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ABSTRACT 

Proximity detection works in conjunction with other enabling technologies and becomes an essential 

requirement for interaction in a ubiquitous collaborative environment. Mobile and embedded systems 

are increasingly widespread with advancements in technology; hence, detecting and tracking the 

location of users or objects in that environment becomes crucial for context-sensitive communication, 

system behavior, and service delivery. This paper aims to review techniques for proximity detection, 

exploring their applications in ubiquitous collaboration. We explore fundamental enabling 

technologies, including RFID, Bluetooth, Wi-Fi, ultrasonic, and infrared systems, thoroughly focusing 

on their principles of operation, benefits, and limitations. From collaborative workspaces and location-

based services to innovative environments, the paper presents a range of real-world applications and 

acknowledges implementation challenges, including privacy, security, interoperability, and scalability. 

Several case studies are presented for successful deployments, best practices, and ongoing research 

trends. With this evaluation, we provided insights and recommendations to aid further research and 

system design in proximity-aware ubiquitous collaboration systems. 

Keywords: Proximity detection, ubiquitous computing, collaborative systems, context awareness, 

RFID, Bluetooth, intelligent environments. 

 

I. INTRODUCTION 

 

In the context of ubiquitous computing, where innovative environments anticipate user interaction, proximity 

detection has emerged as a key feature to enable user-device interaction. Modern systems enable collaboration across 

silos in various domains, including education, healthcare, industry, and enterprise [1]. Proximity awareness enables 

the understanding of real-time context and spatial relationships, which is crucial for effective collaboration across 

disciplines. Enhancing systems responsiveness and interactivity improves user experience, allowing for a more natural 

interface. 

Between 2021 and 2025, the proliferation of advanced sensing and wireless communication technologies greatly 

enhanced the potential for accuracy in proximity detection. There are now various approaches for detecting presence, 

movement, and orientation, including Bluetooth Low Energy (BLE), Radio Frequency Identification (RFID), Wi-Fi-

based sensing, ultrasonic, and infrared sensors [3]. While each technology offers a unique approach, they differ in 

range, accuracy, energy consumption, and integration complexity. Automation of context-aware systems that enable 

service mobilization removes the need for direct human mediation. These technologies enable context-aware service 

triggering and device-user coordination [12]. 

In smart collaborative environments, proximity detection is helping optimize user interactions in various novel ways. 

Smart workspaces recognize and personalize digital interfaces for participants; educational systems perform roll call 

to start group activities based on student location; and healthcare devices monitor caregivers’proximity and adjust task 
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allocation accordingly [30]. These scenarios demonstrate the potential of proximity-based technologies to enhance 

human-system interactions, fostering more flexible, responsive, and context-aware relationships [15]. 

The implementation of such systems presents several technical and ethical challenges. Privacy is always a major 

concern, especially when users may be monitored without their knowledge or data collected without explicit consent 

[5]. Vendor dependence for device integration often imposes limitations on scalability, while high sensor density 

within a given area can result in signal noise, which can impair detection accuracy [34]. Designing effective systems 

that ensure user trust, reliable operation, low energy consumption, and minimal enforcement of restrictive policies is 

very challenging [14,32]. 

These trends and challenges should be considered in support of advancing collaboration, which can be experienced 

everywhere [16]. The combination of new expectations set by users and the evolution of smart infrastructure makes 

the case for reliable, scalable, secure, and interoperable proximity detection systems [9]. With continued efforts in 

research and development for this area, adaptive, user-centric, and efficient collaborative environments will inevitably 

place focus on enabling technologies based on proximity detection [17]. 

 

II. RELATED WORK 

 

The recent developments in wireless communication protocols and sensor technologies that improve proximity 

detection within ubiquitous collaborative systems is a significant leap towards modernization [28]. The sensing 

methods used in BLE and Wi-Fi have been studied highly, owing to their good balance of power consumption, signal 

strength, and ease of integration with portable and IoT devices [2]. The methods of BLE beaconing and Wi-Fi 

fingerprinting enable precise indoor localization by analyzing changes in RSSI, CSI, and signal timing, which 

facilitates near real-time context inference crucial for synchronous collaborative interactions in closed spaces [11]. 

RFID technology, particularly in the passive and semi-passive configurations, has been utilized for object 

identification and proximity-based triggering within intelligent environments [10]. Recent hybrid architectures that 

combine RFID with BLE (Bluetooth Low Energy) or UWB (Ultra-Wideband) aim to mitigate problems such as 

multipath fading, tag collision, and limit the read range [8,31]. The systems utilize modulation of signals and Time of 

Flight (ToF) measurements to enhance spatial resolution and minimize interference, thereby improving the reliability 

of proximity sensing in dense deployments, such as collaborative manufacturing floors and interactive exhibits [18]. 

In the realm of precise short-range distance measurement, ultrasonic and infrared (IR) proximity sensors remain of 

utmost importance [19]. The operation of ultrasonic sensors is based on the propagation of ultrasonic waves and the 

precise measurement of the time it takes for the echoes to return [20]. This ability enables the detection of motion and 

presence by calculating the distance with an accuracy of a few centimeters [26]. Additionally, IR sensors provide 

directional distance information even with slight electromagnetic disruptions, making them ideal for augmentation 

with IMUs and ambient light sensors to increase contextual awareness and user intent understanding in collaborative 

tools and augmented reality systems [21]. 

The use of continuous proximity sensing techniques introduces a risk to user privacy, but at the same time, it creates 

an incentive for privacy-preserving solutions that seek to balance user privacy and data utility [24]. Proposals to 

mitigate the risks posed by data exposure include techniques such as data anonymization, homomorphic encryption, 

and edge computing, which are performed on the perimeter of the network [4]. In addition, blockchains enable the 

creation of tamper-proof distributed ledgers, improving data security and access control in IoT ecosystems, which also 

address the weaknesses faced with centralized collection and processing of proximity data [7,27]. These techniques 

strengthen susceptibilities of intrusive proximity data aggregation and processing [6,13]. 

The application of machine learning techniques and sensor fusion approaches have improved the flexibility and 

precision of proximity detection systems [29]. Users are recognized, and complex spatial-temporal patterns within 

dynamic collaborative environments are inferred through the analysis of multimodal sensor data streams using 

advanced deep learning techniques such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) [22,33]. These systems utilize adaptive thresholding mechanisms, outlier detection, and feedback-based 

calibration to maintain operational efficiency under diverse environmental conditions, user densities, and device 

diversity, thereby expanding the limits of elite standards in scalable and ubiquitous collaboration frameworks [25,23]. 

 

 

III. PROPOSED METHOD 

 

The demand for immediate interaction within ubiquitous collaboration systems necessitates strategies that are precise, 

quick, and conserve energy for real-time inter-user and device interaction. This paper outlines a new method of 

proximity detection, which employs both Bluetooth Low Energy (BLE) signal strength and inertial measurement unit 
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(IMU) sensor fusion to achieve higher levels of accuracy and stability in complex environments. Our approach aims 

to enhance detection accuracy while minimizing adverse impacts from signal fluctuations in wireless sensing, all while 

maintaining minimal processing requirements suitable for smart collaborative workspaces. 

The methodology combines BLE Received Signal Strength Indicator (RSSI) measurements with IMU data, which 

includes an accelerometer and gyroscope, using a weighted fusion strategy. The proximity score P is calculated as: 

𝑃 =  𝛼 ×  𝑆𝑅𝑆𝑆𝐼 +  𝛽 ×  𝑆𝐼𝑀𝑈       (1) 

In Equation (1): 

• 𝑆𝑅𝑆𝑆𝐼  represents the normalized RSSI signal strength. 

• 𝑆𝐼𝑀𝑈 denotes the motion stability score derived from IMU data. 

• α and β are weighting coefficients, constrained such that α + β = 1, allowing the system to balance reliance 

on signal quality versus motion context. 

Equation (2) explains the procedure of adjusting the value of the RSSI (Received Signal Strength Indicator) to a 

specified interval from which it would be normalized to a range of [0,1]. 

𝑆𝑅𝑆𝑆𝐼 =  
𝑅𝑆𝑆𝐼−𝑅𝑆𝑆𝐼𝑚𝑖𝑛

𝑅𝑆𝑆𝐼𝑚𝑎𝑥− 𝑅𝑆𝑆𝐼𝑚𝑖𝑛
   (2) 

This form of normalization ensures that the raw RSSI values, which are influenced by environmental factors and 

hardware variations, are mapped within a defined minimum and maximum threshold. This technique particularly 

enhances the reliability and robustness of proximity estimation in heterogeneous smart environments, where devices 

and signal conditions are constantly changing, by standardizing the input range. 

The inclusion of wireless signal metrics and motion context in the proposed methods form a highly accurate and 

adaptable proximity detection technique that is ideal for social active collaboration environments. The system 

combines distance estimation with the use of IMU-based motion signal analysis, which enables the redundancy of 

standalone signal-based approaches. The weighted fusion model in Equation (1) adjusts the weight of each data source 

in a selective manner according to the context. Equation (2) addresses the standardization of the input, specifically the 

RSSI, so that it can be used across different conditions. All these components form a robust framework that guarantees 

real-time performance under user presence detection and interaction with collaborative smart environments. 

In the proposed methods, Figure 1 illustrates the steps from raw data collection to computing the proximity score, 

after which decision-making occurs. The flow contains BLE scanners that continuously fetch RSSI values from 

available devices. Simultaneously, IMU sensors fetch the accelerometer and gyroscope data. All of these data series, 

at a minimum, undergo filtering and normalization and then undergo fusion or merging. With each calculated score, a 

corresponding proximity score is also computed. This score responds to a limit that has a set value but changes over 

time, thereby determining the classification of proximity states and allowing users in collaborative applications to res 
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Figure 1: Hybrid Proximity Detection Flowchart 

Figure 1 demonstrates the entire workflow of the hybrid proximity detection sub-system, which combines data from 

the BLE RSSI, IMU sensor, and machine learning to provide accurate proximity estimates. The first step involves 

collecting activity data and proximity estimation data, which are then processed through feature selection, model 

training, and evaluation using Gradient Boosted Trees. This model is utilized for real-time activity Prediction, which 

is performed alongside average RSSI values to create a dataset for proximity estimation. 
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The lower part of the flowchart showcases the sensor fusion layer, where IMU data is fused with RSSI information to 

estimate averages. The averages which are computed include the mean RSSI, activity metric, and RSSI metric. All of 

the above metrics are tuned for optimum performance. The system then estimates the radius of proximity by 

ascertaining the highest average RSSI, which further augments the proximity assessment. At the same time, an 

inactivity measure is computed by the reliability metric logic, which evaluates the consistency of RSSI and activity 

data over time. Before the metrics reach the filtering stage to eliminate weak or inconsistent outputs, all of the metrics 

are optimized. The estimate provided is referred to as an estimate of proximity. It is deemed reliable as it is protected 

against noise on the signal, jerky user motion, and environmental changes. The logic provides context-sensitive 

disparity detection while factoring in the collaborative needs for the set of environments. The flow demonstrates the 

downtime intention, which is intended to aid the system in achieving a faster signature response time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proximity Detection System Architecture. 

Figure 2 illustrates an example of a structured multilayer framework designed for processing sensor data, enabling 

intelligent and context-aware behaviors that facilitate interactions. This architecture is divided into three separate 

layers: the Sensor Layer, Application Layer, and Processing Layer. All of these layers exhibit a vertical hierarchy, with 

data progressing from its most basic form to more advanced forms, ultimately yielding insights. The process begins 

at the Sensor Layer where raw environmental data and motion data is captured. Emphasis is placed on collecting 

Bluetooth Low Energy (BLE) data, marked by Received Signal Strength Indicator (RSSI), as well as Inertial 
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Measurement Unit (IMU) data from motion generated by wearables or mobile devices. Such input results in "Raw 

Data Streams" which serve as the building blocks for the processing that follows. 

After the steps involved in the initial data acquisition, the "Raw Data Streams" undergo processing in the functional 

block referred to as the Application Layer. This layer is crucial for the development of multi-layered, intelligent, 

context-aware, and collaborative interfaces that facilitate user interactions. Among others, the Application Layer 

performs "Sensor Fusion" and "Proximity Classification". It is reasonable to hypothesize that the data provided by 

several sensors is integrated and analyzed to establish relationships between proximity and context. The contextual 

proximity information, as presented above, is further utilized in the ultimate layer as its input. This layer is fed with 

contextual information and performs advanced sensor fusion and classification algorithms on edge devices or local 

servers. This framework supports the production of near real-time insights, which enables "Auto Device Pairing", 

"Resource Sharing", and "User Presence", as well as other experimental frameworks, where raw sensor data is 

transformed into actionable intelligence for user interaction. 

 

IV. RESULTS AND DISCUSSION 

 

The proposed hybrid proximity detection system was applied and tested in a configured smart workspace with ten 

mobile nodes featuring BLE and IMU sensors. These nodes simulated user-held or wearable devices in a collaborative 

environment. The tests included static positioning, walking, group clustering, and random motion at varying distances 

(0.5 m to 5 m). The system was tested in different environments with signal interference from Wi-Fi networks and 

physical interruptions from people. Detection accuracy, latency, and energy consumption, as well as efficiency, were 

the focus of evaluation, contrasting the hybrid approach with pure RSSI and IMU methods. 

 

Table 1: Accuracy Comparison of Proximity Detection Techniques 

Method Accuracy (%) Avg. Latency (ms) Energy Consumption (mWh) 

RSSI-Based Only 74.6 150 8.1 

IMU-Based Only 79.3 90 6.7 

Proposed Hybrid Method 91.2 95 7.3 

 

Table 1 includes a comparison of the performance of the traditional proximity detection methods and the proposed 

hybrid method. The hybrid method outperformed both standalone RSSI and IMU techniques, reaching an accuracy of 

91.2%, which is significantly greater. It also sustained low latency and moderate energy usage, further supporting its 

use in real-time ubiquitous collaborative systems. Incorporating motion context via IMU data helped stabilize 

detection during user movement, and normalizing RSSI mitigated the impact of signal variability, thereby enhancing 

system robustness. 

 
Figure 3: Performance Comparison of Proximity Detection Techniques 

As shown in Figure 3, the accuracy, latency, and energy consumption of the three proximity detection methodsnamely, 

RSSI-Based Only, IMU-Based Only, and the Proposed Hybrid Method are evaluated. The Proposed Hybrid Method 
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outperformed the RSSI-only and IMU-only approaches by considerable margins, achieving an accuracy of 91.2%, 

which is considerably higher than the RSSI-only's 74.6% and IMU-only's 79.3%. This illustrates the fact that fusing 

BLE RSSI measurements with IMU sensor data enhances the reliability of detection in dynamic collaborative settings. 

Regarding latency and energy consumption, the hybrid method exhibited the lowest average latency of 95 ms, which 

is comparable to the IMU-only method (90 ms) and outperforms the RSSI-only method (150 ms). The energy 

consumption was moderate at 7.3 mWh, which is a compromise between the higher consumption of RSSI-only at 8.1 

mWh and the lower consumption of IMU-only at 6.7 mWh. These findings underscore that the hybrid approach 

provides an almost ideal balance of accuracy, responsiveness, and power requirements, ideal for real-time 

collaboration systems. 

 

V. CONCLUSION 

 

In conclusion, the novel approach of hybrid proximity detection utilizes both Bluetooth Low Energy (BLE) RSSI 

measurement techniques and Inertial Measurement Unit (IMU) sensors to enhance the accuracy and reliability of 

proximity sensing within collaborative contexts. Empirical data corroborates that the combined method achieves 

superior accuracy and efficiency when compared to using IMU or RSSI methods in isolation, concerning detection 

accuracy, reduced response time, and moderate power expenditure. With the aid of sensor fusion, the system mitigates 

the adverse effects of signal variation and user movement, which are common in dynamic scenarios. These 

improvements allow for enhanced responsiveness and more intuitive, context-sensitive user-device interactions. The 

proposed framework is also easy to scale and adapt, making it applicable in diverse smart ecosystems, such as offices, 

schools, and hospitals. 

Along with these improvements, ensuring continuity of cross-device interaction without compromising user privacy, 

while also performing constant proximity detection, remains challenging. We aim to address these problems in the 

next phase of the research by utilizing advanced machine learning techniques, as well as edge computing and privacy 

protection approaches. This work strengthens the design of intelligent, user-driven collaboration systems that work 

reliably, seamlessly, and efficiently at scale, providing users with an enriched ubiquitous computing experience. 
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