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ABSTRACT: 

Additive Manufacturing (AM) continues to transform rapid prototyping and low-volume 

production, particularly for applications requiring complex geometries and fast iteration 

cycles. However, its broader adoption in precision engineering remains constrained by 

dimensional accuracy and mechanical reliability limitations. These challenges are especially 

critical in producing components such as gears for mechanical and electromagnetic counters, 

where tight tolerances and functional durability are essential. 

This study explores using Artificial Intelligence (AI) to optimize AM-produced precision 

components, focusing on gear applications. Utilizing vat photopolymerization (VPP) or 

Stereolithography Apparatus (SLA), technologies widely available at the Philippines' 

Advanced Manufacturing Center (AMCen), this study evaluates how various print 

parameters and material choices affect dimensional deviation and mechanical durability. 

Artificial neural networks (ANNs) train the data from experimental prints and performance 

tests. Results show training, validation, and test R² values ranged from 0.75 to 0.86, 0.74 to 

0.94, and 0.79 to 0.93. The total R² is consistent across 10 K-folds. The lowest MSE was 

observed in Folds 4, 6, and 7, aligning with the highest test R² values, with Fold 7 achieving 

the best performance at an MSE of 9.38 × 10⁻⁴ and an R² of 0.92. The overall model 

performance remains consistent regardless of data partitioning, indicating model stability and 

reliability.  

The experimental results showed that the optimal parameter setting was achieved with a 0.05 

mm layer height, 22.5° angle, 15-minute curing time, and 60 °C curing temperature, with 

curing temperature and layer height exerting the most decisive influence on performance. 

The prediction profiler identified 0.075 mm layer height, 22.5° angle, 30-minute curing time, 

and 60 °C curing temperature as the optimal settings, achieving an S/N ratio of 9.51 with a 

desirability of 0.8435. 

KEYWORDS:3D printing, Additive manufacturing, Artificial Neural Network, 

Dimensional accuracy, Machine learning 

 

1) INTRODUCTION: 

 

Additive Manufacturing (AM), also widely known as 3D-printing, is a relatively new and promising technology 

that has seen tremendous growth in researchers' interest in the past few years. In the Philippines, the Advanced 

Manufacturing Center (AMCen) under the Metals Industry Research and Development Center, Department of 

Science and Technology (MIRDC-DOST), aims to be the nation's technological hub for additive manufacturing. 

DOST-AMCen houses multiple 3D-printing technologies that support different research and development 

projects, locally and internationally.  

Currently, there are seven (7) major 3D printing technologies per ISO/ASTM standards, namely material 

extrusion, vat photopolymerization, material jetting,  

 

Table 1. Printing parameters DOE using the L9 Taguchi Method 

 

Case No. 
Layer Height/ 

Thickness (mm) 

Angle 

(degrees) 

Curing Time 

(minutes) 

Curing Temp 

(0C) 

1 0.1 0 15 30 

2 0.1 22.5 30 45 

3 0.1 45 45 60 

4 0.075 0 30 60 

5 0.075 22.5 45 30 
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6 0.075 45 15 45 

7 0.05 0 45 45 

8 0.05 22.5 15 60 

9 0.05 45 30 30 

binder jetting, powder bed fusion, laminated object manufacturing, and direct energy deposition [1]. The general 

process for AM is first to create a Computer-Aided Design (CAD) and process it to generate machine code that 

will fabricate the part layer-by-layer. This creates advantages compared to conventional manufacturing 

(subtractive manufacturing and formative manufacturing), which includes the following: (i) the fabrication of 

complex geometry, which is challenging when using traditional manufacturing, (ii) the production of novel 

material properties, and (iii) reduced material surplus and costs, especially for prototyping. However, 3D printing 

can have defects and faults that are absent in conventionally manufactured parts and products. Some of these 

defects include deflection and distortion in parts, dimensional deviation, porosity, surface roughness, and material 

anisotropy, mainly because of the manner of creation of parts in AM.  

Dimensional accuracy in 3D-printed parts refers to assessing how closely the manufactured dimensions match the 

nominal values of the original model. Since accuracy is a critical aspect of manufacturing, dimensional accuracy 

should be extensively studied to ensure reliability and quality in production. Hanon & Ma [2] investigated the 

accuracy of 3D printed PLA, with different colors and process parameters, while Tungcel [3] investigated 3D 

printed objects using PLA, ABS, and PETG. Furthermore, Okamoto & Ura [4] measured accuracy using an image 

processing system.  

Machine learning (ML), a subset of artificial intelligence (AI), utilizes algorithms to analyze data, construct 

models, and make predictive inferences [5]. From reviewing literature, Artificial Neural Network (ANN) has been 

integrated into 3D printing to investigate the impact of printing parameters on produced parts [6], identification 

of intricate 3D printed patterns [7], and help evaluate the relationship between the process and output parameters 

[8]. 

ANN comprises interconnected mathematical neurons arranged in a structured network. Input signals of varying 

intensities are processed through these neurons, as shown in Figure 1, where they are combined to produce a net 

input transmitted to the next layer. The output layer, which represents the dependent variables, is determined by 

the weights and biases assigned to the connections between neurons [5].  

This study uses an ANN to predict the dimensional accuracy of 3D printed gears fabricated using 

Stereolithography Apparatus (SLA), in partnership with Line Seiki Philippines Inc. (LSPI), a globally recognized 

company specializing in producing a wide range of electronic, electromagnetic, mechanical counters, switches, 

thermometers, and sensors. Research aims to enhance 3D-printed parts by integrating artificial intelligence (AI) 

to produce LSPI products, particularly in developing high-precision gears. 

The Taguchi experiment design is used to provide a systematic experiment run using different variables crucial 

for SLA to identify the most influential factors affecting the quality of the 3D printed gear.  

 

2) METHODS AND METHODOLOGY: 

 

(a)  Design of Experiment 

Stereolithography Apparatus (SLA), or Vat Photopolymerization (VPP), is the AM technology adopted in this 

study. SLA is a resin-based 3D printing technology that utilizes a UV laser to selectively cure liquid photopolymer 

resin layer by layer, forming highly detailed and precise parts.  

Parameters crucial in SLA include the layer thickness, print orientation angle, curing time, and curing temperature. 

These four (4) parameters underwent design of experiments (DOE), which was formulated using the Taguchi L9 

orthogonal array to systematically explore the impact of key printing parameters on dimensional accuracy and 

mechanical reliability. Layer height varies from 0.1, 0.05, and 0.075 while the angle ranges from 0, 22.5, and 45. 

Curing durations were 15 minutes, 30 minutes, and 45 minutes, while curing temperatures used were 30 °C, 45 

°C, and 60 °C, respectively. The parameters studied for VPP were layer thickness, print orientation angle, curing 

time, and curing temperature, as detailed in Table 1. The DOE was generated using the JMP Statistical software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Neural Network Architecture 
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The result analysis follows the smaller-the-better performance criterion, as shown in Equation 1. This approach 

is appropriate since a lower response value signifies better performance. In this study, the objective is to achieve 

a percentage error as close to zero as possible. 

 

(b) Fabrication 

Nine (9) experiment runs were developed and were fabricated using a VPP-based 3D printer available at the 

DOST-AMCen, as illustrated in Figure 2. After fabrication, the dimensions of the printed samples were assessed 

using a Coordinate Measuring Machine (CMM), as shown in Figure 3. Additionally, micrometers, calipers, and 

pin gauges were also utilized to gather supplementary dimensional data.  

Dimensional deviations, such as shrinkage or expansion were quantified and documented for each set of 

parameters. The test model featured different patterns of cylindrical and rectangular holes and embosses, serving 

as a reference for measurement. These varied geometric features were strategically selected to evaluate 

dimensional accuracy comprehensively and effectively. 

 

(c) Machine Learning 

The collected experimental data were screened to develop the ANN algorithm. The dataset includes the printing 

parameters (layer height, angle, curing time, and temperature) and the measured dimensions.  This was used to 

develop predictive models specifically targeting dimensional accuracy, enabling optimization of print parameters 

for enhanced precision.  

In designing the neural network, the hidden layers were structured progressively with neuron counts of 10, 7, 5, 

3, and 2. This gradual reduction in the number of neurons allows the model to capture complex patterns in the 

early layers while compressing and refining information as it moves deeper into the architecture. The dataset was 

divided into three subsets to support training and evaluation. The data was allocated for training, validation, and 

testing, following 50:25:25. The hyperbolic tangent sigmoid activation function was employed for the hidden 

layers. At the same time, purelin (linear) was used for the output layer. These combinations use nonlinearity to 

model complex patterns, ensuring the final predictions are realistic and unrestricted. K-fold cross-validation was 

also included to provide an unbiased estimate of model performance. 

Coefficient of determination (R2) and mean-square error (MSE) were used as the evaluation metric. R2 provides 

the variable distribution in response to the predicted variables. Value is from 0 to 1, where 1 shows perfect 

prediction accuracy. MSE reflects the model's performance using the squared average difference between the 

predicted and actual values. The lower the value, the more accurate the prediction. 

Additionally, statistical analysis was performed on the collected data to determine the significance of each printing 

parameter and its interactions. Analysis of Variance (ANOVA) was used to identify parameters contributing most 

significantly to dimensional deviations. This statistical evaluation provided essential insights into the process 

sensitivity, ensuring optimized printing parameters were statistically robust and practically applicable. 

 

 
Figure 2. 3D-Printing of a model with different parameters from Taguchi DOE using Vat Photopolymerization 

(VPP)  
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Figure 3. Actual 3D-printed parts and dimensional inspection using a Coordinate Measuring Machine (CMM)

3) RESULT: 

 

(a) Prediction of Dimensional Accuracy  

The results of the ANN model training are summarized in Table 2. The training R² values ranged from 0.75 to 

0.86, with the highest performance observed in Fold 1. The model fits the training data, with only slight variations 

across folds, but no extreme overfitting is observed.   

Validation R² values varied between 0.74 and 0.94, with the best result achieved in Fold 9. The result shows a 

higher value than training, indicating that the model generalizes well. The result also achieved a higher value 

(0.94), indicating stability.  

Meanwhile, the test R² values ranged from 0.79 to 0.93, with the highest accuracy recorded in Fold 4. The result 

remains close to validation, confirming a robust and not overfitted model. The total R² values are 0.81 and 0.84, 

which show a very stable model. The overall model  

performance remains consistent regardless of data partitioning. This stability in total R² is a strong indicator of 

model reliability. The lowest MSE was achieved at Fold 4,6, and 7, aligning with the highest test R² results. As 

observed, the lowest MSE is at Fold 7 at 9.38 x 10-4 with the highest R² at 0.92. The graphical illustration of Fold 

7 is shown in Figure 4. 

 

(b)  Signal-to-Noise Ratio 

Table 3 presents the results of the Taguchi design of experiments. The highest S/N ratio of 6.14 was obtained in 

Case No. 8, corresponding to the factor combination of a 0.05 mm layer height, 22.5° angle, the shortest curing 

time of 15 minutes, and the highest curing temperature of 60 °C. This combination represents the optimal 

parameter settings, yielding the greatest accuracy and overall performance. 

 

Table 2. Results of K-fold Validation 

K-fold 

Validation 

Train Validate Test Total 
MSE 

R2 R2 R2 R2 

1 0.86 0.74 0.79 0.81 3.1 x10-3 

2 0.77 0.90 0.81 0.81 1.96 x10-3 

3 0.75 0.91 0.88 0.81 1.54 x10-3 

4 0.82 0.89 0.93 0.84 9.98 x10-4 



TPM Vol. 32, No. S6, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

 

1141 

 

  

5 0.82 0.85 0.86 0.84 1.93 x10-3 

6 0.82 0.85 0.92 0.84 1.30x10-4 

7 0.80 0.90 0.92 0.84 9.38 x10-4 

8 0.84 0.88 0.83 0.84 4.38 x10-3 

9 0.82 0.94 0.84 0.84 1.88 x10-3 

10 0.83 0.89 0.86 0.84 2.45 x10-3 

 
Figure 4. Plot of K-fold 7

Table 3. Taguchi Design of Experiment 

Case 

No. 

Layer Height/ 

Thickness (mm) 

Angle 

(degrees) 

Curing Time 

(minutes) 

Curing Temp 

(0C) 
Mean S/N Ratio 

1 0.1 0 15 30 1.59 -4.57 

2 0.1 22.5 30 45 1.40 -3.01 

3 0.1 45 45 60 1.22 -2.02 

4 0.075 0 30 60 0.44 5.93 
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5 0.075 22.5 45 30 0.59 3.77 

6 0.075 45 15 45 1.11 -1.27 

7 0.05 0 45 45 1.81 -5.19 

8 0.05 22.5 15 60 0.40 6.14 

9 0.05 45 30 30 0.66 3.21 

 

 
Figure 5. Maximized Desirability  

 

67 

Figure 6. Scaled Estimates  

Figure 5 identified the combination of a 0.075 mm layer height, 22.5° angle, 30 minutes curing time, and 60 °C 

curing temperature as the optimal settings, yielding an S/N ratio of 9.51 and a desirability value of 0.8435. The 

scaled estimates in Figure 6 further confirm that curing temperature and layer height significantly influence 

performance. At the same time, angle and curing time are secondary factors contributing to minimizing error. 

 

4) CONCLUSION: 

 

This study successfully demonstrated the capability of ANN models to accurately predict dimensional deviations 

of AM-produced components, particularly with VPP technology. The ANN model was trained using the Taguchi 

L9 orthogonal array and validated with a comprehensive statistical analysis, which provided a reliable predictive 

tool for optimizing AM print parameters. The high correlation between actual and predicted dimensional accuracy 

and excellent training convergence indicated by error metrics affirms the robustness and practical applicability of 

the developed ANN framework. 

The ANN model achieved training R² values between 0.75 and 0.86, with the best result in Fold 1, while validation 

R² ranged from 0.74 to 0.94, peaking in Fold 9. Test R² values were consistent at 0.79–0.93, with the highest 
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accuracy in Fold 4, confirming robustness and absence of overfitting. The lowest MSE was recorded in Fold 7 at 

9.38 × 10⁻⁴, paired with a high R² of 0.92, highlighting the model’s reliability. 

The result of the Taguchi design of the experiment indicates that curing temperature and layer height significantly 

affect the achievement of dimensional accuracy. From the experiment, Case No. 8, with a 0.05 mm layer height, 

22.5° angle, 15-minute curing time, and 60 °C curing temperature, was identified as the optimal parameter setting, 

achieving the highest accuracy and overall performance. Furthermore, the prediction profiler identified the 

combination of a 0.075 mm layer height, 22.5° angle, 30 minutes curing time, and 60 °C curing temperature as 

the optimal settings, yielding an S/N ratio of 9.51 and a desirability value of 0.9986. 

This research significantly enhances dimensional accuracy in additive manufacturing, particularly for precision 

engineering applications, by identifying critical parameters and interactions. The findings not only enhance 

AMCen’s capability for accurate and reliable AM practices but also provide a viable approach to broaden AM 

adoption in precision-driven industries, facilitating further innovations and economic efficiencies in the broader 

manufacturing sector. 

 

5) FUTURE WORK: 

 

Future work will extend the research by exploring dimensional accuracy optimization using other Additive 

Manufacturing technology. Furthermore, integrating Finite Element Analysis (FEA) simulation data into ANN 

training datasets will be explored to develop physics-informed AI models. This approach aims to further enhance 

predictive accuracy by incorporating physical principles into the model training process, improving the reliability 

and applicability of ANN predictions in practical AM scenarios. 
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