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 Abstract 

The role that electromagnetic (EM) waves play on geological layers is highly sensitive to the accuracy 

and speed of subsurface sensing and imaging technologies. This research aims to analyze geological 

factors such as soil texture, moisture level, stratification, and mineral content concerning EM wave 

propagation, attenuation, and reflection. Grounded in microwave remote sensing, electromagnetic 

induction, and ground penetrating radar (GPR) exploration methods, great care is taken towards 

exploration method. The research proves through analytical modeling and empirical field work that 

the dielectric constant and conductivity of the earth materials tremendously impacts the signal strength 

and its ability to penetrate into the ground. The presence of heterogeneous and anisotropic formations 

leads to scattering and signal distortion, which makes imaging harder to resolve. Having knowledge 

of these interactions helps to better interpret geophysical features, such as subsurface features, 

detecting the anomalies becomes easier, and enhances usage concerning monitoring the environment, 

evaluating archeological sites, estimating geological infrastructures, and hydrogeology research. The 

optimization of EM sensing techniques is advanced as they are ionized through the modulation of 

geophysical parameters to the geological conditions possessed, along with tailored configurations of 

sensors and geological settings. 

Keywords: Electromagnetic waves, geological layers, subsurface imaging, ground-penetrating radar 

(GPR), electromagnetic induction (EMI), dielectric properties, signal attenuation, geophysical 

exploration, remote sensing, anomaly detection. 

 

I.INTRODUCTION 

 

The application of subsurface sensing and imaging technologies has increased in importance in fields such as 

geophysical exploration, environmental monitoring, archaeology, and infrastructure assessment.[5] These 

technologies depend upon the emission and reception of electromagnetic (EM) waves, which have interactions with 

layers of rocks below the surface of the Earth. The success and precision of such systems is highly sensitive to how 

EM waves propagate, reflect, and dissipate due to different materials found below the surface.[7] Antennas are 

important devices as far as interfacing the sensor device to the medium of geological material is concerned. Variation 
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in design and function of antennas affects the gain, polarization, frequency, and radiation of EM waves, which 

determines its resolution and penetration depth.[9] Different geological layers having different dielectric constant, 

conductivity, and magnetic permeability give rise to alterations in propagation of the wave by reflecting, refracting, 

scattering, and absorbing it.[11]   

As with other technologies, the region of space where EM propagates and the subsurface features allow for 

functionalities to be defined, the possibility of interoperability enhance. Driven by uncontrollable antenna parameters, 

like frequency band, EM wave polarization, and beamwidth, abstractions can achieve higher clarity and resolution 

signals. Signal distortion, loss, and noise are the primary challenges [4]. In addition, the obtained data is overly 

complicated on an interpretation level.\, For example, breadth barriers that are low enhance the clarity of the deepest 

section. However, mlx graph relies on antenna requiring higher frequencies to obtain finer details and reduced 

altitudes. As a progression, deeper holes allow a higher freedom of wrapping angles, but this mingles with vertical 

stacking without rotor blades.[13] Grasping how these interactions impact systems is critical towards enhancing 

specific antenna designs and optimally integrating subsurface sensing and imaging systems. [14]. This understanding 

allows for improved detection of subterranean irregularities, enhanced depiction of stratigraphic structures, and better-

informed decisions for everything from mineral discovery to construction engineering.[15]. 

1.1 CHARACTERISTICS OF GEOLOGICAL LAYER 

The description of geological strata is one of the first processes that helps in comprehending the interaction of 

geological strata with electromagnetic (EM) waves, such as with Ground Penetrating Radar (GPR) or other 

electromagnetic sensing technologies [2]. The dielectric permittivity and electrical conductivity, and magnetic 

permeability of the medium govern the capture mechanism of EM signals. Such characterization improves the level 

of precision achieved in realistic modeling and interpretation of the results of subsurface imaging.[16]. 

1.1.1 Dielectric Permittivity 

Especially the relative permittivity (ε<sub>r</sub>), dielectric permittivity (ε) relates to the extent a material can store 

electric energy in an electric field. It has a profound effect on the velocity and reflectivity of EM waves in geophysical 

media. Geological materials that have high moisture content, like wet clay or saturated soils, exhibit high permittivity. 

On the other hand, dry materials such as sands or granites tend to have low permittivity (ε<sub>r</sub> ≈ 3–7). The 

difference in permittivity value between different layers creates conditions for partial wave reflection, which forms 

the basis for radargram interpretation in GPR.[17]. Characteristics such as mineral constituents, fluids saturation, and 

even granular size and porosity affect dielectric permittivity. Take, for instance, clay-rich soils which tend to have a 

delicate texture alongside high water retention, thus high permittivity. Permittivity measures can be obtained through 

lab tests (time domain reflectometry) or from field GPR observation data using inversion algorithms. This attribute is 

crucial in determining the EM wave velocity in the medium to be calculated which helps estimate depth using time-

domain radar data. 

1.1.2 Electrical conductivity 

Electric conductivity (σ) gives insight into the broadband electromagnetic wave attenuation in a material. Clayeous 

sediments, saline soils, and even groundwater-saturated layers have high conductivity due to the abundance of saline 

waters, which results into significant energy loss through resistive heating (ohmic losses). This leads to shallow EM 

wave penetration and weak received signals, hence suboptimal subsurface imaging [23]. 

An electromagnetic wave's range determines the amount of Information obtained from the subsurface. With a high 

range of propagation speeds through Earth materials, moist clay easily surpasses dry sand or gravel, proving a massive 

elastic wave velocity with minimal damping. Practically, a soil box test in a lab can enable the direct measurement of 

conductivity, or alternatively deduced from borehole resistivity logs [24]. The epitome of highly conductive rocks and 

soils is accurate vertical conductivity characterization work on the signal reduction model for GPR frequency 

selection, where lower frequency waves penetrate deeper but yield finer detail, while higher frequency waves offer 

fine detail and get attenuated faster in conductive media[26]. 

1.1.3 Magnetic Permeability 

Magnetic permeability (μ) refers to how a material will behave when placed in a magnetic field. The most common 

geological materials, like quartz, limestone, sand, and clay, are classified as non-magnetic substances, with a magnetic 

permeability (μ) almost equal to the free space (μ₀) values. However, in certain rock types and minerals, basalt rocks, 

magnetite, and iron-rich formations tend to have elevated magnetic permeability values, which affects the EM wave 

propagation, especially at lower frequencies. In high-frequency GPR systems, the lack of bandwidth is considered less 

dominant, but in cases involving electromagnetic induction, low-frequency geophysical surveys show significant 

improvement due to using unsaturated magnetic permeability [27]. For characterization purposes, magnetic 

susceptibility gauges at geological survey levels, magnetometers, and magnetron-derived multi-spectral systems can 
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assist in measuring, while other methods are based on the degree of magnetic susceptibility measurements [28]. In 

several instances, considering magnetic permeability as an added parameter to the model works best under settings 

where ferromagnetic minerals are situated or where interpretive anomalies likely affected by field magnetic qualities 

are the goal. 

1.2 RESEARCH OBJECTIVE 

• To study the propagation characteristics of electromagnetic waves regarding their interaction with various 

geological layers with particular relations to reflection, refraction, scattering, and attenuation. 

• Analyze the impact of geological attributes such as the dielectric constant, conductivity, moisture, 

ramification, and stratification on the propagation of electromagnetic waves in subsurface sensing. 

• To scrutinize the effects of antenna design parameters such as frequency, polarization, and radiation pattern 

on electromagnetic wave transmission and reception for subsurface imaging. 

• Refine and validate techniques to forecast electromagnetic wave action in complex, heterogeneous, and 

anisotropic geological formations to improve subsurface imaging precision. 

• To evaluate the practical uses of the knowledge on electromagnetic wave interaction in geophysical 

exploration, environmental monitoring, and infrastructure evaluation. 

 

II. LITERATURE REVIEW 

 

Table 1: Comparison table for related work 

Author(s) & 

Year 

Main Areas Findings Methodology Contribution to 

ANTENNA 

Daniels, D. J. 

(2004)[1] 

Ground-Penetrating 

Radar (GPR) theory 

and applications 

Showed the impact on 

signal penetration and 

attenuation of EM waves 

as a function of the soil 

moisture content and soil 

conductivity.  

Experimental & 

theoretical 

analysis 

Emphasized the 

significance of the 

selection of frequency 

and antenna 

polarization  

Jol, H. M. 

(2008)[20] 

GPR for geological 

and environmental 

investigations 

Elaborated the impact of 

heterogeneous subsurface 

structures on signal 

scattering and distortion 

 

Field studies 

and simulations 

Highlighted antenna 

beamwidth and 

frequency optimization 

for enhanced imaging  

Annan, A. P. 

(1999)[3]. 

EM wave 

propagation in 

layered media 

Developed models for 

reflection and transmission 

coefficients at interfaces of 

different dielectric 

materials.  

Analytical 

modeling 

Demonstrated the 

influence of geological 

stratification on 

antenna wave 

impedance matching  
Chen, J. & 

Huang, X. 

(2015)[25]. 

Electromagnetic 

induction methods 

for subsurface 

sensing 

Studied the impacts of 

conductive mineral layers 

on electromagnetic signal 

attenuation and phase 

change.  

Numerical 

simulations 

Proposed antenna 

tuning to frequency 

ranges less influenced 

by conductivity. 

Guo, T. et al. 

(2019)[6] 

Impact of anisotropy 

in geological 

formations on EM 

imaging 

Found anisotropy leads to 

directional dependence of 

EM wave speed, affecting 

imaging accuracy 

Laboratory 

experiments & 

modeling 

Showed need for 

adjustable antenna 

polarization to reduce 

anisotropy effects. 

Li, W. & 

Sun, Y. 

(2020)[18] 

Antenna design for 

subsurface radar in 

complex geological 

environments 

Created ultra-wideband 

antennas with enhanced 

performance for 

penetration and resolution 

in changing soil 

conditions.  

Antenna design 

and field testing 

Imaging clarity was 

improved through 

tuning the parameters 

of the antenna, 

demonstrating imaging 

advancement.  
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Wang, Z. et 

al. (2022)[8] 

Subsurface imaging 

using multi-

frequency EM waves 

The multi-frequency 

technique enhanced the 

depth penetration 

capability while preserving 

superior resolution.  

Experimental & 

signal 

processing 

Highlighted 

multitasking band 

antennas for mitigating 

the balancing trade-offs 

between depth and 

resolution. 

Zhang, L. & 

Xu, R. 

(2023)[10]. 

EM wave scattering 

in layered anisotropic 

media 

Simulated scattering 

effects due to the existence 

of nonuniform boundaries 

and anisotropic layer 

interfaces  

Computational 

modeling 

Provided guidelines for 

antenna positioning 

and signal 

interpretation 

 

The literature reviewed table 1 highlights the critical importance of geological layer properties concerning 

electromagnetic (EM) waves utilized in sensing and imaging applied beneath the Earth’s surface. Multiple studies 

(Daniels, 2004; Annan, 1999; Chen & Huang, 2015) depict the importance of soil moisture, dielectric constant, and 

electrical conductivity regarding EM wave attenuation, reflection, and propagation. For example, a primary limitation 

on imaging depth and clarity is posed by high-conductivity materials like clay and saline soils that inflict rapid signal-

loss. Further complications arise from the heterogeneity and anisotropy present within the geological formations. 

According to Jol (2008), Guo et al. (2019), and Zhang & Xu (2023), such irregularities cause scattering, distortion of 

waves, and velocity pertaining to directional dependence, thus limiting the accuracy of imaging unless catered for 

with advanced designs and signal processing systems. Geophysical antennas appear to be impactful concerning 

geological effects posed above and beyond imaging systems. That concern in mind, the work of Li & Sun (2020) and 

Wang et al. (2022) shows that specialized ultra-wideband (UWB), multi-frequency, and even multi-band operated 

antennas are capable of striking a desirable balance between peak imaging resolution and the depth of penetration. 

Operating parameters such as frequency, polarization, beamwidth, and other relevant angles must be adjusted to the 

targeted geological environment to achieve enhanced data quality. These findings have also highlighted the need for 

adaptive systems responding to changing subsurface conditions in real time. Moreover, the methods used across these 

studies, which include theoretical modeling, computational simulations, laboratory experiments, and field trials, are 

all encompassing and reinforce the conclusions while calling attention to the need for more unified approaches to 

address a wider applicability scope. It emerges from the synthesis of available research that optimizing performance 

with EM sensing requires more geomatic integration with the antenna system design, both considering the geological 

complexity. For improving imaging beneath the surface, advancements in adaptive antenna technologies, better 

modeling of EM-geological interactions, and novel data-driven interpretation techniques are important. Further 

developed research should focus on optimization using AI, real time calibration techniques, and inter-disciplinary 

frameworks to shift the balance of accuracy and reliability in subsurface exploration. 

 

III. PROPOSED METHODOLOGY 

 

3.1 Proposed Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig:1 Proposed Architecture 
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The fig 1 demonstrates the operation of Ground Penetrating Radar (GPR) technology used for detecting objects and 

flaws below the surface. It has been divided into three distinct parts: system architecture (a), response to the GPR 

signal (b), and the radar profile output (c). In section (a), the GPR system comprises a control unit which is a host and 

the control unit involves the host connected to a transmitting and receiving antenna. The GPR system includes a host 

control unit, which is a system component that manages the transmission and reception of data signals. The radar 

signals are them internally captured through a ghost charge control unit that manages the them through a control unit. 

The transmitting antenna radiates electromagnetic pulses into the strata and geological layers. Strata and geological 

layers contain voice GPR radiance and reflections of certain offensive objects and mount base. When these signals hit 

an anomaly like an object that is buried or stuck in change material, gate control system reflection tend to bounce back 

from the surface edifice hold structure. These signals are attained by the receiving antenna. Mount and control unit 

gathers sustains in both case filling receives course receipt of angle control quad data package. Section (b) is concluded 

with rather simplified waveform sign capturing performed signals returning from anomalies that exist deep the 

subsurface surface. Changes in level, strength, and duration of signal pulses depend on the alteration of the bundles 

composed of geological materials that are located underground, and a few structures that exist. Actually, assumption 

shape the signal that serves for interpret scan data that is captured. Finally, section (c), is usually referred to as B-scan 

image radar profile. This image is obtained whenever a multiple fundamental components pulses are overline their 

segmentation on ground surface windows that are viewed from the above through shred at which is engaging. The 

radar profile's hyperbolic patterns suggest the existence of anomalies[19]. These patterns result from the reflection of 

radial waves off of concave or pointed surfaces beneath the ground. In section (a), the signals reflected and highlighted 

with red arrows indeed correspond to the anomalies identified. The diagram illustrates beautifully the working of GPR 

systems from sending signals and interacting with subsurface features to receiving and processing imagery which 

makes it useful in geology, archaeology, construction, and environmental science.[22]. 

3.2 Data Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig:2 Data flow diagram for surface sensing and Imaging 

Fig 2 summarizes the flow of Information in a Ground Penetrating Radar (GPR) system. It features the steps taken to 

identify objects below the surface. The process starts with the generation of electromagnetic high-frequency pulses in 

the system's initial component, the pulse generator. The transmitter processes the electromagnetic pulses and sends 

them to the corresponding antennas for further propagation. The antenna transfers the waves to the ground as GPR 

systems work with antenna. The waves are sent into the ground and will meet reflectors within it (like sub-surface 

structures or material interfaces). Part of their energy will bounce off back towards the surface. The signals received 

are still in data form and are processed by a receiver anterior to the collar. This unit generates and conditions data that 
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is raw to be useful later. In this case the data has already been received so the process begins at the adapter which 

transforms the signal into essential Information like parameters of depth, shape and position of the object the was 

highlighted. To enable the user see the interpretation of the subsurface features, the system displays the Information 

through a visual unit display, which transforms the refined data temporally into an interpretable format. All in all, the 

diagram illustrates the steps along the GPR system, beginning with pulse generation and transmission, subsurface 

interaction, reflection, reception, analysis, and display, which would aid an operator to see objects that are buried 

underground. 

 

IV. RESULTS AND DISCUSSION 

 

 
Fig: 3 Training and Validation loss for training process . 

In the left image of Fig 3, and as we expected, we see that the training loss function of the UNet network decreases 

with increasing number of epochs. This implies, in this case, that the network is improving its performance and 

learning the features associated with GPR signals dealing with underground rock and stratigraphic structure 

information as the training progresses. At first, the training loss curve shows a steep drop; this often is the case when 

the network is said to be learning rapidly from the data. After some time, however, this rate of loss diminishes, and 

hence there is a plateauing effect where the rate of reduction is lower than the previous phase. This means that the 

network is likely at its upper limit of learning, thus hinting at converging behavior. The loss function is presented in 

the right image on the validation set. The same trend where a function decays with increasing number of epochs is 

also true on the validation set, which is a good sign that the model does generalize well to new data. The overall pattern 

of validation loss follows a similar trend as training loss, with no concerning upward shifts suggesting overfitting, 

which confirms strong generalization. To conclude, the two graphs of loss functions eloquently illustrate the UNet 

network’s performance throughout the 300 epochs of training. For both training and validation losses, the trends 

remain consistently downward without overfitting. This highly strengthens the model’s efficiency in forecasting 

underground rock formations and stratigraphic structures derived from GPR signals while showcasing their 

generalization prowess. 

 

 
Fig: 4 Evaluation Metric Analysis 
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Based on the fig 4 metrics provided in the metric analysis chart, the model is evaluated and tracked through each stage 

of its construction using accuracy, precision, recall, and F1 score. Model accuracy has been assessed to be 92.5% 

which establishes that almost all predictions (positive or negative) made are correct. This is indicative of a very high 

level of trust in prediction results. Model precision is at the mark of 89.7, thus making almost 90% of all positive 

detections accurate. This denotes a very low percentage of misclassifications as positives. The model performs 

exceptionally well on recall, achieving a score of 93.4%. This value highlights the ability to identify positive cases 

correctly; therefore, a very high score in recall suggests that there are few positive cases missed. The balance in 

precision and recall gives an F1 score of 91.5%, a balanced figure signifying that neither of the two values was overly 

neglected. This adds to the reliability of the model as it is performing consistently without showing too much lean to 

precision or recall. To sum up, the model performs exceptionally on all fronts without leaning toward any feature 

while showcasing strong recall along with accuracy providing reliability for tasks when identification and minimizing 

missed cases is a necessity. 

 

 
Fig:5 Metric Analysis for image-based performance 

To interpret fig 5, the loss function and SSIM metric (as per the graph) both appear to have achieved moderately low 

values. This implies that while the model does well numerically, there is still plenty of room for improvement in 

perceptually relevant image quality.  The line graph captioned 'Metric Analysis' demonstrates how an image-based 

model performs using five different metrics of evaluation: loss function (MSE), validation loss MSE, SSIM, 

PSNR(dB) ,and IoU. It can also be noted that both Loss Function (MSE) and Validation Loss (MSE) show very low 

values, meaning that the model fits the training data well and generalizes well to the validation set. The values also 

indicate that the model and the data set in question do not show a significantly high error divergence. Out of all the 

analyzed metrics, the most notable value is the Peak Signal to Noise Ratio (PSNR), which is much higher than every 

other metric PSNR depicts.  This denotes that the images being reconstructed and produced by the model contain low 

amounts of noise when compared to the signal, showing proper image reconstruction or enhancement capabilities. 

Finally, PSNR appears to quite low exhibiting that the model is lacking when it comes to precision spatial estimation 

tasks like object segmentation and detection. The model shows great numerical accuracy with low loss and high PSNR 

values, displaying its effectiveness in image reconstruction or denoising tasks. However, the comparatively lower 

SSIM and IoU scores suggest moderate perceptual quality and low spatial fidelity, indicating some difficulty in 

meeting capture requirements, which could be improved for sensitive visual and spatial tasks. 

 

V. CONCLUSION 

 

The interaction of electromagnetic (EM) waves with geological layers critically considers the overall effectiveness 

and accuracy of subsurface sensing and imaging methods. Changes in geological composition, like moisture content, 

mineralogy, and stratification, create differences in EM waves' propagation, attenuation, and reflection. These 

interactions impact the depth of signal penetration, resolution, and data interpretation in GPR, EMI, and remote 

sensing applications. Knowing more about these interactions helps to optimize frequency selection, sensor geometry, 
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design, and signal processing algorithms, which improves image and target detectability. Also, combining 

electromagnetic models with geological data enhances the reliability of imaging the subsurface in complex geological 

environments. Research of EM wave behavior in geological media is fundamental for developing geophysical 

exploration techniques, archaeological monitoring, environmental monitoring in civil infrastructure, and remote 

sensing. 
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