
TPM Vol. 32, No. S6, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

470 

 

  

THROUGH-PLANE MOTION CORRECTION IN PHASE-

CONTRAST MRI: A COMPREHENSIVE SURVEY OF 

RETROSPECTIVE AND PROSPECTIVE APPROACHES 
 
 

SHAISTA PARVEEN  

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, KHAJA BANDA NAWAZ UNIVERSITY, 
KARNATAKA, INDIA, EMAIL: shaistaparveen2025@rediffmail.com 

 

Dr Raafiya Gulmeher 

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, KHAJA BANDA NAWAZ UNIVERSITY, 
KARNATAKA, INDIA, EMAIL: raafiya@kbn.university.com 

 

Abstract—Phase-contrast magnetic resonance imaging (PC-MRI) is a fundamental 

technique for non-invasive cardiovascular flow assessment; nevertheless, its precision is 

consistently compromised by through-plane cardiac and respiratory motion, which misaligns 

a static imaging slice with dynamic blood and tissue.  These misregistrations lead to skewed 

assessments of stroke volume, regurgitant percentage, and shunt flow, which impacts clinical 

decision-making.  Although 4D Flow MRI and prospective slice-following methods help 

reduce these inaccuracies, they are still costly and not commonly used.  This survey brings 

together the many different ways that retroactive through-plane motion correction has been 

used with regular 2D PC-MRI. These include valve tracking, displacement-aware 

resampling, velocity-component subtraction, feature tracking, and deep learning.  We 
categorize methods based on their assumptions, computing demands, and common failure 

mechanisms, and we integrate validation practices into a unified evaluation framework that 

includes reproducibility measures and benchmark datasets.  This review statistically 

summarizes the reported enhancements and constraints pertaining to valves, pathologies, and 

acquisition techniques, thereby emphasizing the potential of advanced feature extraction and 

machine learning in enhancing dependability, alongside the significant deficiencies that 

persist.  In the end, we suggest a plan for making motion-corrected PC-MRI a regular part of 

cardiovascular care, which will lead to more accurate and consistent flow measures. 

Keywords—Phase-contrast MRI, Through-plane motion correction, Cardiovascular flow 

assessment, Feature extraction and machine learning, Valve tracking. 

 

I. INTRODUCTION 

 

Phase-contrast magnetic resonance imaging (PC-MRI) has become one of the most effective non-invasive 
imaging techniques for quantitatively evaluating cardiovascular hemodynamics.  PC-MRI lets you directly assess 

blood flow velocity by putting velocity information into the phase of the MR signal. This is different from regular 

cine MRI.  This feature has made PC-MRI necessary for figuring out blood flow patterns, measuring stroke 

volume, checking for valve regurgitation, and describing aberrant hemodynamics in congenital and acquired 

cardiovascular disorders.  Its clinical significance is demonstrated by its extensive utilization in the assessment of 

flow across the aortic and pulmonary valves, quantification of shunts, and evaluation of intracardiac flow 

dynamics. 

 PC-MRI has many good points, however it is quite sensitive to patient movement and changes in the body, 

especially when it is used in its standard two-dimensional (2D) acquisition configuration.  One of the most difficult 

problems is through-plane cardiac motion, which happens when the imaging slice plane doesn't stay still compared 

to the moving heart and arteries during the cardiac cycle.  This movement causes a partial loss of signal, 
inflow/outflow artifacts, and incorrect registration of velocity data, which makes flow quantification less accurate.  

The effect is especially strong when imaging structures that move a lot, including the mitral annulus, tricuspid 

valve, or large vessels around the base of the heart. 

 Errors caused by through-plane motion might lead to wrong clinical metrics such stroke volume, regurgitant 

fraction, or cardiac output.  Because minor percentage changes in these parameters can have a big effect on clinical 

judgments, even small motion-related distortions might cause misdiagnosis or bad treatment planning.  As 

cardiovascular MRI continues to grow into broader populations and becomes important to precision cardiology, 

the necessity for precise, robust, and reproducible flow quantification has never been stronger. 
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Through-plane motion arises primarily from two sources: 

1. Intrinsic cardiac motion – The heart contracts and relaxes during the cardiac cycle, which causes 

structures to move translationally and rotationally relative to the imaging plane. 

2. Respiratory motion – Even with breath-hold acquisitions, small movements of the diaphragm and chest 
wall can change the position of the heart in relation to the imaging slice. 

In normal 2D PC-MRI, imaging slice is positioned to one anatomical location such as just above the valves of 

aorta.  However, whether in systole or diastole, the target structure often is moved out of this plane.  The image 

of the collected phase data thus represents anatomical locations of velocity data that are slightly off-the-record, 

rather than a plane of reference.  The incompatibility leads to a systematic underestimation or overestimation of 

peak velocities and flow integrals. 

 This difficulty has been measured in a number of studies.  As an example, aortic motionless flow measurements 

can vary over 15-20% of reference standards such as 4D flow MRI or Doppler echocardiography.  Mistakes in 

the through-plane direction have the potential to shift patients through clinically significant ranges (such as mild 

through moderate regurgitation) during the regurgitate fraction measurement.  These disparities demonstrate the 

significance of the availability of a motion correction approach that is particular to PC-MRI acquisitions. 

Multiple avenues have been explored to mitigate through-plane motion effects, each with distinct advantages and 
limitations: 

• Prospective techniques – These methods try to reduce movement during acquisition.  Respiratory 

gating, real-time slice tracking with navigators, and multi-slice or 3D acquisitions are some examples.  While they 

work, they make scans take longer, more complicated, and more dependent on technology or physiological 

monitoring. 

• Retrospective image registration – Post-processing registration methods line up sequential cine images 

by figuring out the displacement fields between frames.  Optical flow, mutual information, or rigid/non-rigid 

registration are used in traditional approaches.  Even though these methods are helpful, they can be hampered by 

a poor signal-to-noise ratio (SNR), velocity aliasing, and the fact that it's hard to tell where the walls of a vessel 

are in magnitude images. 

• ROI-based tracking – Some approaches don't try to fix the whole velocity field; instead, they focus on 
changing the region of interest (ROI), like the aortic annulus, frame by frame.  These solutions can help make the 

volume more consistent, although they might not fix partial-volume artifacts or slice-profile misalignment. 

• 4D flow MRI as a reference – Volumetric acquisitions intrinsically record through-plane displacement, 

hence reducing slice misregistration.  But 4D flow takes longer to scan, has worse temporal resolution, and needs 

more computing power, thus it is not practical for everyday clinical application. 

Although numerous solutions exist, strong, computationally efficient, and clinically useful solutions to 

retrospective correction continue to be in high demand and can be used with conventional 2D PC-MRI data.  It is 

at this point that better feature extraction techniques and machine learning techniques can be of real assistance. 

Computer vision, pattern recognition and machine learning have taken enormous leaps in the last decade.  These 

are excellent when one wants to view time-lapse image sequences and obtain meaningful motion information.  In 

the case of cardiac MRI, enhanced feature extraction methods are of three common types: 

• Structural and geometric features – Edge detection, structure-tensor analysis, Hessian-based 

vesselness filters, and phase congruency are some of the methods that may very accurately find the edges of 

vessels and the edges of the heart muscle.  These qualities make it possible to accurately follow anatomical 

landmarks even in MR images that are noisy. 

• Texture and motion features – Local descriptors (such as Gabor wavelets, histogram of directed 

gradients, and local binary patterns) and temporal features (such as optical flow and temporal derivatives) give us 

more information about how tissues move, in addition to geometric cues. 

• Learned representations – Deep learning architectures, including convolutional neural networks 

(CNNs), autoencoders, and transformers, may learn hierarchical features straight from cine MRI data.  Self-

supervised and contrastive learning paradigms facilitate efficient training despite the scarcity of labeled data, a 

common occurrence in medical imaging. 
Combining these feature families gives you a rich, multi-scale picture of through-plane motion.  These properties 

can be used in regression models, including recurrent neural networks and transformers, to figure out how much 

the slice moves during the cardiac cycle.  You may then utilize the generated displacement profiles to resample 

phase images and make rectified velocity fields. 

 Some individual studies have used certain methods for analyzing heart motion, but there is currently no 

comprehensive study that combines their use for correcting through-plane motion in PC-MRI. 

 Correcting motion in PC-MRI is not only of academic interest; it also has direct effects on patient care.  Better 

flow quantification can help doctors figure out how bad a person's valvular condition is, keep an eye on congenital 

heart repairs more closely, and cut down on the need for invasive catheterization.  As cardiovascular MRI becomes 

increasingly common around the world, the availability of strong correction approaches can make high-quality 
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flow measures available to everyone, even in places where the scanner technology or operator competence is not 

always the same. 

 From a technical perspective, motion correction embodies a comprehensive paradigm in medical imaging: the 

integration of sophisticated feature extraction, machine learning, and physical modeling.  Insights gained from 
PC-MRI could enhance motion correction techniques in other imaging modalities, including CT perfusion and 

echocardiography.  Consequently, the influence of this domain permeates the entirety of imaging research. 

A. Motivation and contribution 

Cardiac phase-contrast MRI (PC-MRI) is often not able to accurately measure flow because of through-plane 

heart motion, valvular annulus translation, and cardiac/respiratory drift. These factors cause a static imaging slice 

to be misaligned with moving blood and tissue, which can lead to biased stroke volumes, regurgitant fractions, 

and shunt measurements that can change clinical grading.  4D Flow and prospective slice-following sequences 

help reduce this bias, but they require longer scans, special setups, or vendor-specific features that make them less 

likely to be used by everyone. At the same time, fixes for standard 2D PC-MRI are still scattered across toolchains 

and assumptions, with different levels of validation and little agreement on how to report them.  This survey aims 

to consolidate and critically evaluate methods for correcting through-plane motion, including valve tracking, 

dynamic plane reformats, velocity-component subtraction, displacement-aware resampling, feature-tracking, and 
deep-learning approaches, while elucidating their failure modes, data requirements, and effects on clinically 

relevant endpoints.  By combining algorithms, datasets, and evaluation methods for 2D and 4D PC-MRI, and by 

pointing out problems that still need to be solved, like standard benchmarks, uncertainty quantification, and 

robustness to acquisition parameters, we hope to give researchers and doctors a useful guide for finding motion-

corrected PC-MRI that is accurate, reproducible, and can be used in everyday work. 

• Evidence-synthesized taxonomy. From the surveyed literature, a structured classification of through-

plane motion–correction methods in PC-MRI and 4D Flow is derived, separating prospective approaches (e.g., 

slice-following, motion-compensated gating) from retrospective ones (valve tracking, valvular-velocity 

subtraction, displacement-aware resampling, feature tracking, deep learning). For each class, the survey 

enumerates assumptions, required inputs, computational characteristics, and typical failure modes, and relates 

them to clinical tasks such as trans-valvular flow and regurgitation grading. 

• Harmonized evaluation framework. A simple, reproducible evaluation recipe that includes 

recommended references (volumetric stroke volume, conservation-of-mass, scan–rescan), key metrics (bias, 

limits of agreement, repeatability), and a reporting checklist has been created using reported validation procedures.  

This framework comes with a carefully chosen collection of public datasets and recommendations for tools that 

make it possible to compare rectification procedures in the same way. 

• Quantitative synthesis and coverage mapping. The survey aggregates reported effect sizes and failure 

rates from several studies, organized by valve, pathology, and acquisition parameters, to summarize the expected 

benefits of motion correction and identify situations in which these benefits diminish.   A method-by-setting 

coverage matrix (methods × valves/pathologies × acquisition strategies) is provided to identify evidence gaps, 

highlight insufficiently investigated areas, and facilitate meticulous cross-study synthesis in the future. 

 
II. RELATED WORK 

 

A simple overview [11] describes the PC-MRI physics, typical 2D through-plane acquisitions, and the primary 

sources of error that have led to it being difficult to measure volumetric flow with precision.  A key place to start 

any survey since it describes how velocity is encoded, how pixelwise flows can be aggregated, where bias is 

introduced (such as plane misregistration), and why post-processing techniques (masking, background offset 

correction, and partial-volume considerations) become important before you even attempt to fix motion.  

 The [12] on 4D Flow CMR generalizes retrospective valve tracking (RVT) and other reformatting methods which 

are useful in reducing through-plane plane-motion bias by measuring a dynamic plane moving with the annulus.  

It is mainly 4D flow training, but discusses how centerline-based placement of planes and registration/propagation 

of contours is to promote the robust valve-based analytical ideas that can be applied to fixing 2D PC-MRI 

problems as well.  
 The effect of through-plane heart motion correction on the decision-making process can be explained by a focused 

clinical study [13]: when aortic regurgitation grading with 2D PC-MRI, valve-tracking-based correction 

significantly changes estimates of regurgitant volume/fraction, compared to uncorrected analysis.  The value of 

the method is that it only requires information already present in routine CMR scans (cine) to track the annulus 

and re-assess flow. This implies that it does not increase scan time and that it offers a workable method through 

which doctors can commence its use.  

 Past feasibility tests [14] undertaken in the ISMRM community indicated that it is reliable and accurate to trace 

the aortic valve based on regular cine images to correct 2D phase-contrast planes.  Although introduced as an 

abstract, it spawned the modern generation of cine-assisted, retroactively applied through-plane motion correction 

pipelines that do not require any modifications to the sequence.  
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 In [15], the paper evaluated the clinical effect of regurgitation: PC-MRI underestimated the severity with no 

consideration of through-plane cardiac motion, and memories a high inter-individual variation.  The result 

highlighted that the small annular excursion of the valve vorticity bends the per-beat flow integrals and peak 

velocities and this indicates the importance of valve-sensitive analysis.  
 3D 3-directional velocity encoding at the heart base is one of the earliest technological applications of RVT. This 

did not restrict dynamic reformats simultaneous multi-valve flow measurements across each valve plane.  This 

retrospective plane following showed that analysis that is matched to dynamic anatomy reduces misregistration 

errors-a concept later incorporated into theory to correct 2D flows.  

 In the same vein a paper [17] established the application of concomitant four-valve measurement using 

retrospective plane tracking in volunteers and in patients.  The approach improved valve-based regurgitant 

assessment by re-aligning planes to annular motion, therefore providing a ground truth behavior in estimating the 

bias in fixed-plane 2D data.  

 Progressing toward automation, research in a [18] developed dynamic valve monitoring pipelines that identify 

and track aortic and mitral annuli over time, and thereby motor flow measurement.  The approach demonstrates 

that operator time and variability can be minimized by using trained detectors and tracking (feature extraction in 

cine). It also establishes guidelines of automated, anatomy-sensitive flow analysis that can be pursued by 2D PC-
MRI corrections.  

 In parallel, MVnet [19] sought to achieve fully automated, time-resolved the tracking of the mitral valve plane 

with cine MR with deep learning.  The architecture (temporal feature extraction, localization of landmarks, 

smoothness constraints) is directly applicable to estimating slice-normal displacement signals required in through-

plane correction of 2D PC-MRI, although its immediate application is to characterize valve motion.  

 As in [20], a multi-site study assessed whole-heart 4D flow with RVT monitoring forward-flow and velocity as 

a function of valves and against cine stroke volume.  The tests of reliability show that RVT stabilizes observations 

even in the presence of inter-site variability, which highlights the general principle that plane-motion bias can be 

effectively countered by tracking the moving valve/annulus- a principle that can be applied to retroactive 

corrections of 2D data.  

 Along with the push of the valves, the push of the respiratory motion’s matters.  Studies of respiratory-gated 4D 
flow using adaptive reordering of k-space (ReCAR-4DPC) [21] are shown to have better efficiency and 

reproducibility, in addition to comparing hemodynamic outcomes to 2D PC baselines.  These results demonstrate 

the synergistic effect of motion handling, i.e. respiratory motion, with valve-aligned analysis to increase 

agreement and reduce bias - useful insights to 2D correction pipeline development.  

 Compressed sensing was developed, which enabled 2-minute aortic 4D flow [22] without sacrificing the accuracy 

of the conventional techniques.  The volumetric flow of RVT can reduce the need to acquire single-plane 2D 

acquisitions where there is a significant drawback namely through-plane flow. Meanwhile, the sequence displays 

the target behavior (valve-following planes) that is attempted by the retrospective 2D corrections algorithmically.  

 Another free-breathing, real-time 2D PC-MRI [23] is highly accelerated, therefore, captures flows without breath-

holds and minimal gating overhead, therefore, reducing timing errors and some motion artifacts.  

 Real-time velocity-vector reconstruction strategies [24] are extension of conventional through-plane 2D PC-MRI, 
adding in-plane components at higher frame rates, thus supporting a more detailed characterization of flows.  Such 

approaches are focused on sample efficiency and reconstruction, specifically stating that the standard 2D 

acquisitions ignore in-plane flow and are vulnerable to motion through planes. This highlights the need to resample 

the displacement-consciously, and ROI-tracked, during analysis.  

 A biomechanics article [25] on aortic valve flow emphasized the contamination of through-plane velocity maps 

used as CFD boundary conditions in a modeling context due to cardiac motion (annular excursions and 

nonparallelism between the annulus and the PC-MRI plane).  It discusses the first efforts to remove the phase of 

near-wall so as to minimize motion contamination. These were primitive yet fundamental steps to the current 

correction algorithms which consider the anatomy.  

 A typical AJR review of PC-MRI applications [26] enumerated thousands of measurement errors including 

misalignment and motion errors in 2D flow mapping.  The paper was authored prior to the modern-day deep 

learning, yet it demonstrates how minimal variations in peak velocity and net flow could result in different severity 
classes of stenosis/regurgitation. This further increases the clinical necessity of through-plane correction.  

 Recent clinical evaluation of [27] 4D Flow MRI indicates that 2D PC-MRI is not highly accurate during in-plane 

motion. Conversely, RVT that translates volumetric data freezes the annular movement and eccentric jets.  In the 

case of surveys, it is the clinician-facing, straightforward description of the problem/solution pair. It is also useful 

to make feature-driven 2D adjustments appear to people as a viable means of navigation in cases where 4D flow 

is unavailable.  

 The practical considerations of aortic disease are also updated with a relevant RSNA paper [28] on thoracic aorta 

4D flow and once again presents retrospective multiplanar navigation and valve-aligned analysis as a norm.  What 

this means to your survey is that it allows you to tie technical motion-handling solutions to the downstream 

biomarkers (e.g., wall shear stress and jet angle), which can be susceptible to plane misregistration in 2D PC-

MRI.  
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 A comprehensive review of deep learning [29] to deep learning-based retrospective motion correction in MRI 

includes architectures (CNNs, RNNs, transformers), priors (self-supervision, adversarial losses) and physics-

informed constraints.  Taxonomy The modality-general taxonomy is suitable, although it is also applicable to 

cine-based displacement estimation and phase-image resampling in 2D PC-MRI. It stresses multi-scale properties, 
time smoothness, and soft physics constraints (as mass conservation).  

 In a recent chapter on [30] retrospective motion correction, it is discussed how methods in the image and k-space 

domain, motion model assumptions, and practical trade-offs.  Its structure aids in classifying 2D PC-MRI through-

plane corrections into three categories: (i) anatomy tracking and resampling (image-domain), (ii) plane 

reformatting (volumetric data), or (iii) combined methods that approximate the motion and corrects it in the 

reconstruction phase. It is a good method of conducting an organization of the procedures you utilize in your 

survey.  

 A normal method to quantify the effectiveness of motion correction in qMR is fitting error. This is founded on 

the notion that the difference between the two features is increased by the misalignment.  This manuscript [31] 

evaluates the accuracy of the fitting error score in cardiac diffusion tensor imaging (cDTI) after the deformable 

registration.  We found that error of fit is negative in cases of the error of fit, but negative Jacobian Determinant 

increases when there are damaged cardiomyocytes, as shown by the profiles of the helix angle gradient line. 
 This method [32] is rooted in the fact that the motion of an image computed by the use of a single noisy 

measurement of a pair of images should be equally effective in registering the pair of images in case of a distinct 

noisy measurement. 

 One of the most dramatic effects of acquired imperfection is the motion of the heart disturbed that makes a patient 

move, [33] develops a theoretical framework.  It is a well-known fact that different motion effects may alter vital 

quantitative measures.  These are the paramount issues concerning functional imaging.  The method is anchored 

on multi-pinhole (MPH) and low energy high resolution (LEHR) collimation, and it will be a significant 

improvement over Optial Flow (OF) techniques. 

 This study [34] aimed at using a data-driven dual-gating algorithm to extract respiratory and cardiac triggers 

directly on the list-mode (LM) data and to produce motion-compensated PET images.  Two different motion 

correction methods were analyzed to reduce the physiological motions of the heart caused by respiration and 
cardiac pulsation besides large movements of the patients.  It was believed that the movement of the heart as a 

result of breathing can be calculated as a rigid body movement.  We recorded the images of each cardiac cycle in 

a rigorous manner producing 3D displacement vectors. Then we applied them to an event-by-event LM-based 

iterative PET image reconstruction algorithm. 

 In this work [35], a new method of estimating the heart rate is developed based on an adaptive relaxation 

mechanism of the accuracy and location of spectrum peaks.  The signal sparsity is used to reconstruct the quality 

parameters at first, followed by preprocessing of the PPG and triaxis acceleration (ACC) signals.  Then the dicrotic 

notch of the PPG signal and the energy of the ACC signal are selected as features to quantify the extent to which 

MA is becoming obstructive.  Basing on the degree of interference, an adaptive spectrum correction (ASC) model 

and a modulating law are developed to enable the dynamic removal of MA and noise reduction of motion. 

 [36] propose using motion correction as a part of self-supervised learning to train an end-to-end deep network to 
jointly perform motion correction and IVIM parameter fitting tasks on IVIM sequences.  We received the idea of 

viewing that motion correction and IVIM parameter fitting are two tasks that are related and complementary to 

each other.  Importantly, motion correction between sequences is a form of unsupervised learning, like parameter 

fitting in self-supervised learning, that needs no training data, thereby simplifying network construction and 

making clinical use. 

 This work [37] analyses some of the methods to correct the artifacts and divide the heart cavity simultaneously.  

We analyze the effects of image noise on heart MR pieces.  This technique rests on our latest approach to locating 

and repairing joint artifacts, and so generating high-quality MR images on the basis of k-space, requiring a data 

integrity component, the appropriate logistic regression transformation intelligently transforms the artefact 

correction problem into an under-sampled image enhancement problem.  This is what we would like to propose 

in this work as an extension of recognition networks in edge architecture.  Our training enhances three tasks 

namely, the segmentation process, the restoration of artifacts and the identification of artifacts.  
 Here [38], a novel three-step deep learning (DL) protocol that serially performs motion correction and super-

resolution will be described, leading to the production of more accurate high-resolution 3D volumes of the left 

ventricle blood pool and myocardium. It is shown in a simulation study and in the Sunnybrook Cardiac Dataset 

which is real-world research as compared to existing single-stage methodologies. 

 

TABLE I.  Survey Table 

Reference 

Method 

Advantages Disadvantages Research 

Gaps 

Valve 

Tracking 

Utilizes cine 

data without 

May fail with poor 

image quality; 

Automation, 

robustness 
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added scan 

time; 

clinically 

practical; 

improves 
regurgitation 

quantification 

requires accurate 

valve contouring 

across 

pathologies, 

and standard 

evaluation 

benchmarks 

Displacement-

aware 

Resampling 

Corrects 

velocity fields 

by accounting 

for 

displacement; 

reduces slice 

misalignment 

bias 

Computationally 

demanding; 

sensitive to SNR 

and aliasing 

Generalization 

across scanners 

and acquisition 

parameters 

Velocity-

component 

Subtraction 

Removes 

motion-related 

velocity 
contamination 

near valve 

annulus 

Simplistic; may 

not fully correct 

partial-volume and 
complex motion 

effects 

Integration 

with advanced 

modeling; 
limited 

validation 

Feature 

Tracking 

Reduces 

operator 

variability; 

tracks 

anatomical 

features over 

time 

Dependent on 

reliable feature 

extraction; may 

not handle noise 

robustly 

Standardized 

features, 

reproducibility, 

and multi-site 

validation 

Deep 

Learning 

Learns 

displacement 

and correction 

directly from 
data; scalable 

with large 

datasets 

Requires large 

labeled datasets; 

risk of overfitting; 

interpretability 
issues 

Standard 

benchmarks, 

clinical 

integration, 
and uncertainty 

quantification 

4D Flow MRI 

(Reference 

Standard) 

Captures 

volumetric 

displacement 

inherently; 

provides high 

accuracy 

Longer scan times; 

high 

computational 

cost; limited 

clinical availability 

Accessibility 

for routine use; 

faster 

reconstruction 

methods 

Prospective 

Slice 

Following 

Reduces 

misregistration 

during 

acquisition; 
mitigates 

through-plane 

errors at 

source 

Needs special 

hardware/software; 

longer setup; 

limited availability 

Clinical 

feasibility and 

adoption; 

standardization 
across vendors 

 

III. CONCLUSION: 

 

Two-dimensional PC-MRI motion through-plane remains a major issue. It also tends to produce inaccurate stroke 

volume, regurgitant percentage, and shunt flow estimates, which may have an effect on therapeutic choices, 

although it can be addressed with 4D flow MRI and prospective slice-tracking, which are not routinely used due 

to their longer scan time.  Retrospective methods such as valve tracking, feature tracking, displacement-aware 

resampling, velocity subtraction as well as displacement-aware deep learning have been important in increasing 
the accuracy in the traditional 2D PC-MRI methods. This survey has categorized existing methods, assembled 

validation processes and created a map of their validity in valves, patient groups and acquisition strategies.  We 

evaluate how better feature extraction and machine learning have gotten things moving, but we also evaluate the 
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importance of having defined benchmarks, reproducible assessments, and, above all, clinical sound 

implementations.  The addition of data driven and physics informed models coupled with easy integration with 

clinical processes is a potential solution to motion-corrected PC-MRI that is accurate, reproducible and applicable 

at large scale across cardiovascular care. 
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