagoon water and its surrounding. It also depends on analyses of
the qualitative and quantitative data reported by the researchers and the study areas. Even though, several proposed
metrics and index methods are used for the water quality assessment [4].

In Mexico, Comision Nacional del Agua (CONAGUA) and Secretaria de Medio Ambiente y Recursos Naturales
(SEMARNAT) have established a national network to measure the quality of water (RENAMECA), which is
responsible for measuring 5,000 sites across the country and started reporting in 2012. This program considers
surface water, divided into lotic water bodies like streams and rivers and lentic water bodies like dams and
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estuaries. It also studies groundwater bodies by measuring the quality of 2049 water samples taken directly from
the water sources without processing and comparing the results with the drinking water references. A quality
semaphore for groundwater was determined by the 14 parameters considered. In contrast, the semaphore
developed for surface water considers 8 parameters for coastal zones and 12 for lotic and lentic ecosystems [5].
After ten years of the sensor net being in use, CONAGUA presents the statistics and geographic information maps
of the quality of water and an evaluation of the sites based on three groups of the proposed semaphore,
corresponding to the bodies that meet the established standards, bodies that partially meet the criteria and those
that do not satisfy it [6][7][8].The following criteria of the semaphore describe the water quality. The class is red
if any of the eight parameters associated with metals, fecal coliforms, and fluorides fails to comply with the
standards. Water bodies with alkalinity, hardness, and Total Dissolved Solids levels (TDS) associated with
agricultural risks and salinization or with iron and manganese levels that exceed the standard thresholds are
classified as yellow. Finally, if all 14 parameters are under the safe threshold, they are labeled as green. It has
been observed that assessing water quality is a task that requires resources such as time, domain knowledge, and
specialized tools to get samples of the study area. In some cases, it is hard to perform due to the location of water
bodies because of lack of information and inaccuracy of measurements.

However, there is a need to assess water quality during research on natural environments to measure the
anthropogenic impact on nature and explore the relationship between the components found in water bodies and
the water quality. So, the data analysis of this information collected over ten years could be used as a reference to
explore deeper and understand the ecological health of the lagoons [5].

Recently, with the increased availability of open data sources, the rising environmental problems have been
extensively studied by adopting fuzzy set theories. In general, transforming the partial crisp data to fuzzy
information helps to develop a fair judgment by inferring based on previous knowledge and has been adopted for
spatial analysis of water quality parameters [9], such as in Abidi et al. work[10] the scare samples set]were
converted into fuzzy membership and produced dry and wet seasons maps.

Fuzzy Inference Systems (FIS) incorporate the knowledge of experts into systems, absorbing the complexity of
ambiguity, and it deals with uncertainty to make decisions about a phenomenon. Another approach is a
combination of neural networks with fuzzy logic named ANFIS system [11],[12], which could be trained with
information of several data of the same place, but in this specific case where the site's measurements are integrated
into a single mean without reported standard deviation is not enough information.

Fuzzy logic proves to be an excellent tool for generating approximations with certain levels of imprecision and
helps to decrease ambiguity. The structure of a fuzzy system is simple to explain and represent. Therefore, we
developed a system that would be easy to interpret and maintain, allowing researchers to evaluate water quality
with tolerance or imprecision for promoting a deeper analysis of the semaphore results. Our fuzzy system was
designed to evaluate groundwater quality and minimize the resources and time needed to perform this type of
analysis. So, a system was implemented to approximate the semaphore data reported by CONAGUA, which
classifies the water quality into three classes: green, yellow, and red, proposed by CONAGUA, but it includes a
distribution inside the three main groups.

METHODOLOGY:

The process to develop the FIS started by gathering data related to Mexican water bodies, being our objective was
to understand this type of natural environment.

We put our efforts into searching data through public databases and organizations that focus on studying water
bodies. CONAGUA made available datasets containing the data collected as part of a study of groundwater bodies
nationwide from 2012 to 2021.

We explored the data provided by CONAGUA to find patterns that would help us analyze groundwater bodies'
quality. Then, it was required to clean and preprocess the datasets previously to perform a statistical analysis of
the dataset. As part of this cleaning process, missing values were removed, and the data types of the parameters
were changed to a suitable type for calculations.

Exploratory and statistical analysis was applied to the Groundwater quality 2012-2021 and 2021 datasets, and
descriptive statistics of the numerical parameters were computed. The original analysis was focused on the
parameters included in the datasets; however, it looked for the main contributors to the performance of the
semaphore. After finishing the analysis, we could better understand the interactions between the 14 parameters
and better select the FIS inputs.

Since 2012-2021 dataset was not available for each year but instead was averaged for the period, it was compared
with the available last year's information. To accomplish this, we applied adversarial validation on the combined
dataset. The process consists of the following steps: 1) Combine both datasets. 2)Add labels to identify the period
they belong to, 0 for the 2012-2021 and 1 for the 2021 dataset. 3) Trained a simple classifier to infer the target
class and 4) Infer the target class for the validation dataset and evaluate the model.

Then, the data was split into train, test, and validation datasets. Finally, a decision tree classifier was trained and
evaluated. The classifier parameters were n estimators: 100, min sample split: 2, min sample leaf: 1, max features:
sqrt, bootstrap: True and random state: 300. Because of the unbalanced classes associated to the semaphore and
the size of the datasets, the adversarial validation process was combined with under-sampling for the large classes
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and over-sampling for the smallest class as a strategy to balance the target class. Finally, cross-validation to test
the model's performance was done.

The design phase of the fuzzy inference system (FIS) consisted of selecting the input parameters and defining
the output. Then FIS type was selected, and the membership functions were proposed based on the data
distributions and looking for consistency in the membership grades associated with each measured value of all
possible values of the universe.

The dictionary of rules and fuzzy terms was built according to the knowledge of experts and the work reported by
CONAGUA. Consequently, the groundwater quality fuzzy semaphore was implemented to inference the results.
Finally, an evaluation of the inference results associated with the semaphore classes was performed and compared,
based on classical metrics used in automatic classification.

(a) Data

The groundwater quality datasets were created by Comision Nacional del Agua (CONAGUA) as part of a program
that included 665 groundwater bodies and 14 parameters: Fluorides, Fecal Coliforms, Arsenic, Nitrate-Nitrogen,
Cadmium, Chromium, Mercury, Lead, Alkalinity, Conductivity, Hardness, Total dissolved solids (TDS),
Manganese and Iron. CONAGUA provides two available public datasets. The first one is the groundwater quality
from 2012 to 2021 which contains the mean value of the measurements in the considered period and the semaphore
class, including 2197 instances, and the second one is the Groundwater quality recorded in 2021, with 665
instances.

Both datasets include a class identification associated with the semaphore's color to classify a water body's quality.
The quality of groundwater measured by CONAGUA follows national and international standards such as the
National Waters Law and the Ecologic Equilibrium and Environment Protection Law [5]. A group of parameters
determines the semaphore classes. If any of the parameters in the group exceeds the permitted levels, it affects the
water body quality, and a label is assigned. The clustering is defined as follows: Green label: All 14 parameters
lie within the permitted levels. Yellow label: either of these parameters surpasses the permitted levels, Alkalinity,
Conductivity, Total dissolved solids (TDS), Manganese and Iron.

Red: either of these parameters surpasses the permitted levels, Fluorides, Fecal Coliforms, Nitrate-Nitrogen,
Arsenic, Cadmium, Chromium, Mercury, and Lead.

Both datasets were converted to CSV format to process them using the Python library Pandas v1.5.3 for data
manipulation the resulted data set sample is presented in Figure 1.

Conductivity Hardness = TDS Semaphore

0 3290 128.831 210.56 Green
1 6156.0 221.7114 393.6 Green
2 636.0 221.7114 407.04 Green
3 379.0 141.8154 242.56 Green
4 354.0 138.818 226.56 Green

Figure 1. A sample of the transformed groundwater dataset 2012-2021

(b) Data Analysis

Before any statistical analysis of the datasets, it is necessary to clean them and prepare the format used to represent
the data; In this case, some variables included nominal values containing less than and greater than symbols (i.e.,
400>, 0.01<) instead of the float data expected. After casting the data type from string to float, rows with missing
values were removed from the 2012-2021 and 2021 datasets having 129 and 361 rows removed, and 6% and 54%
reduction, respectively. A statistical characterization was done to obtain each parameter's minimum, maximum,
mean, standard deviation, and error from the 2012-2021 dataset. The analysis was repeated for the 2021 dataset
and the distribution characteristics.

(¢)Fuzzy Inference System Design

A system with two Fuzzy inference subsystems was proposed. The primary FIS was designed to assess
groundwater quality, looking to reduce the number of features. This FIS has four input parameters: Conductivity,
Total Dissolved Solids (TDS), Hardness, and Metals level. The secondary FIS measures the levels of metals in
groundwater; the result is an input to the primary subsystem. The proposed FIS for metals levels reduces the
complexity and number of rules needed for the Groundwater Quality FIS.
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Figure 2. Membership functions (MFs) of the four input variables of the FIS for groundwater quality

Sigmoid and Gaussian membership functions (MF) were proposed for Conductivity, TDS, and Hardness. For the
Metals levels, two trapezoidal functions were proposed. Figure 2 presents the four input variables of the
Groundwater quality FIS.
The knowledge of expertise is summarized in the criterium of the thresholds for each variable and the primary
interaction between them (Figure 3) So, the dictionary is provided to the Mamdani FIS, which contains 28 rules
that define the system. Each rule evaluates the Antecedents (input variables) and finds an effect according to the
rules generating a fuzzified response.
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Figure 3. (a) FIS for metals levels. (b) FIS to assess Groundwater quality.

Trapezoidal functions were proposed for the Metals level FIS, and the membership functions are displayed in
Figure 4. We considered Arsenic, Cadmium, Chromium, Mercury, and Lead as input in the system. Also, these
five metals were considered by CONAGUA to impact the groundwater quality and modify the semaphore class
to red if any of these parameters exceeded the acceptable level.
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Figure 4. Memberships functions (MFs) of the five input variables of the FIS for metals concentration.
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(d) FIS input selection

The Pearson correlation matrix was used to select the principal variables because this coefficient captured the
linear correlation among pair of variables. It was observed that Conductivity, TDS, and Hardness have a high
correlation compared to the relationship between the rest of the parameters used by CONAGUA to assess
groundwater quality. Therefore, these indicators proved to have a positive relationship. The correlation
coefficients matrix is shown in Figure 5.
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Figure 5. Correlation matrix. Groundwater 2012-2021 dataset

According to the Environmental Protection Agency (EPA), increasing amounts of TDS results in increased
conductivity of water bodies. Figure 6 shows that the positive relation between TDS, Hardness, and Conductivity
is visible, demonstrating the positive correlation of levels among the three parameters.
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Figure 6. Relationship between Hardness, Conductivity and Total Dissolved Solids (TDS).

It is relevant to point out that in the study conducted by CONAGUA, if any of the following indicators: Alkalinity,
Conductivity, TDS, Manganese, and Iron, exceed the acceptable levels, the water body would be directly classified
as yellow[5].

(€)Membership Functions

The integrity of the membership function values associated with each variable along the range of the universe was
tested and adjusted, so the sum of all membership degrees for each value of the four input values of the FIS, is
always one as shown in (1) considering that each element only could belong from 0 to 100% to each function.

lli,j(xj) = Z?:l MFi(Xj) =1 (1

MFi(xj) is the i membership function of N generated for each input fuzzy variable.
xj € X is the value of each input variable j in its universe.

j is each of the four input fuzzy variables.
Mi j(xj) is the sum of the grades of membership associated to each the value x
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(f) Inference Rules

The inferences rules for the FIS were defined by the observations obtained as part of the data analysis, domain
knowledge of the water quality indices, and the work developed by CONAGUA. Twenty-eight inference rules
were defined for the FIS rules dictionary. Usually, the number of rules in a FIS is expressed by an exponential
formula (2). This formula is as follows:

r= N! ()
Where N is the number of fuzzy variables considered in the input.
1 is the number of possible rules.
i is the number of membership functions are associated to the linguistic terms.

If the five metal parameters were used directly in the main FIS, 32,768 rules would have been needed. So, in this
proposal, the Groundwater quality FIS required a maximum of 1024 rules, and the second FIS required 25 rules.
After analyzing the results, the number of rules was reduced and finally was set to 28. Some rules examples are
presented in Table 1.

Table 1 Example of the Inference rules defined in the FIS.

If Conductivity is Excellent and TDS is Good and Hardness is Soft and Metals Concentration is
acceptable, then Quality is Green

If Conductivity is Good and TDS is Good and Hardness is Soft and Metals Concentration is
Acceptable, then Quality is Green

If Conductivity is Acceptable and TDS is Poor and Hardness is Hard and Metals Concentration is
acceptable, then Quality is Yellow

If Conductivity is Acceptable and TDS is Unacceptable and Hardness is Hard and Metals
Concentration is Unacceptable, then Quality is Red.

If Conductivity is Excellent and TDS is Fair and Hardness is Very Hard and Metals Concentration is
Unacceptable, then Quality is Red.

(g) FIS output

The output of the FIS is a value between 0 and 1 representing the quality of water. The system uses the centroid
method as defuzzification. Each value between 0 and 1 has a membership value for each of the membership
functions of the output variable as shown in Figure 7. We associated the output crisp value with one of the three
semaphore classes, using the maximum membership value on the three possible fuzzy classes as the criterium.

Ground water quality semaphore
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Membership functions of the FIS output variable. The output is a crisp value in the range of 0.0-1.0 that
represents the quality of groundwater. The output variable emulates the water quality semaphore implemented by
CONAGUA, with 3 classes: green, yellow and red.

CONAGUA provides the standards to assess the quality of groundwater bodies in Mexico. In Table 2, we observe
the 14 parameters considered, the standards thresholds, and the semaphore class associated in case the parameters
exceed the acceptable levels. So, the dictionary of rules, the membership functions for each input parameter as
well as the output of the FIS design were guided by the CONAGUA standards.
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Table. 2 Groundwater quality standards proposed by CONAGUA as part of their study to assess groundwater
quality, including the three semaphore classes [5]

Parameter Ranges Semaphore
Acceptable Unacceptable
Conductivity | C<=250 250<C<=750 750<C<=2000 2000<C<=3000 Cond>3000 Yellow
Excellent Good Acceptable Poor Unacceptable
Hardness H<=60 60<H<=120 | 120<H<=500 H>500 Yellow
Soft Relatively Hard Very hard
soft
TDS TDS<=1000 1000<TDS<=2000 2000<TDS<=10000 | TDS>10000 Yellow
Good Poor Unacceptable
Arsenic As<=0.01 0.01<As<=0.025 As>0.025 Red
Excellent Good Unacceptable
Cadmium Cd<=0.003 0.003<Cd<=0.005 Cd>0.005 Red
Excellent Good Unacceptable
Chromium Cr<=0.05 Cr>0.05 Red
Excellent Unacceptable
Mercury Hg<=0.006 Hg>0.006 Red
Excellent Unacceptable
Lead Pb<=0.01 Pb>0.01 Red
Excellent Unacceptable

(h) Defuzzification

The FIS uses the Centroid as a defuzzification method, so the fuzzy variables turn in crisp values. The Centroid
method calculates the center of the area under the curve of the output membership function (MF) obtained with
the Mamdani inference method.

(i) FIS implementation

We used MATLAB® version R2022b and the Fuzzy Logic Toolbox to design the system. Then it was migrated
to a Python™ version to be deployed as a Web service or a portable online system. In this case, the FIS was built
using the library ScikitFuzzy v0.4.2s, Python 3.10.9, and NumPy 1.22.4. In Figure 8 is presented an inference
result with the FIS using a chosen data point from the 2012-2021 dataset. The input values used for this simulation
were: 641 (Conductivity), 410.24 (TDS), 219.714 (Hardness), and 0.77 (Metals level). For this selected point, the
quality was 0.1522, so it is mapped to the “Red” class of the semaphore. The vertical dashed line in the figure
marks the intersection with the membership associated with the output variable, so the crisp output value obtained
is the maximum of the membership grades at that point: 0.1522.

FIS output

Degree of membership

0.4 0.6
Quality

1.0

Figure 8. FIS inference example using the data point (641,410.24,219.71,0.77) from the 2012-2021 dataset.

(j) FIS testing

The 2012-2021 and 2021 datasets were used to test the FIS. The first part of the testing was to fetch the data to
the Metals FIS to obtain the output “Metals level”, one of the inputs to the Groundwater quality FIS. Once the
Metals level parameter was obtained, we fetched the four inputs to the FIS (conductivity, TDS, hardness, and
Metals level). The inference and defuzzification of the Groundwater quality FIS were evaluated with the dataset.
Finally, outputs were mapped to one of the three semaphore classes based on each output’s membership value.
So, fuzzy semaphore and a crisp semaphore were compared.
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(k) FIS Evaluation

Then a confusion matrix was used as a metric to evaluate the similarities of the proposed system with the crisp
CONAGUA semaphore as a reference. In the confusion matrix, the actual classes reported by CONAGUA and
the obtained classes by the FIS are compared with each other to analyze the performance of the FIS using both
datasets.

Because the 2012-2021 dataset was used to construct the FIS, then the 2021 dataset was used to evaluate it. Metrics
computed to evaluate the FIS were accuracy, precision, recall, and F1 score. To calculate each score, we separately
considered the semaphore labels obtained for the 2012-2021 and 2021 datasets.

RESULTS:

To analyze the data distribution visually, we plotted the histograms for each parameter for both datasets,
Groundwater quality 2012-2021 and 2021 (Figure 9 and Figurel0). The histograms show a positive-skewed
distribution for the TDS, conductivity, and Hardness; therefore, an exponential distribution would be better to
approximate these parameters.

On the other hand, metals such as Cadmium, Lead, Arsenic, Mercury, and Chromium do not have significant
variation. Descriptive statistics are presented in Table 3.

If just the 2021 dataset is considered, the distribution characteristics are summarized in Table 4, and the histograms
shown in Figure 10. The 2012-2021 dataset results were summarized in a confusion matrix presenting the classes
assigned by the proposed FIS (Figure 11A) compared with the classes included in the dataset defined by
CONAGUA.

Table 3 Descriptive statistics of the features considered in Groundwater dataset for 2012-2021.

Parameter Min Max Mean Standard Standard Kurtosis Skewness
deviation error

TDS 7.68e+01 3148.80 6.13e+02 4.92e+02 2.82e+01 4.97 2.02
Conductivity  [1.20e+02 4920.00 9.58e+02 7.69e+02 4.41e+01 4.97 2.02
Hardness 1.99¢+01 1637.86 2.81e+02 2.28e+02 1.30e+01 10.08 2.52
Cadmium 2.90e-03 0.00 2.90e-03 4.01e-05 2.30e-06 304.00 17.43
Lead 4.90e-03 0.02 5.09¢-03 1.89¢-03 1.08e-04 126.71 11.03
IArsenic 9.00e-03 0.31 1.92¢-02 2.92¢-02 1.67¢-03 42.09 5.60
Mercury 4.90e-04 0.001 5.07e-04 9.25¢-05 5.31e-06 49.81 6.63
Chromium 4.90e-03 4.25 2.42¢-02 2.44¢-01 1.39¢-02 300.50 17.28
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Figure 9. Parameters distribution. 2012-2021 Groundwater Quality dataset

The 2012-2021 dataset results were summarized in a confusion matrix presenting the classes assigned by the
proposed FIS (Figure 11A) compared with the classes included in the dataset defined by CONAGUA. CONAGUA
classified 2197 groundwater bodies all over Mexico. After the data cleaning process, 6% of rows were removed
from the 2012-2021 dataset leaving information about 2068 water bodies left. Out of the 2068 water bodies
registered in the 2012-2021 dataset, 888 were classified as Green, 802 as Red, and 378 as Yellow by CONAGUA.
On the other hand, for the 2021 dataset, the FIS classified 918 water bodies as Green, 598 as Red, and 552 as
Yellow.

Figure 10. Parameters distribution of the 2021 Groundwater dataset
Table 4 Descriptive statistics of the parameters of Groundwater quality 2021 dataset.

Parameter IMin Max Mean Standard Standard Kurtosis Skewness
deviation error

TDS 2.49¢+01 12880 7.01e+02 8.09¢+02 1.77e+01 53.20 5.72
Conductivity  [2.77e+01 16100 1.07e+03 1.10e+03 2.41e+01 35.49 4.50
Hardness 1.99¢+01 5828.68 3.38e+02 3.71e+02 8.16e+00 36.55 4.27
Cadmium 2.90e-03 0.15 3.02e-03 3.57e-03 7.85e-05 1576.02 38.42
Lead 4.90e-03 0.08 6.65¢-03 7.10e-03 1.56e-04 36.53 5.48
|Arsenic 9.00e-03 0.41 2.12e-02 3.42e-02 7.52e-04 42.07 5.62
Mercury 4.90e-04 0.02 5.18¢e-04 4.46e-04 9.82e-06 1627.45 38.46
Chromium 4.90e-03 2.14 9.44e-03 7.60e-02 1.67¢-03 704.93 26.34
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The total number of groundwater bodies labeled by the FIS is 2068, accounting for 94% of the 2012- 2021 dataset.
And the Groundwater quality FIS inferred the classes presented in Figure 12, reporting a percentage of the same
labeled groundwater bodies: 75% Green, 69% Yellow, and 67% Red. The results obtained by the FIS using the
Groundwater Quality 2021 dataset are shown in the confusion matrix in Figure 11B, presenting the CONAGUA
semaphore and the FIS classes.

Red
Rad

FIS Classes
Yellow

FIS Classes
Yellow

Green
Green

Red Yellow Green Red Yellow Green
Artunal Clacsas Artital Classas

Figure 11. Confusion Matrix of the FIS and CONAGUA classes of Groundwater quality. A) 2012-2021, B) 2021
dataset.

As for the 2021 dataset, CONAGUA classified 665 groundwater bodies. After removing the rows with missing
values, we ended up with 304 water bodies representing 46% of the 665 water bodies; 128 were classified as
Green, 52 as Yellow, and 124 as Red by CONAGUA.

CONAGUA FIS

750
500 500

250 250

o

Semaphore Classes Semaphore Classes

Figure 12. Semaphore classes. Groundwater Quality 2012-2021 dataset.

The FIS inferred the classes shown in Fig. 13, reporting 131 as Green, 88 as Yellow, and 85 water bodies as Red.
The percentage of the same labeled water bodies per class is 67% Green, 62% Yellow, and 49% Red.

CONAGUA FIS
100 100

50

Semaphore Classes Semaphore Class

Figure 13. Semaphore classes. Groundwater Quality 2021 dataset

This result shows differences mainly in the red and yellow classes, so the fuzzy values were analyzed. The
distribution of the FIS output for the 2012-2021 and 2021 datasets is shown in Figure 14. The FIS output named
“Quality” is in the range of 0 to 1. The semaphore class colors the membership grade values of the output variable.
One first observation is that the 2012-2021 data represents the average values of 9 years. Nevertheless, the
distribution of the semaphore classes is like the 2021 dataset.

Therefore, we can tell that the behavior of groundwater bodies in 2021 is not far from the general behavior as is
reported in the adversarial evaluation.
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Figure 14. FIS output values colored by their corresponding semaphore class

Finally, the comparison of the dataset in the fuzzy semaphore shows a slightly difference in the internal
distribution into the semaphore that is not possible to observe in the crisp version proposed by CONAGUA.

For our study, the weighted F1 better approximates how well the FIS performed, given that this metric considers
both the precision, the recall, and the imbalance of the semaphore classes. In Table 5, the results are presented for

both datasets classification.

Table 5 Scores of the metrics used to evaluate the FIS semaphore with controversial evaluation.

Metric 2012-2021 Scores 2021 scores

Accuracy 0.71 0.59

Precision 0.75 0.63

Recall 0.71 0.59

Fl1 0.72 0.60
DISCUSSION

The Mexican states with better groundwater quality evaluation are associated with more green assignments to
their water bodies classified by CONAGUA. They are Sonora (136), Guanajuato (132), and Durango (109); the
FIS semaphore obtained the same states as follows Guanajuato (157), Sonora (131), Durango (114). On the other
hand, states with more red water bodies identified by CONAGUA are Durango (241), Guanajuato (109), and
Coahuila (77). Similarly, the results obtained by the FIS semaphore are Durango (195), Guanajuato (79), and
Coahuila (50).

Lastly, the top states with yellow water bodies classified by CONAGUA are Sonora (44), Yucatan (42), and
Coahuila (31). In contrast, the FIS semaphore obtained the following: Yucatan (82), Sonora (68), and Tamaulipas
(56). The FIS obtained similar results in all three classes, accounting for the top 3 states per class.

Over the years, several indices have been developed to assess surface and groundwater quality. These works
define the critical parameters concerning water quality and provide a partial solution in water assessments [13].
Some of the worldwide representatives are the National Sanitation Foundation Water Quality Index (NSFWQI),
the Canadian Council of Ministers of the environment water quality index (CCMEWQI), the Oregon Water
Quality Index (OWQI), and the Weight Arithmetic Water Quality Index (WAWQI). All these indexes include
TDS, Hardness, Alkalinity, Biochemical Oxygen Demand (BOD), and Dissolved Oxygen (DO) as the usual
parameters to calculate the water quality. The parameters' selection differences are related to the water's final use.
CONAGUA uses worldwide information such as guidelines for drinking water quality[14], agriculture water
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quality, and other countries regulations as Bolivia, Chile, Spain, New Zealand, Canada, Malaysia[15].
Nevertheless, the final Mexican thresholds are defined by Mexican regulations, considering information from the
Federal Laws in the section: National Applied Disposition in the matter of water [6], Health Secretary [7] and the
Urban Development and Ecology Secretary [8]. Hence, it is the reference of this study. An updated norm NOM-
001-SEMARNAT-2021 has been identified, but it was not considered in this model proposal because data were
classified with the previous version. However, if required, the system could be upgraded with new values in a
future version.

This work pretends to generate a methodology for implementing the fuzzy inference system based on the available
national information. One of the first steps is to understand the data provided by the datasets and gather all the
information associated with the problem. Then preprocessing the information and finally designing and
implementing the system. The results supported by the computed scores show a good performance of the Proposed
FIS for 2012-2021. However, the performance was drastically reduced, evaluating only the 2021 dataset.

The reduction of the measurement available, the presence of missing values, and changes in the distribution of the
data measured in 2021 could explain the poor performance. Nonetheless, the distribution of the semaphore classes
is similar, and the extensive adversarial test proves no difference. However, the overall performance of the
classifier used for adversarial validation is 0.6132, which means that the distribution of both datasets is somehow
different but not significant enough for the classifier to distinguish them furthermore.

Similar to Sajib et al. [16], the relevance of heavy metal measurements is confirmed in the search for
understanding the relationship between Groundwater and its context. The semaphore is observed to be highly
affected by existing geology, quality of recharge, degree of chemical weathering, level of Groundwater, and some
surface elements. The result of the complex interaction between these processes is reflected in the metrics
considered [10], [17]. As others author reported, it is observed that the quality of Groundwater is subjected to the
interaction between geological and hydrological processes.

CONCLUSION:

A FIS to assess the Groundwater quality was proposed using a reduced number of parameters from the
CONAGUA semaphore. A similar semaphore was implemented using the FIS results to classify groundwater
bodies. However, the FIS uses 8 of the 14 original variables, and five of those eight variables were grouped in a
new indicator named Metals level, which monitors the non-allowed metal levels. The advantage of using two FIS
in parallel is that the number of combinations in the final evaluation is considerably reduced. If all variables were
used, there would be 1024 rules according to the exponential formula used to calculate the total number of rules.
The number of rules used is 28, which represents only 3% of the total number of rules. The parameters with the
highest correlation are Conductivity, TDS, and Hardness. These parameters have a positive correlation higher
than 0.80 and were selected as inputs in the principal subsystem. On the other hand, Cadmium, Chromium, and
Mercury present the highest skewness and kurtosis; therefore, we can tell that the dataset contains several outliers
representing extreme values for these parameters. Even ANFIS could be included in each site to define the water
quality in an intelligent sensor net. In this case, FIS was selected because of the database information structure.
The classification was not the primary goal of this paper; even though the FIS managed to correctly classify above
50% of data points for each semaphore class, the FIS can improve its performance by fine-tuning the chosen
inputs and increasing the dictionary of rules. The main goals were to follow the standard thresholds provided by
CONAGUA and give a degree of membership in the classes to analyze the distribution inside each one and find
a methodology to prepare and define the rules.

This work is doing into a multidisciplinary project about multidimensional health of Tampamachoco Lagoon.
Although there is a superficial water semaphore, we consider using the groundwater semaphore instead because
the superficial does not consider metals as an indicator of water quality due to the preliminary results of the
multidisciplinary team; Because Metals are presented in the Lagoon then the groundwater semaphore could be
suitable for evaluating the Tampamachoco Lagoon water quality using the proposed model in future work.
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